Sezione D - Isospin

- **1.** Si illustri come si può verificare che il π ha isospin 1.
- **2.** Il barione Σ_0 ha $I=1,\,I_3=0.$ Si stimino i rapporti

$$\frac{\Gamma_{\overline{K}^0 n}}{\Gamma_{K^- p}}, \frac{\Gamma_{\pi^- p}}{\Gamma_{K^- p}}, \frac{\Gamma_{\pi^+ \pi^-}}{\Gamma_{K^- p}}$$

dove Γ_{xy} è il rate di decadimento $\Sigma_0 \to xy$.

3. Si considerino le reazioni

$$\pi^+ p \to \pi^+ p$$
 $\pi^- p \to \pi^- p$

$$\pi^- p \to \pi^- p$$

$$\pi^- p \to \pi^0 n$$

Calcolare i rapporti tra le tre sezioni d'urto a energie vicine alla massa della Δ e della N^*

4. Calcolare il rapporto tra le sezioni d'urto per i seguenti processi:

1.
$$K_L p \to \pi^+ \Sigma^-$$

2.
$$K_L p \to \pi^0 \Sigma^0$$

3.
$$K_L p \to \pi^- \Sigma^+$$

4.
$$K_L p \to \pi^0 \Lambda^0$$

Si assumano dominanti le ampiezze che convolgono isospin nullo.

5. Si dica, motivando, se le seguenti reazioni sono permesse :

1.
$$pp \to K^+\Sigma^+$$

2.
$$pn \rightarrow \Lambda^0 \Sigma^+$$

3.
$$pn \to \Xi^0 p$$

4.
$$pn \rightarrow \Xi^- K^+ \Sigma^+$$

5.
$$\Xi^0 \to \Sigma^0 \Lambda^0$$

6.
$$\Sigma^+ \to \Lambda^0 K^+$$

7.
$$\Xi^{-} \to n\pi^{-}$$

8.
$$\Lambda^0 \to K^+K^-$$

9.
$$\Xi^0 \to p\pi^-$$

6. Si calcoli il rapporto

$$\frac{f_2 \to \pi^+ \pi^-}{f_2 \to \pi^0 \pi^0}$$

- 7. La $N^*(1440)$ ha I=1/2 e $J^P=1/2^+$ e decade in $N\pi$ dove N=p,n. Si valuti se si tratta di un decadimento forte e si deduca il valore del momento angolare finale
- **8.** Usare la simmetria di isospin per valutare quali siano i decadimenti in due pioni permessi per i tre stati di isospin della particella ρ . Si stimi il rapporto

$$\frac{\rho^0 \to \pi^0 \pi^0}{\rho^0 \to \pi^+ \pi^-}$$