Stringy instanton calculus

Marco Billò

D.F.T., Univ. of Turin

Leuven-Bruxelles, 25-11-2009

Marco Billò (D.F.T., Univ. of Turin)

Stringy instanton calculus

ヨト・モト

Introduction and motivations

э

Marco Billò (D.F.T., Univ. of Turin)

Stringy instanton calculus

D-brane worlds

- SM-like sector from open strings on stacks of D(3+p) branes wrapped on some internal p-cycles Cp
- Gravitational sector from closed strings in the bulk

D-brane worlds

- SM-like sector from open strings on stacks of D(3+p) branes wrapped on some internal p-cycles Cp
- Gravitational sector from closed strings in the bulk

► Gauge and gravitational couplings depend on different volumes (expressed in units of $\sqrt{\alpha'}$):

$$\kappa_4^2 \sim g_s^2 \alpha' / V(Y_6)$$
, $g_{YM}^2 \sim g_s / V(C_p)$

String mass scale α' can be much lower than 4-d M_{Pl}

Arkani-Hamed et al., '98

D-brane worlds

- SM-like sector from open strings on stacks of D(3+p) branes wrapped on some internal p-cycles Cp
- Gravitational sector from closed strings in the bulk

- Gauge groups from multiple branes, bifundamental chiral matter from "twisted" strings, replicas from multiple intersections see, e.g., [Uranga, 2003, Kiritsis, 2004, Lust, 2004, Blumenhagen et al., 2005]
- (String) topology of the internal space + choice of branes (subject to tadpole cancellation): a rich model building scenario (using intersecting/magnetized branes of various dimensions)

Perturbative effects

of extra-dimension

- The higher-dimensional, stringy origin of a given D-brane world model bears also on the quantum properties of its low-energy effective action
- For instance, the perturbative corrections are affected by the extra states in the theory, resulting in threshold corrections

Also non-perturbative corrections can be influenced

Perturbative effects

of extra-dimension

- The higher-dimensional, stringy origin of a given D-brane world model bears also on the quantum properties of its low-energy effective action
- For instance, the perturbative corrections are affected by the extra states in the theory, resulting in threshold corrections

Also non-perturbative corrections can be influenced

Non-perturbative corrections

Gauge instantons & D-brane instantons

- Non-perturbative sectors: partially wrapped E(uclidean)-branes
- ► Pointlike in ℝ^{1,3}: instanton configurations

- E-branes identical to a given D-brane stack in the internal directions: instantons for that gauge theory
 - ADHM from strings attached to the instantonic branes

Witten, 1995; Douglas, 1995-1996; ...

non-trivial instanton profile of the gauge field

Billo et al, 2001

Rules and techniques to embed the instanton calculus in string theory have been constructed

Polchinksi, 1994; Green-Gutperle, 2000, ...; Turin/Rome/Münich/UPenn/Madrid,...

Non-perturbative corrections

Gauge instantons & D-brane instantons

- Non-perturbative sectors: partially wrapped E(uclidean)-branes
- ► Pointlike in ℝ^{1,3}: instanton configurations

- E-branes identical to a given D-brane stack in the internal directions: instantons for that gauge theory
 - ADHM from strings attached to the instantonic branes

Witten, 1995; Douglas, 1995-1996; ...

non-trivial instanton profile of the gauge field

Billo et al, 2001

 Rules and techniques to embed the instanton calculus in string theory have been constructed

Polchinksi, 1994; Green-Gutperle, 2000, ...; Turin/Rome/Münich/UPenn/Madrid,...

More non-perturbative corrections

"Stringy" or "exotic" instantons

 E-branes wrapped on a different internal cycle C'_{p'} yield exotic (a.k.a. stringy) non-perturbative corrections

• Ordinary gauge instanton effects suppressed by $e^{-\frac{8\pi^2}{g_{YM}^2}}$

- Exotic instanton effects suppressed by $e^{-\frac{8\pi^2}{g_{YM}^2}\frac{V(C'_{p'})}{V(C_p)}}$
 - they would be ordinary instanton for the gauge theory of branes wrapped on $C'_{p'}$

More non-perturbative corrections

"Stringy" or "exotic" instantons

 E-branes wrapped on a different internal cycle C'_{p'} yield exotic (a.k.a. stringy) non-perturbative corrections

- Exotic instantons may lead to interactions that would be perturbatively forbidden in these models
- Such effects could be of great phenomenological relevance (Neutrino Majorana masses, Yukawas in certain GUT models,...) Blumenhagen et al '06; Ibanez and Uranga, '06; Haack et al, '06; Blumenhagen et al, 2008; ...
- Need to understand their status in the gauge theory and to construct precise rules for the "exotic" instanton calculus

Exotic features

from the world-sheet point of view

Consider the strings stretching between the gauge D-branes and the E-branes

NS sector physicity condition:

$$L_0 - \frac{1}{2} = N_X + N_{\psi} + \sum_{i=1}^3 \frac{\theta_i}{2} = 0$$
,

- Ordinary case: internal twists $\theta_i = 0$. There are bosonic moduli $w_{\dot{\alpha}}$ typical of ADHM construction, related to the size
- Exotic case: $\theta_i > 0$, i.e., there are "more than 4 ND directions". The moduli $w_{\dot{\alpha}}$ are absent. Hints at zero-size limit of some gauge field configuration.

Exotic features

from the world-sheet point of view

Consider the strings stretching between the gauge D-branes and the E-branes

• In the R sector, fermionic anti-chiral moduli $\lambda_{\dot{\alpha}}$ always present

- Ordinary case: Lagrange multipl. of fermionic ADHM constraints
- Exotic case: the the abelian component of the λ 's is a true fermionic zero-mode since the abelian part of ADHM constraint vanishes (it would cointain the $w_{\dot{\alpha}}$). Must be removed to get non-zero correlators:
 - orientifold projections Argurio et al, 2007; ...
 - * closed string fluxes Blumenhagen et al, 2007; Billo et al, 2008; ...
 - * other mechanisms Petersson, 2007; ...

Strategy

- Select a simple example: D(-1)/D7 in type I' theory, sharing many features of stringy instantons
- Investigate the field-theory interpretation of D(-1)'s in this 8d gauge theory
 Billo et al, 2009a;
- Compute the non-perturbative effective action on the D7's extending the rules of stringy instanton calculus to this "exotic" case.
- Check against the results in the dual Heterotic SO(8)⁴ theory. Impressive quantitative check of this string duality.
- Apply the technology to tractable examples leading to 4d models

Work in progress, Turin + Tor Vergata

イロト イポト イヨト イヨト

Disclaimer

- This talk builds over a vast literature some scattered references are given in the slides
 - I apologize for missing ones...
- Results presented here mostly from
 - M. Billo, M. Frau, L. Gallot, A. Lerda and I. Pesando, "Classical solutions for exotic instantons?,", JHEP 03 (2009) 056, arXiv:0901.1666 [hep-th]
 - M. Billo, L. Ferro, M. Frau, L. Gallot, A. Lerda and I. Pesando, "Exotic instanton counting and heterotic/type I' duality," JHEP 0907 (2009) 092, arXiv:0905.4586 [hep-th]
 - M. Billo, M. Frau, F. Fucito, A. Lerda, F. Morales and R. Poghossyan, work in progress

Plan of the talk

1 An 8-dimensional example

- 2 Effective action
- 3 A 4-dimensional example
- 4 Conclusions and perspectives

Marco Billò (D.F.T., Univ. of Turin)

An 8-dimensional example

Marco Billò (D.F.T., Univ. of Turin)

Type I' is type IIB on a two-torus T₂ modded out by

$$\Omega = \omega \, (-1)^{F_L} I_2$$

- ▶ Admits D(-1), D3 and D7's transverse to T₂
- Local RR tadpole cancellation requires 4 D7-branes at each fix point

Type I' is type IIB on a two-torus T₂ modded out by

$$\Omega = \omega \, (-1)^{F_L} \, I_2$$

- Ω has four fixed-points on T₂ where four
 O7-planes are placed
- ▶ Admits D(-1), D3 and D7's transverse to T₂
- Local RR tadpole cancellation requires 4 D7-branes at each fix point

Type I' is type IIB on a two-torus T₂ modded out by

$$\Omega = \omega \, (-1)^{F_L} \, I_2$$

- Ω has four fixed-points on T₂ where four
 O7-planes are placed
- ▶ Admits D(-1), D3 and D7's transverse to T₂
- Local RR tadpole cancellation requires 4 D7-branes at each fix point

Type I' is type IIB on a two-torus T₂ modded out by

$$\Omega = \omega \, (-1)^{F_L} \, I_2$$

- Ω has four fixed-points on T₂ where four
 O7-planes are placed
- ▶ Admits D(-1), D3 and D7's transverse to T₂
- Local RR tadpole cancellation requires 4 D7-branes at each fix point

The gauge theory on the D7's

From the D7/D7 strings we get N = 1 vector multiplet in d = 8 in the adjoint of SO(8):

$$\left\{ oldsymbol{\mathsf{A}}_{\mu}, oldsymbol{\Lambda}^{lpha}, oldsymbol{\phi}_{m}
ight\}$$
 , $\mu = 1, \ldots 8$, $m = 8, 9$

Can be assembled into a "chiral" superfield

$$\Phi(x,\theta) = \phi(x) + \sqrt{2} \,\theta \Lambda(x) + \frac{1}{2} \,\theta \gamma^{\mu\nu} \theta F_{\mu\nu}(x) + \dots$$

where $\phi = (\phi_8 + i\phi_9)/\sqrt{2}$.

Formally very similar to $\mathcal{N} = 2$ in d = 4

(tree level)

.

• Effective action in $F_{\mu\nu}$ and its derivatives: NABI

$$S = S_{(2)} + S_{(4)} + S_{(5)} + \cdots$$

= $\frac{1}{8\pi g_s} \int d^8x \Big[\frac{\text{Tr}(F^2)}{(2\pi)^4 {\alpha'}^2} - \frac{t_8 \text{Tr}(F^4)}{3(2\pi)^2} + {\alpha'} \mathcal{L}_{(5)}(F, DF) + \cdots \Big]$

(tree level)

(

• Effective action in $F_{\mu\nu}$ and its derivatives: NABI

$$S = S_{(2)} + S_{(4)} + S_{(5)} + \cdots$$

= $\frac{1}{8\pi g_s} \int d^8x \Big[\frac{\text{Tr}(F^2)}{(2\pi)^4 {\alpha'}^2} - \frac{t_8 \text{Tr}(F^4)}{3(2\pi)^2} + {\alpha'} \mathcal{L}_{(5)}(F, DF) + \cdots \Big]$

► The quadratic Yang-Mills term $S_{(2)}$ has a dimensionful coupling $g_{YM}^2 \equiv 4\pi g_s (2\pi \sqrt{\alpha'})^4$

(tree level)

• Effective action in $F_{\mu\nu}$ and its derivatives: NABI

$$S = S_{(2)} + S_{(4)} + S_{(5)} + \cdots$$

= $\frac{1}{8\pi g_s} \int d^8x \Big[\frac{\text{Tr}(F^2)}{(2\pi)^4 {\alpha'}^2} - \frac{t_8 \text{Tr}(F^4)}{3(2\pi)^2} + \alpha' \mathcal{L}_{(5)}(F, DF) + \cdots \Big]$

• Contributions of higher order in α'

(tree level)

• Effective action in $F_{\mu\nu}$ and its derivatives: NABI

$$S = S_{(2)} + S_{(4)} + S_{(5)} + \cdots$$

= $\frac{1}{8\pi g_s} \int d^8 x \Big[\frac{\text{Tr}(F^2)}{(2\pi)^4 {\alpha'}^2} - \frac{t_8 \text{Tr}(F^4)}{3(2\pi)^2} + \alpha' \mathcal{L}_{(5)}(F, DF) + \cdots \Big]$

The quartic term has a dimensionless coupling:

$$S_{(4)} = -\frac{1}{96\pi^3 g_s} \int d^8 x \, t_8 \, \mathrm{Tr} \left(F^4\right)$$

(tree level)

• Effective action in $F_{\mu\nu}$ and its derivatives: NABI

$$S = S_{(2)} + S_{(4)} + S_{(5)} + \cdots$$

= $\frac{1}{8\pi g_s} \int d^8 x \Big[\frac{\text{Tr}(F^2)}{(2\pi)^4 {\alpha'}^2} - \frac{t_8 \text{Tr}(F^4)}{3(2\pi)^2} + \alpha' \mathcal{L}_{(5)}(F, DF) + \cdots \Big]$

Adding the WZ term, we can write

$$S_{(4)} = -\frac{1}{4! \, 4\pi^3 g_s} \int d^8 x \, t_8 \, \text{Tr} \left(F^4\right) - 2\pi i \, C_0 \, c_{(4)}$$

where $c_{(4)}$ is the fourth Chern number

$$c_{(4)} = \frac{1}{4!(2\pi)^4} \int \mathrm{Tr} \big(F \wedge F \wedge F \wedge F \big)$$

- (tree level)
 - Effective action in $F_{\mu\nu}$ and its derivatives: NABI

$$5 = S_{(2)} + S_{(4)} + S_{(5)} + \cdots$$

= $\frac{1}{8\pi g_s} \int d^8x \Big[\frac{\text{Tr}(F^2)}{(2\pi)^4 {\alpha'}^2} - \frac{t_8 \text{Tr}(F^4)}{3(2\pi)^2} + {\alpha'} \mathcal{L}_{(5)}(F, DF) + \cdots \Big]$

Adding the fermionic terms, can be written using the superfield $\Phi(x, \theta)$ as

$$S_{(4)} = \frac{1}{(2\pi)^4} \int d^8 x \, d^8 \theta \, \text{Tr} \Big[\frac{i\pi}{12} \, \tau \, \Phi^4 \Big] \, + \, \text{c.c.}$$

where $\tau = C_0 + \frac{i}{q_s}$ is the axion-dilaton.

Receives one-loop and non-perturbative corrections

Effective action

э

Marco Billò (D.F.T., Univ. of Turin)

1-loop effective action

 At 1-loop we get contributions from annuli and Möbius diagrams. At the quartic level,

(*U* is the complex structure of the 2-torus T_2)

Adding D-instantons

- Add k D-instantons.
- D7/D(-1) form a 1/2 BPS system with 8 ND directions
- -----• k D(-1)

D(-1) classical action

$$\mathcal{S}_{cl} = k(\frac{2\pi}{g_s} - 2\pi i C_0) \equiv -2\pi i k\tau ,$$

Coincides with the quartic action on the D7 for gauge fields F with c₍₄₎ = k and

$$\int d^8x \, Tr(t_8 F^4) = -\frac{1}{2} \int d^8x \, Tr(\epsilon_8 F^4) = -\frac{4!}{2} (2\pi)^4 \, c_{(4)}$$

Adding D-instantons

- Add k D-instantons.
- D7/D(-1) form a 1/2 BPS system with 8 ND directions
- ♦ ----k D(-1)
 ♦ -----

D(-1) classical action

$$S_{cl} = k(\frac{2\pi}{g_s} - 2\pi i C_0) \equiv -2\pi i k\tau ,$$

- Analogous to relation with self-dual YM config.s in D3/D(-1)
- Suggests relation to some 8d instanton of the quartic action

Effective action from D-instantons

- Open strings with at least one end on a D(-1) carry no momentum: they are moduli rather than dynamical fields.
- Effective interactions between gauge fields can be mediated by D-instanton moduli through mixed disks

Effective action from D-instantons

Moduli integral

► Non-perturbative contributions to the effective action of the gauge degrees of freedom Φ arise integrating over the instanton moduli M_(k) and summing over all instanton numbers k

$$S_{\mathrm{n.p.}}(\Phi) = \sum_{k} e^{2\pi i \tau k} \int d\mathcal{M}_{(k)} e^{-S(\mathcal{M}_{(k)}, \Phi)}$$

- $2\pi i\tau k$ is the classical value of the instanton action
- S(M_(k), Φ) arises from (mixed) disk diagrams describing interactions of the moduli among themselves and with the gauge fields

Effective action from D-instantons

Moduli integral

► Non-perturbative contributions to the effective action of the gauge degrees of freedom Φ arise integrating over the instanton moduli M_(k) and summing over all instanton numbers k

$$S_{\mathrm{n.p.}}(\Phi) = \sum_{k} e^{2\pi i \tau k} \int d\mathcal{M}_{(k)} e^{-S(\mathcal{M}_{(k)}, \Phi)}$$

This procedure is by now well-established for instantonic brane systems corresponding to gauge instantons

Polchinksi, 1994; Green-Gutperle, 2000, ...; Turin/Rome/Münich/UPenn/Madrid,...

- We want to apply it explicitly in our "exotic" instanton set-up
- This is a very complicated matrix integral ...

The moduli spectrum

Spectrum:

Sector		Name	Meaning	Chan-Paton	Dimension
-1/-1	NS	aμ	centers	symm SO(k)	(length)
		χ, χ		adj SO(<i>k</i>)	(length) ^{–1}
		Dm	Lagr. mult.	adj $SO(k)$	(length) ⁻²
	R	Μα	partners	symm SO(<i>k</i>)	(length) ¹ 2
		λά	Lagr. mult.	adj SO (k)	(length) ^{−3} 2
-1/7	R	μ		8 × k	(length)
	NS	W	(auxiliary)	8 × k	(length) ⁰

э

Marco Billò (D.F.T., Univ. of Turin)

< D > < A
The moduli spectrum

Spectrum:

Sector		Name	Meaning	Chan-Paton	Dimension
-1/-1	NS	aμ	centers	symm SO(k)	(length)
		χ, χ		adj SO(k)	(length) ^{–1}
		Dm	Lagr. mult.	adj $SO(k)$	(length) ⁻²
	R	Μα	partners	symm SO(<i>k</i>)	(length) ¹ /2
		λά	Lagr. mult.	adj SO (k)	(length) ⁻³ 2
-1/7	R	μ		8 × k	(length)
	NS	W	(auxiliary)	8 × k	(length) ⁰

▶ The SO(k) rep. is determined by the orientifold projection

The moduli spectrum

Spectrum:

Sector		Name	Meaning	Chan-Paton	Dimension
-1/-1	NS	aμ	centers	symm SO(k)	(length)
		χ, χ		adj SO(<i>k</i>)	(length) ^{–1}
		D_m	Lagr. mult.	adj $SO(k)$	(length) ⁻²
	R	Μα	partners	symm SO(<i>k</i>)	(length) ¹ 2
		$\lambda_{\dot{lpha}}$	Lagr. mult.	adj SO (k)	(length) ^{−3} 2
-1/7	R	μ		8 × k	(length)
	NS	W	(auxiliary)	8 × k	(length) ⁰

► Abelian part of a_{μ} , $M_{\alpha} \sim$ Goldstone modes of the (super)translations on the D7 broken by D(-1)'s. Identified with coordinates x_{μ} , θ_{α}

The moduli spectrum

Spectrum:

Sector		Name	Meaning	Chan-Paton	Dimension
-1/-1	NS	a_{μ}	centers	symm SO(k)	(length)
		χ, χ		adj SO(<i>k</i>)	(length) ^{–1}
		Dm	Lagr. mult.	adj $SO(k)$	(length) ⁻²
	R	Μα	partners	symm SO(<i>k</i>)	(length) ^½
		$\lambda_{\dot{lpha}}$	Lagr. mult.	adj SO (k)	(length) ⁻³ 2
-1/7	R	μ		8 × k	(length)
	NS	W	(auxiliary)	8 × k	(length) ⁰

For "mixed" strings, no bosonic moduli from the NS sector: characteristic of "exotic" instantons

The moduli action

The action reads:

$$\begin{split} S(\mathcal{M}_{(k)}, \Phi) &= \operatorname{tr} \left\{ i \lambda_{\dot{\alpha}} \gamma_{\mu}^{\dot{\alpha}\beta} [a^{\mu}, M_{\beta}] + \frac{1}{2g_0^2} \lambda_{\dot{\alpha}} [\chi, \lambda^{\dot{\alpha}}] + M^{\alpha} [\bar{\chi}, M_{\alpha}] \right. \\ &+ \frac{1}{2g_0^2} D_m D^m - \frac{1}{2} D_m (\tau^m)_{\mu\nu} \left[a^{\mu}, a^{\nu} \right] \\ &+ \left[a_{\mu}, \bar{\chi} \right] \left[a^{\mu}, \chi \right] + \frac{1}{2g_0^2} \left[\bar{\chi}, \chi \right]^2 \right\} \\ &+ \operatorname{tr} \left\{ \mu^T \mu \chi \right\} + \operatorname{tr} \left\{ \mu^T \Phi(x, \theta) \mu \right\} + \operatorname{tr} \left\{ w^T w \right\} \end{split}$$

► The "supercoordinate" moduli x, θ only appear through $\Phi(x, \theta)$. The remaining "centred" moduli are denoted as $\widehat{\mathcal{M}}_{(k)}$

All instanton numbers ...

... lead to quartic terms

• Effective action (using $q = e^{2\pi i \tau}$):

$$S_{\rm n.p.}(\Phi) = \int d^8x \, d^8\theta \sum_k q^k \int d\widehat{\mathcal{M}}_{(k)} \, e^{-\mathcal{S}(\widehat{\mathcal{M}}_{(k)}, \Phi(x, \theta))}$$

In our "conformal" set-up, with with SO(8) gauge group on the D7, counting the dimensions of the moduli we get

$$\left[d\widehat{\mathcal{M}}_{(k)}\right] = (\text{length})^{-4}$$

- ► Thus $\int d\widehat{\mathcal{M}}_{(k)} e^{-\mathcal{S}(\widehat{\mathcal{M}}_{(k)}, \Phi(x, \theta))} = \text{quartic invariant in } \Phi(x, \theta)$
- ► Integration over $d^8\theta$ leads to terms of the form " $t_8 F^4$ "
- ► The "non-conformal" case of $N \neq 4$ D7's has been considered in Fuctor et al, 2009

All instanton numbers ...

... lead to quartic terms

• Effective action (using $q = e^{2\pi i \tau}$):

$$S_{\rm n.p.}(\Phi) = \int d^8x \, d^8\theta \sum_k q^k \int d\widehat{\mathcal{M}}_{(k)} \, e^{-\mathcal{S}(\widehat{\mathcal{M}}_{(k)}, \Phi(x, \theta))}$$

In our "conformal" set-up, with with SO(8) gauge group on the D7, counting the dimensions of the moduli we get

$$\left[d\widehat{\mathcal{M}}_{(k)}\right] = (\text{length})^{-4}$$

- ► Thus $\int d\widehat{\mathcal{M}}_{(k)} e^{-\mathcal{S}(\widehat{\mathcal{M}}_{(k)}, \Phi(x, \theta))} = \text{quartic invariant in } \Phi(x, \theta)$
- Integration over $d^8\theta$ leads to terms of the form " $t_8 F^4$ "
- ► The "non-conformal" case of $N \neq 4$ D7's has been considered in Fucito et al, 2009

One-instanton case

- For k = 1 things are particularly simple
 - The spectrum of moduli is reduced to $\{x, \theta, \mu\}$
 - The moduli action is simply $S_{inst} = -2\pi i \tau + \mu^T \Phi(x, \theta) \mu$
- The instanton-induced interactions are thus

$$\int d^8 x \, d^8 \theta \, q \int d\mu \, e^{-\mu^T \, \Phi(x,\theta)\mu} \sim \int d^8 x \, d^8 \theta \, q \, \mathsf{Pf}\big(\Phi(x,\theta)\big)$$

• A new structure, associated to the SO(8) invariant " $t_8Pf(F)$ ", appears in the effective action at the one-instanton level after the $d^8\theta$ integration

Multi-instantons

- For k > 1 things are more complicated, but we can exploit the SUSY properties of the moduli action, which lead to:
 - an equivariant cohomological BRST structure
 - a localization of the moduli integrals (after suitable closed string deformations)
- Similar techniques have been successfully used to
 - compute the YM integrals in d = 10, 6, 4 and the D-instanton partition function
 Moore+Nekrasov+Shatashvili, 1998
 - ► compute multi-instanton effects in N = 2 SYM in d = 4 and compare with the Seiberg-Witten solution Nekrasov, 2002; + ...
 - derive the multi-instanton calculus using D3/D(-1) brane systems Fucito et al, 2004; Billò et al, 2006; ...

イロト イポト イヨト イヨト

Deformations from RR background

Suitable deformations that help to fully localize the integral arise from RR field-strengths 3-form with one index on T₂

$$\mathcal{F}_{\mu\nu} \equiv F_{\mu\nu z}$$
, $\bar{\mathcal{F}}_{\mu\nu} \equiv F_{\mu\nu z}$

- ► The $\mathcal{F}_{\mu\nu}$ is taken in an SO(7) ⊂ SO(8) (Lorentz) with spinorial embedding
- Disk diagrams with RR insertions modify the moduli action

$$\mathcal{S}(\widehat{\mathcal{M}}_{(k)}, \boldsymbol{\varphi}) \to \mathcal{S}(\widehat{\mathcal{M}}_{(k)}, \boldsymbol{\varphi}, \mathcal{F})$$

(here we introduced the v.e.v. $\varphi = \langle \Phi \rangle$)

BRST structure

Equivariance

Single out one of the supercharges $Q_{\dot{\alpha}}$, say $Q = Q_8$. After relabeling some of the moduli:

$$M_{\alpha} \rightarrow M_{\mu} \equiv (M_m, -M_8) , \quad \lambda_{\dot{\alpha}} \rightarrow (\lambda_m, \eta) \equiv (\lambda_m, \lambda_8)$$

one has

$$Qa^{\mu} = M^{\mu}$$
, $Q\lambda_m = -D_m$, $Q\bar{\chi} = -i\sqrt{2}\eta$, $Q\chi = 0$, $Q\mu = w$

Moreover, on any modulus,

$$Q^{2} \bullet = T_{\mathrm{SO}(k)}(\chi) \bullet + T_{\mathrm{SO}(8)}(\varphi) \bullet + T_{\mathrm{SO}(7)}(\mathcal{F}) \bullet$$

where

- $T_{SO(k)}(\chi) = inf.mal SO(k)$ rotation parametrized by χ
- $T_{SO(8)}(\varphi) = inf.mal SO(8)$ rotation parametrized by φ
- ▶ $T_{SO(7)}(\mathcal{F}) = \text{inf.mal SO(7)}$ rotation parametrized by \mathcal{F}

イロト イポト イヨト イヨト

Symmetries of the moduli

The action of the BRS charge Q is thus determined by the symmetry properties of the moduli

	SO (<i>k</i>)	SO(7)	SO(8)
a^{μ}	symm	8 <i>s</i>	1
M^{μ}	symm	8 <i>s</i>	1
D_m	adj	7	1
λ_m	adj	7	1
\bar{X}	adj	1	1
η	adj	1	1
X	adj	1	1
μ	k	1	8 _V

BRST structure

Exactness

The (deformed) action is BRST-exact:

 $S(\widehat{\mathcal{M}}_{(k)}, \varphi, \mathcal{F}) = Q\Xi$

- ▶ $\overline{\mathcal{F}}$ only appears in the "gauge fermion" Ξ : the final result does not depend on it
- The (deformed) BRST structure allows to suitably rescale the integration variables and show that the semiclassical approximation is exact

Moore+Nekrasov+Shatashvili, 1998; ...; Nekrasov, 2002; Flume+Poghossian, 2002; Bruzzo et al, 2003; ...

Scaling to localization

Many integrations reduce to quadratic forms:

$$Z_{k}(\varphi, \mathcal{F}) \equiv \int d\mathcal{M}_{(k)} e^{-S(\widehat{\mathcal{M}}_{(k)}, \varphi, \mathcal{F})} = \dots = \dots$$
$$= \int \{ da \, dM \, dD \, d\lambda \, d\mu \, d\chi \} e^{-\mathrm{tr}\{\frac{g}{2}D^{2} - \frac{g}{2}\lambda \widetilde{Q}^{2}\lambda + \frac{t}{4}a\widetilde{Q}^{2}a + \frac{t}{4}M^{2} + ^{\mathrm{t}}\mu \widetilde{Q}^{2}\mu \}}$$
$$\sim \int \{ d\chi \} \frac{\mathrm{Pf}_{\lambda}(\widetilde{Q}^{2}) \, \mathrm{Pf}_{\mu}(\widetilde{Q}^{2})}{\mathrm{det}_{a}(\widetilde{Q}^{2})^{1/2}}$$

► The χ integrals can be done as contour integrals and the final result for $Z_k(\varphi, \mathcal{F})$ comes from a sum over residues

Moore+Nekrasov+Shatashvili, 1998

The recipe

- From the explicit expression of $Z_k(\varphi, \mathcal{F})$, we can obtain the non-perturbative effective action. However:
 - At instanton number k, there are disconnected contributions from smaller instantons k_i (with $\sum_i k_i = k$). To isolate the connected components we have to take the log:

$$\mathcal{Z} = \sum_{k} Z_{k}(\varphi, \mathcal{F}) q^{k} \rightarrow \log \mathcal{Z}$$

In obtaining Z_k(φ, F) we integrated also over x and θ producing a factor of ε⁻¹ ~ det(F)^{-1/2}. To remove this contribution we have to multiply by ε

 $\log \mathcal{Z} \to \mathcal{E} \log \mathcal{Z}$

before turning off the RR deformation.

The recipe

- From the explicit expression of $Z_k(\varphi, \mathcal{F})$, we can obtain the non-perturbative effective action. However:
 - At instanton number k, there are disconnected contributions from smaller instantons k_i (with $\sum_i k_i = k$). To isolate the connected components we have to take the log:

$$\mathcal{Z} = \sum_{k} Z_{k}(\boldsymbol{\varphi}, \mathcal{F}) q^{k} \rightarrow \log \mathcal{Z}$$

In obtaining Z_k(φ, F) we integrated also over x and θ producing a factor of ε⁻¹ ~ det(F)^{-1/2}. To remove this contribution we have to multiply by ε

 $\log \mathcal{Z} \to \mathcal{E} \log \mathcal{Z}$

before turning off the RR deformation.

The recipe

- From the explicit expression of $Z_k(\varphi, \mathcal{F})$, we can obtain the non-perturbative effective action. However:
 - At instanton number k, there are disconnected contributions from smaller instantons k_i (with $\sum_i k_i = k$). To isolate the connected components we have to take the log:

$$\mathcal{Z} = \sum_{k} Z_{k}(\boldsymbol{\varphi}, \mathcal{F}) q^{k} \rightarrow \log \mathcal{Z}$$

• In obtaining $Z_k(\varphi, \mathcal{F})$ we integrated also over x and θ producing a factor of $\mathcal{E}^{-1} \sim \det(\mathcal{F})^{-1/2}$. To remove this contribution we have to multiply by \mathcal{E}

 $\log \mathcal{Z} \to \mathcal{E} \log \mathcal{Z}$

before turning off the RR deformation.

The prepotential

All in all, we obtain the non-perturbative part of the D7-brane effective action:

$$S_{(n.p.)} = \frac{1}{(2\pi)^4} \int d^8x d^8\theta F_{(n.p.)}(\Phi(x,\theta))$$

• The "prepotential" $F_{(n.p.)}(\Phi)$ is given by

$$F_{(n.p.)}(\Phi) = \mathcal{E}\log \mathcal{Z}\Big|_{\varphi \to \Phi, \mathcal{F} \to 0}$$

with

$$\mathcal{Z} = \sum_{k} Z_{k}(\varphi, \mathcal{F}) q^{k}$$
, $\mathcal{E} \sim \det(\mathcal{F})^{1/2}$

▶ Notice: the prepotential *F* must be finite in the $\mathcal{E} \rightarrow 0$ limit. This requires very delicate (almost "miracolous") cancellations

Explicit results

• Expanding in instanton numbers, $F^{(n.p.)} = \sum_k q^k F_k$, we find in the end

$$F_{1} = 8Pf(\Phi) ,$$

$$F_{2} = \frac{1}{2}Tr\Phi^{4} - \frac{1}{4}(Tr\Phi^{2})^{2} ,$$

$$F_{3} = \frac{32}{3}Pf(\Phi) ,$$

$$F_{4} = \frac{1}{4}Tr\Phi^{4} - \frac{1}{4}(Tr\Phi^{2})^{2} ,$$

$$F_{5} = \frac{48}{5}Pf(\Phi) ,$$

.

イロト イポト イヨト イヨト

Explicit results

The D-instanton induced effective "prepotential" is

$$F^{(n.p.)}(\Phi) = 8 \operatorname{Pf}(\Phi) \left(q + \frac{4}{3}q^3 + \frac{6}{5}q^5 + \dots \right) + \operatorname{Tr} \Phi^4 \left(\frac{1}{2}q^2 + \frac{1}{4}q^4 + \dots \right) \\ + \left(\operatorname{Tr} \Phi^2 \right)^2 \left(\frac{1}{4}q^2 + \frac{1}{4}q^4 + \dots \right)$$

These results corresponds to the first few orders in q of

$$F^{(n.p.)}(\Phi) = 8 \operatorname{Pf}(\Phi) \sum_{k=1}^{k} d_{2k-1} q^{2k-1} + \frac{1}{2} \operatorname{Tr} \Phi^{4} \sum_{k=1}^{k} \left(d_{k} q^{2k} - d_{k} q^{4k} \right) \\ + \frac{1}{8} \left(\operatorname{Tr} \Phi^{2} \right)^{2} \sum_{k=1}^{k} \left(d_{k} q^{4k} - 2d_{k} q^{2k} \right) \\ d_{k} = \sum_{l \mid k} \frac{1}{l} \qquad \text{sum over the inverse divisors of } k$$

with

Complete result

► Taking into account the contributions at tree-level for $\text{Tr}F^4$ and at 1-loop for $(\text{Tr}F^2)^2$, the full expression for the quartic terms in the effective action of the D7-branes reads

$$2 t_8 \operatorname{Pf}(F) \log \left| \frac{\eta(\tau + 1/2)}{\eta(\tau)} \right|^4 + \frac{t_8 \operatorname{Tr} F^4}{4} \log \left| \frac{\eta(4\tau)}{\eta(2\tau)} \right|^4 \\ + \frac{t_8 (\operatorname{Tr} F^2)^2}{16} \log \left(\operatorname{Im} \tau \operatorname{Im} U \frac{|\eta(2\tau)|^8 |\eta(U)|^4}{|\eta(4\tau)|^4} \right)^4$$

with $q = e^{2\pi i \tau}$

Heterotic / Type I' duality

► In the SO(8)⁴ Heterotic String on T₂ the BPS-saturated quartic terms in F arise at 1-loop:

$$\frac{t_8 \operatorname{Tr} F^4}{4} \log \left| \frac{\eta(4T)}{\eta(2T)} \right|^4 + \frac{t_8 (\operatorname{Tr} F^2)^2}{16} \log \left(\operatorname{Im} T \operatorname{Im} U \frac{|\eta(2T)|^8 |\eta(U)|^4}{|\eta(4T)|^4} \right)_{\text{Lerche+Stieberger, 1998; Gutperle, 1999; Kiritsis et al, 2000; ...}$$

+2
$$t_8 \operatorname{Pf}(F) \log \left| \frac{\eta(T+1/2)}{\eta(T)} \right|^4$$

Gava et al, 1999

Agrees with our Type I' result under the duality map

T: Kähler structure of the 2-torus $T_2 \leftrightarrow \tau$: axion-dilaton world-sheet instantons \leftrightarrow D-instantons

Remarks

- ► If we do not switch off the RR background F in the final expressions we get also non-perturbative gravitational corrections to TrR⁴ and TrR²TrF²
- The result checks out perfectly against the dual Heterotic SO(8) theory:
 - Assuming the duality, confirms our procedure to deal with the stringy instantons
 - Assuming the correctness of our computation, yields very non-trivial check of this fundamental string duality

Remarks

- ► If we do not switch off the RR background *F* in the final expressions we get also non-perturbative gravitational corrections to TrR⁴ and TrR²TrF²
- The result checks out perfectly against the dual Heterotic SO(8) theory:
 - Assuming the duality, confirms our procedure to deal with the stringy instantons
 - Assuming the correctness of our computation, yields very non-trivial check of this fundamental string duality

A 4-dimensional example

э

Marco Billò (D.F.T., Univ. of Turin)

Going 4-dimensional

- Of course, we are interested in exotic instanton effects in 4d gauge theories
- We look for a 4d model sharing certain properties of the 8d system we described above:
 - To receive corrections at all instanton numbers
 - To be simple enough as to allow explicit computations
 - To possess a computable heterotic dual, allowing to check the result of the instanton calculus
- We focus on the compactification of the type I' theory on T_4/\mathbb{Z}_2
 - Can be seen as the BS-GP model ${\rm Bianchi-Sagnotti 1991; \, Gimon-Polchinski, 1996}$ compactified on ${\cal T}_2$ and T-dualized
 - The 4d gauge theory we will consider is a conformal N = 2 theory, but it exhibits a series of exotic non-perturbative corrections to its quadratic prepotential

The set-up

Further compactify type I' on a T₄

The set-up

- ▶ Take an orbifold of T_4 by \mathbb{Z}_2 generated by g
- There are 64 O3 planes fixed by Ωg

- Local) tadpole cancellation requires 4 × 4 D7's at each O7 f.p.
- ► The action of Ω and Ωg on the C.P. factors implies that the gauge group on the D7 is U(4) \hookrightarrow SO(8) for each stack
- The gauge theory is compactified on T₄, so it is 4-dimensional with a gauge coupling

$$\frac{1}{g_{YM}^2} \sim \frac{Vol(T_4)}{4\pi g_s}$$

The set-up

- Tadpole cancellation also requires 8 dynamical D3's, to be distributed in the various fixed points.
- Place 4 half-D3's at 4 distinct T₄ fixed points on top of the chosen D7 stack
- The U(4) $\mathcal{N} = 2$ gauge theory on the D7 world-volume contains
 - adjoint vector mult. + 2 antisymm hypers (from D7/D7 strings)
 - 4 fundamental hypers (from D7/D7 strings)
- The theory is conformal:

 $b_1 \propto 4 - m$ with *m* fundam. hypers

Heterotic dual

- ► This configuration has an heterotic dual, given by an orbifold of the Heterotic SO(8)⁴ theory on T₂.
- In this dual theory, the one-loop thresholds can be computed (work in progress).
- Under the duality map, these have the structure of one-loop + D-instanton contributions
 In the GP model: Cámara-Dudas, 2008

INFN

Non-perturbative corrections

- Indeed, on the type I' side there are non-perturbative corrections
- In particular, Exotic corrections from D(-1)'s
 - 8 ND directions, no bosonic mixed moduli w
 - Corrections weighted by

$$\mathrm{e}^{-kS_{D(-1)}} \sim \mathrm{e}^{-\frac{2\pi k}{g_s}} \sim \mathrm{e}^{-\frac{8\pi^2 k}{g_{YM}^2 Vol(T_4)}}$$

Non-perturbative corrections

- The D(-1)/D7 fermionic mixed moduli are always present
- We must take into account configurations where also D(-1)/D3 mixed moduli are present
- These are both bosonic and fermionic: the D(-1) would be ordinary instantons for the D3 theory

Non-perturbative corrections

- There are also configurations where no D(-1)/D3 are present: the ground states are massive, since the D(-1) and the D3 are separated in the internal space
- ► In both cases, the moduli measure *dM* is dimensionless: all instanton numbers can contribute

Preliminary results

- Moduli spectrum and moduli action can be derived
- Moduli integration: BRS structure, RR deformations, localization
 - Expressed as contour integrals over χ moduli \bullet Recall
 - Need to take into account different types of D(-1)'s
 - Residue sum and log prescription algebrically very involved: done up to k = 3, still problematic at k = 4
- We do get contributions to the quadratic prepotential for the *N* = 2 gauge multiplet Φ:

$$\sum_{k} c_k q^k \operatorname{Tr} \Phi^2 , \quad \sum_{k} c'_k q^k (\operatorname{Tr} \Phi)^2 , \quad q = \mathrm{e}^{-\frac{8\pi^2}{g_{YM} \operatorname{Vol}(T_4)}}$$

- Example of exotic multi-instanton contributions in $\mathcal{N} = 2$ theories (worth generalizing)
- Seem to agree with twisted sector contrib.s in the heterotic dual

Preliminary results

- Moduli spectrum and moduli action can be derived
- Moduli integration: BRS structure, RR deformations, localization
 - Expressed as contour integrals over χ moduli \bigcirc Recall
 - Need to take into account different types of D(-1)'s
 - Residue sum and log prescription algebrically very involved: done up to k = 3, still problematic at k = 4
- There are also quartic contributions, corresponding to the dimensional reduction of the D(-1)/D7 type I' result
- The 4d interpretation is not yet totally clear. However
 - beside the exp suppression, they will appear with an $\alpha'^2 Vol(T_4)$
 - they seem to agree with the untwisted heterotic contributions

Conclusions and perspectives

Exotic instanton calculus

- SM-like theories obtained by D-brane constructions receive non-perturbative corrections from (wrapped) instantonic branes
- Exotic corrections do not correspond to usual field-theory instantons and may give rise to phenomenologically important perturbatively forbidden interactions
 - One-instanton effects in N = 1 models have mostly been considered (such as those leading to v_R Majorana mass)
 - In general, also exotic multi-instanton contributions may occur
- Using techniques such as deformation and localization, the string computation of exotic corrections can be explicitly performed
 - We showed this in an 8d type I' example
 - We are now working on a 4d example with $\mathcal{N} = 2$ susy
 - In both cases, nice check with an heterotic dual theory

Exotic instanton calculus

- SM-like theories obtained by D-brane constructions receive non-perturbative corrections from (wrapped) instantonic branes
- Exotic corrections do not correspond to usual field-theory instantons and may give rise to phenomenologically important perturbatively forbidden interactions
 - One-instanton effects in N = 1 models have mostly been considered (such as those leading to v_R Majorana mass)
 - In general, also exotic multi-instanton contributions may occur
- Using techniques such as deformation and localization, the string computation of exotic corrections can be explicitly performed
 - We showed this in an 8d type I' example
 - We are now working on a 4d example with $\mathcal{N} = 2$ susy
 - In both cases, nice check with an heterotic dual theory

Perspectives

- Conclusion of the work in progress :-)
- Applications to phenomenologically relevant models and interactions
- Relation to F-theory models, where non-perturbative corrections are somehow incorporated in the geometry of the construction

Thanks for your attention!

Perspectives

- Conclusion of the work in progress :-)
- Applications to phenomenologically relevant models and interactions
- Relation to F-theory models, where non-perturbative corrections are somehow incorporated in the geometry of the construction

Thanks for your attention!

