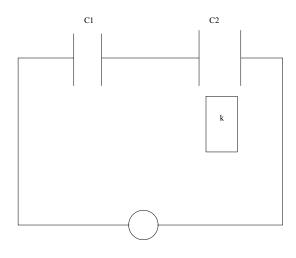
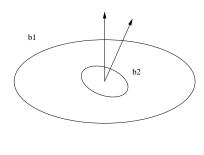
Problema A


Due condensatori a piastre piane parallele C_1 e C_2 hanno aree di $100cm^2$ e $150cm^2$ rispettivamente e distanze tra le piastre di 1.5cm e 1cm. Sono collegati in serie e connessi ad un generatore che mantiene una ddp costante di 500V. Ad un certo istante t_0 , C_2 viene riempito di un dielettrico di costante dielettrica relativa k=5. Si calcoli:


- a) La capacità totale del sistema formato dai due condensatori dopo l'inserimento del dielettrico e la carica ai capi di ciascuno prima e dopo l'inserimento del dielettrico
- b) La carica di polarizzazione sulle facce del dielettrico e la variazione di potenziale ai capi di \mathcal{C}_2 dopo l'inserimento del dielettrico.
- c) L'energia fornita dal generatore nel processo.

Problema B

Due bobine b_1 e b_2 sono composte da $n_1=115$ e $n_2=350$ spire rispettivamente, ed hanno raggi $r_1=50cm$ e $r_2=1cm$. Gli assi delle due spire formano un angolo $\theta=45^o$. In b1 circola una corrente di 1.5A. si calcoli:

- a) Il campo magnetico al centro della spira b_1 .
- b) Il coefficiente di mutua induzione M.
- c) Se in b_2 circola una corrente $i=i_0cos\omega t$, si calcoli il valore della fem indotta al tempo t nella spira b_1 .

B)

A)

Soluzione dell'esercizio A

a) Le capacità dei condensatori si calcolcano da $C=\epsilon_0\frac{A}{d}$ e valgono $C_1=5.86pF$ e $C_2=13.2pF$ (senza dielettrico) . Essendo i condensatori in serie, la capacità totale si ricava da

$$\frac{1}{C_{tot}} = \frac{1}{C_1} + \frac{1}{C_2}$$

e vale Ctot'=4.0 pF con dielettrico e Ctot=5.38 pF senza dielettrico. La carica su C_2 si ricava da $Q = C_{tot}V$ e vale Q' = 2.69nC con dielettrico Q = 2.0nC senza dielettrico e ed è uguale a quella su C_1 essendo i condensatori in serie.

b) La carica superficiale di polarizzazione è

$$\sigma_p = \overrightarrow{P} \cdot \overrightarrow{u}_n = \epsilon_0(k-1)E = (k-1)\frac{\sigma}{k}$$

La carica di polarizzazione è quindi :

$$q_p = \sigma_p \cdot A = \frac{k-1}{k} \sigma \cdot A = \frac{k-1}{k} Q' = \frac{4}{5} Q'$$

dove Q' è la carica sul condensatore dopo l'inserimento.

c) La variazione di energia è :

$$\Delta V = \frac{1}{2}(C_{tot} - C'_{tot})V^2 = 1.7 \times 10^{-7} J$$

L'energia spesa dal generatore è però $W = \Delta q \cdot V$, il doppio di quanto sopra. Questo perchè metà dell'energia viene spesa sotto forma di lavoro per inserire il dielettrico.

Soluzione dell'esercizio B

- a) Il campo generato dalla spira b_1 nel suo centro è $B_1 = \frac{\mu_0 N_1 i_1}{2r_1} = 2.1 \times 10^{-4} T$.
- b) Essendo $r_2 << r_1$ possiamo considerare uniforme il campo generato da b_1 nello spazio occupato da b_2 . Il flusso del campo generato da b_1 attraverso b_2 vale :

$$\Phi_{1,2} = \frac{\mu_0 N_1 N_2 \pi r_2^2 cos\theta}{2r_1} i_1 = 1.6 \times 10^{-5} Wb$$

il coefficiente di mutua induzione è:

$$M = \frac{\Phi_{1,2}}{i_1} = 1.0610^{-5} H$$

c) La fem indotta vale:

$$fem(t) = -M\frac{di_2}{dt} = M\omega i_0 \sin \omega t$$