Brane world effective actions for D-brane with fluxes

Marco Billò

D.F.T., Univ. Torino

C.E.R.N., November 15, 2005

Foreword

- This talk is based on a work in progress:

國 M. Bertolini (SISSA), M. B., A. Lerda (UPO), J.F. Morales (CERN) and R. Russo (CERN - Queen Mary), "Brane world effective actions for D-branes with fluxes", to appear (soon!).

We also thank L. Gallot (Annecy) for collaboration at the initial stage
■ Direct stringy derivation of (some parts of) the $\mathcal{N}=1$ effective action for the chiral matter in magnetized (or intersecting) D-brane models.

- Computation of the Kähler metric in the completely non-factorized (or oblique) case
- Conjecture about the correlators of non-abelian twist fields which enter the stringy Yukawa couplings in such oblique situations.

Disclaimer

■ There is by now a very large literature about intersecting and magnetized brane worlds. The few references scattered on the slides are by no means meant to be exhaustive. I apologize for the many relevant ones which will be missing. (The reference list in the paper will be much longer)

Plan of the talk

1 Brane-worlds scenarios

2 D9 branes with general fluxes

3 Effective supersymmetric actions
4. The Kähler metric from strings

5 Relation to the Yukawa couplings

6 FI susy breaking from string diagrams

7 Conclusions and outlook

Plan of the talk

1 Brane-worlds scenarios
2. D9 branes with general fluxes

3 Effective supersymmetric actions

4 The Kähler metric from strings

5 Relation to the Yukawa couplings

6 FI susy breaking from string diagrams

7 Conclusions and outlook

Plan of the talk

1 Brane-worlds scenarios

2 D9 branes with general fluxes

3 Effective supersymmetric actions
4. The Kähler metric from strings

5 Relation to the Yukawa couplings

6 FI susy breaking from string diagrams
7 Conclusions and outlook

Plan of the talk

1 Brane-worlds scenarios

2 D9 branes with general fluxes

3 Effective supersymmetric actions

4 The Kähler metric from strings
5 Relation to the Yukawa couplings

6 FI susy breaking from string diagrams

7 Conclusions and outlook

Plan of the talk

1 Brane-worlds scenarios

2 D9 branes with general fluxes
3 Effective supersymmetric actions

4 The Kähler metric from strings
5 Relation to the Yukawa couplings

6 FI susy breaking from string diagrams
7 Conclusions and outlook

Plan of the talk

1 Brane-worlds scenarios
2 D9 branes with general fluxes
3 Effective supersymmetric actions
4 The Kähler metric from strings
5 Relation to the Yukawa couplings
6 Fl susy breaking from string diagrams
7 Conclusions and outlook

Plan of the talk

1 Brane-worlds scenarios
2. D9 branes with general fluxes

3 Effective supersymmetric actions
4 The Kähler metric from strings
5 Relation to the Yukawa couplings
6 FI susy breaking from string diagrams
7 Conclusions and outlook

Brane-worlds scenarios

Intersecting brane worlds

■ Four-dimensional field theories with many "realistic" features arise from type IIA or B superstring models on suitable configurations of D-branes (and orientifolds)

[Bachas, 1995, Berkooz et al., 1996, Rabadan, 2001], ...

> - Type IIA on $\mathbb{R}^{1,3} \times \mathcal{T}_{6}$ (more generally on a CY - not discussed here)
> - D6 branes wrapping intersecting 3-cycles in \mathcal{T}_{6} support, on their
> non-compact world-volume, gauge groups and chiral matter
> (the latter are localized at the intersection points in the internal
> space)
> - Consistency requirement: cancellation of RR tadpoles constrains the choice of 3-cycles.

Intersecting brane worlds

■ Four-dimensional field theories with many "realistic" features arise from type IIA or B superstring models on suitable configurations of D-branes (and orientifolds)

[Bachas, 1995, Berkooz et al., 1996, Rabadan, 2001], ...

■ In particular, intersecting brane worlds have received much attention recently:
see, e.g., [Uranga, 2003, Kiritsis, 2004, Lust, 2004, Blumenhagen et al., 2005]

- Type IIA on $\mathbb{R}^{1,3} \times \mathcal{T}_{6}$ (more generally on a CY - not discussed here)
- D6 branes wrapping intersecting 3-cycles in \mathcal{T}_{6} support, on their non-compact world-volume, gauge groups and chiral matter (the latter are localized at the intersection points in the internal space)
- Consistency requirement: cancellation of RR tadpoles constrains the choice of 3-cycles.

Gauge groups and chiral matter from branes

■ Gauge groups from multiple branes, bifundamental chiral matter from "twisted" strings, replicas from multiple intersections

$■$ N.B. The torus \mathcal{T}_{6} is assumed to be factorized as $\mathcal{T}_{2} \times \mathcal{T}_{2} \times \mathcal{T}_{2}$.

T-duality and magnetized branes

■ Upon T-duality (along one direction in each torus), IIA \rightarrow IIB, and D6-branes intersecting on 3-cycles \rightarrow D9 with magnetic fluxes

■ Strings connecting two D9 with different fluxes feel different b.c.'s at their two end-points. They are twisted.
■ The twists θ_{i} are determined from the quantized values of the fluxes

$$
F_{M N}^{(\sigma)}=\frac{1}{2 \pi} \frac{p_{M N}}{q_{M N}}
$$

$p_{M N}=$ Chern class, $q_{M N}=$ wrapping of the D brane around the cycle $d X^{M} \wedge d X^{N}$.

T-duality and magnetized branes

■ Upon T-duality (along one direction in each torus), IIA \rightarrow IIB, and D6-branes intersecting on 3-cycles \rightarrow D9 with magnetic fluxes

\square If the torus is factorized as $\mathcal{T}_{2} \times \mathcal{T}_{2} \times \mathcal{T}_{2}$, fluxes respecting this factorization are matrices in so $(2) \oplus \operatorname{so}(2) \oplus \operatorname{so}(2)$ Abelian situation: fluxes on different branes commute.
■ General situation: fluxes on \mathcal{T}_{6} represented by so(6) matrices. Oblique case: fluxes on different branes do not commute.

- Relevant in the context of the moduli stabilization problem
[Antoniadis-Maillard, 2004, Bianchi-Trevigne, 2005, Villadoro-Zwirner], ...

D9 branes with general fluxes

Boundary conditions on magnetized branes

- Bosonic part of the open string action:
(x^{M} in the \mathcal{T}_{6} directions, $\sigma=0, \pi$ denotes the end-point)

$$
\begin{aligned}
S_{\mathrm{bos}} & =-\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} \xi\left[\partial^{\alpha} x^{M} \partial_{\alpha} x^{N} G_{M N}+\mathrm{i} \epsilon^{\alpha \beta} \partial_{\alpha} x^{M} \partial_{\beta} x^{N} B_{M N}\right] \\
& -\mathrm{i} \sum_{\sigma} q_{\sigma} \int_{C_{\sigma}} d x^{M} A_{M}^{\sigma}
\end{aligned}
$$

■ In presence of constant G, B and field-strengths F_{σ}, the boundary conditions read

where the reflection matrix R_{σ} is given by

Boundary conditions on magnetized branes

■ Bosonic part of the open string action:
(x^{M} in the \mathcal{T}_{6} directions, $\sigma=0, \pi$ denotes the end-point)

$$
\begin{aligned}
S_{\mathrm{bos}} & =-\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} \xi\left[\partial^{\alpha} x^{M} \partial_{\alpha} x^{N} G_{M N}+\mathrm{i} \epsilon^{\alpha \beta} \partial_{\alpha} x^{M} \partial_{\beta} x^{N} B_{M N}\right] \\
& -\mathrm{i} \sum_{\sigma} q_{\sigma} \int_{C_{\sigma}} d x^{M} A_{M}^{\sigma}
\end{aligned}
$$

■ In presence of constant G, B and field-strengths F_{σ}, the boundary conditions read

$$
\left.\bar{\partial} x^{M}\right|_{\sigma=0, \pi}=\left.\left(R_{\sigma}\right)_{N}^{M} \partial x^{N}\right|_{\sigma=0, \pi}
$$

where the reflection matrix R_{σ} is given by

$$
R_{\sigma}=\left(G-\mathcal{F}_{\sigma}\right)^{-1}\left(G+\mathcal{F}_{\sigma}\right), \quad \mathcal{F}_{\sigma}=B+2 \pi \alpha^{\prime} F_{\sigma}
$$

Twisted world-sheet fields

- The above b.c.'s can be solved in terms of a holomorphic, multivalued field $X^{M}(z)$ defined all over the complex z plane (doubling trick):

$$
X^{M}\left(\mathrm{e}^{2 \pi \mathrm{i}} z\right)=R_{N}^{M} X^{N}(z), \quad R=R_{\pi}^{-1} R_{0}
$$

Twisted world-sheet fields

■ The above b.c.'s can be solved in terms of a holomorphic, multivalued field $X^{M}(z)$ defined all over the complex z plane (doubling trick):

$$
X^{M}\left(\mathrm{e}^{2 \pi \mathrm{i}} z\right)=R_{N}^{M} X^{N}(z), \quad R=R_{\pi}^{-1} R_{0}
$$

■ Both R_{0} and R_{π}, and hence R, preserve the metric: ${ }^{t} R G R=G$

- We can go to a complex basis $\mathcal{Z}=\left(\mathcal{Z}^{i}, \overline{\mathcal{Z}}^{i}\right)=\mathcal{E} X$, where
for $0 \leq \theta_{i}<1(d=3$ in our case $)$.

Twisted world-sheet fields

■ The above b.c.'s can be solved in terms of a holomorphic, multivalued field $X^{M}(z)$ defined all over the complex z plane (doubling trick):

$$
X^{M}\left(\mathrm{e}^{2 \pi \mathrm{i}} z\right)=R_{N}^{M} X^{N}(z), \quad R=R_{\pi}^{-1} R_{0}
$$

Both R_{0} and R_{π}, and hence R, preserve the metric: ${ }^{t} R G R=G$

- We can go to a complex basis $\mathcal{Z}=\left(\mathcal{Z}^{i}, \overline{\mathcal{Z}}^{i}\right)=\mathcal{E} X$, where
for $0 \leq \theta_{i}<1(d=3$ in our case $)$.

Twisted world-sheet fields

■ The above b.c.'s can be solved in terms of a holomorphic, multivalued field $X^{M}(z)$ defined all over the complex z plane (doubling trick):

$$
X^{M}\left(\mathrm{e}^{2 \pi \mathrm{i}} z\right)=R_{N}^{M} X^{N}(z), \quad R=R_{\pi}^{-1} R_{0}
$$

\square Both R_{0} and R_{π}, and hence R, preserve the metric: ${ }^{t} R G R=G$

- We can go to a complex basis $\mathcal{Z}=\left(\mathcal{Z}^{\prime}, \bar{Z}^{\prime}\right)=\mathcal{E} X$, where
for $0 \leq \theta_{i}<1(d=3$ in our case $)$.

Twisted world-sheet fields

- The above b.c.'s can be solved in terms of a holomorphic, multivalued field $X^{M}(z)$ defined all over the complex z plane (doubling trick):

$$
X^{M}\left(\mathrm{e}^{2 \pi \mathrm{i}} z\right)=R_{N}^{M} X^{N}(z), \quad R=R_{\pi}^{-1} R_{0}
$$

\square Both R_{0} and R_{π}, and hence R, preserve the metric: ${ }^{t} R G R=G$
■ We can go to a complex basis $\mathcal{Z}=\left(\mathcal{Z}^{i}, \overline{\mathcal{Z}}^{i}\right)=\mathcal{E} X$, where

$$
\mathcal{R} \equiv \mathcal{E} R \mathcal{E}^{-1}=\operatorname{diag}\left(\mathrm{e}^{2 \mathrm{i} \pi \theta_{1}}, \cdots, \mathrm{e}^{2 \mathrm{i} \pi \theta_{d}}, \mathrm{e}^{-2 \mathrm{i} \pi \theta_{1}}, \cdots, \mathrm{e}^{-2 \mathrm{i} \pi \theta_{d}}\right)
$$

for $0 \leq \theta_{i}<1$ ($d=3$ in our case $)$.

The open string basis

■ The open string complex, multivalued, fields $\mathcal{Z}^{i}(z)$, and the corresponding w.s fermions $\psi^{i}(z)$, have mode expansions shifted by θ_{i}.

- The θ_{i} play exactly the same role as the angles between intersecting D6. They represent the 3 "open string moduli" which determine the open string CFT properties.
■ The vacuum $|\theta\rangle$ is created by bosonic and fermionic twist fields

$$
|\theta\rangle=\lim _{z \rightarrow 0} \prod_{i=1}^{d} \sigma_{\theta_{i}}(z) s_{\theta_{i}}(z)|0\rangle
$$

- The physical vertices contain (excited) twist fields

Dependence of the twists on the closed moduli

■ The d open string twists θ_{i} depend on the $4 d^{2}$ closed string parameters $G_{M N}$ and $B_{M N}$ and on the quantized fluxes $F_{0, \pi}^{M N}$ (or on the wrapping numbers for the intersecting branes).

Dependence of the twists on the closed moduli

- The d open string twists θ_{i} depend on the $4 d^{2}$ closed string parameters $G_{M N}$ and $B_{M N}$ and on the quantized fluxes $F_{0, \pi}^{M N}$ (or on the wrapping numbers for the intersecting branes).

■ For intersecting D-branes, the θ_{i} depend on the moduli describing the shape of the torus:

$$
\tan (\pi \theta)=\frac{U_{2} n}{m+U_{1} n}
$$

Dependence of the twists on the closed moduli

- The d open string twists θ_{i} depend on the $4 d^{2}$ closed string parameters $G_{M N}$ and $B_{M N}$ and on the quantized fluxes $F_{0, \pi}^{M N}$ (or on the wrapping numbers for the intersecting branes).
- For general magnetized branes, from their definition as eigenvalues of the monodromy R we obtain

$$
\begin{aligned}
2 \pi \mathrm{i} \frac{\partial \theta_{i}}{\partial m} & =\frac{1}{2}\left(\mathcal{E} G^{-1} \frac{\partial(G-B)}{\partial m}\left[R_{\pi}-R_{0}\right] \mathcal{E}^{-1}\right)_{i i} \\
& -\frac{1}{2}\left(\mathcal{E}\left[R_{\pi}^{-1}-R_{0}^{-1}\right] G^{-1} \frac{\partial(G+B)}{\partial m} \mathcal{E}^{-1}\right)_{i i}
\end{aligned}
$$

where m is a generic closed string modulus, built out of G and B.

Dependence of the twists on the closed moduli

- The d open string twists θ_{i} depend on the $4 d^{2}$ closed string parameters $G_{M N}$ and $B_{M N}$ and on the quantized fluxes $F_{0, \pi}^{M N}$ (or on the wrapping numbers for the intersecting branes).
- For general magnetized branes, from their definition as eigenvalues of the monodromy R we obtain

$$
\begin{aligned}
2 \pi \mathrm{i} \frac{\partial \theta_{i}}{\partial m} & =\frac{1}{2}\left(\mathcal{E} G^{-1} \frac{\partial(G-B)}{\partial m}\left[R_{\pi}-R_{0}\right] \mathcal{E}^{-1}\right)_{i i} \\
& -\frac{1}{2}\left(\mathcal{E}\left[R_{\pi}^{-1}-R_{0}^{-1}\right] G^{-1} \frac{\partial(G+B)}{\partial m} \mathcal{E}^{-1}\right)_{i i}
\end{aligned}
$$

where m is a generic closed string modulus, built out of G and B.

- Applies to general toroidal configurations with any G and B, and to generic (i.e. non-abelian) fluxes F_{σ}

Dependence of the twists on the closed moduli

- The d open string twists θ_{i} depend on the $4 d^{2}$ closed string parameters $G_{M N}$ and $B_{M N}$ and on the quantized fluxes $F_{0, \pi}^{M N}$ (or on the wrapping numbers for the intersecting branes).
- For general magnetized branes, from their definition as eigenvalues of the monodromy R we obtain

$$
\begin{aligned}
2 \pi \mathrm{i} \frac{\partial \theta_{i}}{\partial m} & =\frac{1}{2}\left(\mathcal{E} G^{-1} \frac{\partial(G-B)}{\partial m}\left[R_{\pi}-R_{0}\right] \mathcal{E}^{-1}\right)_{i i} \\
& -\frac{1}{2}\left(\mathcal{E}\left[R_{\pi}^{-1}-R_{0}^{-1}\right] G^{-1} \frac{\partial(G+B)}{\partial m} \mathcal{E}^{-1}\right)_{i i}
\end{aligned}
$$

where m is a generic closed string modulus, built out of G and B.

- Crucial formula to reconstruct the Kähler metric for the twisted scalars from mixed open/closed amplitudes

Dependence of the twists on the closed moduli

- The d open string twists θ_{i} depend on the $4 d^{2}$ closed string parameters $G_{M N}$ and $B_{M N}$ and on the quantized fluxes $F_{0, \pi}^{M N}$ (or on the wrapping numbers for the intersecting branes).
- For general magnetized branes, from their definition as eigenvalues of the monodromy R we obtain

$$
\begin{aligned}
2 \pi \mathrm{i} \frac{\partial \theta_{i}}{\partial m} & =\frac{1}{2}\left(\mathcal{E} G^{-1} \frac{\partial(G-B)}{\partial m}\left[R_{\pi}-R_{0}\right] \mathcal{E}^{-1}\right)_{i i} \\
& -\frac{1}{2}\left(\mathcal{E}\left[R_{\pi}^{-1}-R_{0}^{-1}\right] G^{-1} \frac{\partial(G+B)}{\partial m} \mathcal{E}^{-1}\right)_{i i}
\end{aligned}
$$

where m is a generic closed string modulus, built out of G and B.

- In the factorized case, and upon T-duality, reproduces the dependence of the angles just described

Effective supersymmetric actions

Supersymmetric brane-worlds?

■ Simplest models with standard-model-like features break all susy.
■ Preserving some susy requires some tuning, in the closed and in the open string sector.
■ In the closed, bulk sector:

- \mathcal{T}_{6} compact \longrightarrow cancel RR tadpoles
- cancel NS-NS tadpoles for susy \longrightarrow orientifolds;

■ In the open sector, i.e. on the branes:

- Susy generically broken for the open strings connecting two different D-branes: angles $\theta_{i} \longrightarrow$ twists in the CFT \longrightarrow mass split between R and $N S$ spectrum
- Susy (partially) preserved for particular values of the twists

Supersymmetric configurations

■ The SUSY preserved on the twisted strings can be described in the space of the θ_{i} 's, which we take in $[0,1)$.

■ For $\theta_{1}=\theta_{2}=\theta_{3}=0, \mathcal{N}=4$ susy
 spectrum (like for strings between parallel branes in flat space)

Supersymmetric configurations

■ The SUSY preserved on the twisted strings can be described in the space of the θ_{i} 's, which we take in $[0,1)$.

■ When one θ vanishes, we get an $\mathcal{N}=2$ hyper-multiplet:

- two massless scalars from NS
- two massless fermions from R sector

Supersymmetric configurations

■ The SUSY preserved on the twisted strings can be described in the space of the θ_{i} 's, which we take in $[0,1)$.

■ On the faces, e.g., for $\sum_{j \neq i} \theta_{j}-\theta_{i}=0$ (which we will write as $\sum_{j} \varepsilon_{j(i)} \theta_{j}=0$) we have $\mathcal{N}=1$ chiral multiplets Φ^{i}

- one massless scalar ϕ^{i} from NS
- one chiral fermion χ^{i} from R sector)

■ Preserved susy charge on the w.s.:

$$
Q_{\alpha}=\frac{1}{2 \pi \mathrm{i}} \oint d z \mathrm{e}^{-\varphi / 2} S_{\alpha} \mathrm{e}^{\frac{\mathrm{i}}{2} \sum_{j} \varepsilon_{j(i)} \varphi^{j}}(z)
$$

Supersymmetric configurations

■ The SUSY preserved on the twisted strings can be described in the space of the θ_{i} 's, which we take in $[0,1)$.

■ In the interior of the tetrahedron, we still have a chiral massless fermion from R sector, but only massive scalars.

Supersymmetric configurations

■ The SUSY preserved on the twisted strings can be described in the space of the θ_{i} 's, which we take in $[0,1)$.

■ Outside the tetrahedron, the scalars
 would become tachyonic.

Supersymmetric configurations

■ The SUSY preserved on the twisted strings can be described in the space of the θ_{i} 's, which we take in $[0,1)$.

■ We will consider spontaneously broken $\mathcal{N}=1$ by taking θ 's close to a face:

$$
\theta_{i}=\theta_{i}^{(0)}+2 \alpha^{\prime} \delta_{i}, \quad \sum_{j} \varepsilon_{j(i)} \theta_{j}^{(0)}=0
$$

with $\theta_{i}^{(0)}$ and δ_{i} fixed in the limit $\alpha^{\prime} \rightarrow 0$.

Supersymmetric configurations

■ The SUSY preserved on the twisted strings can be described in the space of the θ_{i} 's, which we take in $[0,1)$.

■ We will consider spontaneously broken $\mathcal{N}=1$ by taking θ 's close to a face:

$$
\theta_{i}=\theta_{i}^{(0)}+2 \alpha^{\prime} \delta_{i}, \quad \sum_{j} \varepsilon_{j(i)} \theta_{j}^{(0)}=0
$$

with $\theta_{i}^{(0)}$ and δ_{i} fixed in the limit $\alpha^{\prime} \rightarrow 0$.
\square The scalar ϕ^{i} gets a mass $M^{2}=\frac{1}{2 \alpha^{\prime}} \sum_{j} \varepsilon_{j(i)} \theta_{j}=\sum_{j} \varepsilon_{j(i)} \delta_{j}$

Supersymmetric configurations

■ The SUSY preserved on the twisted strings can be described in the space of the θ_{i} 's, which we take in $[0,1)$.

■ We will consider spontaneously broken $\mathcal{N}=1$ by taking θ 's close to a face:

$$
\theta_{i}=\theta_{i}^{(0)}+2 \alpha^{\prime} \delta_{i}, \quad \sum_{j} \varepsilon_{j(i)} \theta_{j}^{(0)}=0
$$

with $\theta_{i}^{(0)}$ and δ_{i} fixed in the limit $\alpha^{\prime} \rightarrow 0$.

■ Amounts to spontaneous susy breaking á la FI from v.e.v.'s of the auxiliary fields D. We'll describe later it later at the string level.

Effective action in the $\mathrm{N}=1$ case

■ The l.e.e.a is an $\mathcal{N}=1$ SUGRA coupled with gauged matter coming from diferent sectors:
describing the stringy shape of the \mathcal{I}_{6}.
-a from the open string sector, qauge + matter fields living on the D-branes.

- In particular, chiral multiplets ϕ^{i} ("twisted" matter) from strings stretching between different D-branes (localized at their intersections)
$\square \mathcal{N}=1$ l.e.e.a for open string modes determined by moduli-dependent functions:
for the chiral mult. (non-holomorphic in the action)
- Complexified gauge coupling function and
(holomorphic)

Effective action in the $\mathrm{N}=1$ case

■ The l.e.e.a is an $\mathcal{N}=1$ SUGRA coupled with gauged matter coming from diferent sectors:
\square from the closed string sector, upon usual \mathcal{T}_{6} compactification.

- For instance, 6^{2} moduli m from NS-NS bkg fields $G_{M N}, B_{M N}$ describing the stringy shape of the \mathcal{T}_{6}.
> - from the open string sector, gauge + matter fields living on the D-branes.
> - In particular, chiral multiplets ф' ("twisted" matter) from strings stretching between different D-branes (localized at their intersections)
> $\square \mathcal{N}=1$ l.e.e.a for open string modes determined by moduli-dependent functions:
> for the chiral mult. (non-holomorphic in the action)

Effective action in the $\mathrm{N}=1$ case

■ The l.e.e.a is an $\mathcal{N}=1$ SUGRA coupled with gauged matter coming from diferent sectors:
\square from the closed string sector, upon usual \mathcal{T}_{6} compactification.

- For instance, 6^{2} moduli m from NS-NS bkg fields $G_{M N}, B_{M N}$ describing the stringy shape of the \mathcal{T}_{6}.
■ from the open string sector, gauge + matter fields living on the D-branes.
- In particular, chiral multiplets Φ^{i} ("twisted" matter) from strings stretching between different D-branes (localized at their intersections)
■ $\mathcal{N}=1$ l.e.e.a for open string modes determined by moduli-dependent functions:
for the chiral mult. (non-holomorphic in the action)

Effective action in the $\mathrm{N}=1$ case

■ The l.e.e.a is an $\mathcal{N}=1$ SUGRA coupled with gauged matter coming from diferent sectors:
\square from the closed string sector, upon usual \mathcal{T}_{6} compactification.

- For instance, 6^{2} moduli m from NS-NS bkg fields $G_{M N}, B_{M N}$ describing the stringy shape of the \mathcal{T}_{6}.
\square from the open string sector, gauge + matter fields living on the D-branes.
- In particular, chiral multiplets Φ^{i} ("twisted" matter) from strings stretching between different D-branes (localized at their intersections)
$■ \mathcal{N}=1$ l.e.e.a for open string modes determined by moduli-dependent functions:
- Kähler metric for the chiral mult. (non-holomorphic in the action)
- Complexified gauge coupling function and superpotential, (holomorphic)

Effective $\mathrm{N}=1$ action for twisted matter

■ Regarding the moduli as fixed, the Kähler potential for the twisted chiral matter will be of the form

$$
K=K_{\bar{\phi}^{i} \phi^{i}}(m) \bar{\phi}^{i} \phi^{i}+O\left(\phi^{4}\right)
$$

(easy to check that there's no mixing between ϕ^{i} and ϕ^{j} with $i \neq j$ in our cases).

- This corresponds to a lagrangian kinetic term Back

$$
\mathcal{L}=-K_{\bar{\phi}^{i} \phi^{i}}(m)\left(\partial_{\mu} \bar{\phi}^{i} \partial^{\mu} \phi^{i}+M^{2} \bar{\phi}^{i} \phi^{i}\right)
$$

■ The dependence of the"metric" $K_{\bar{\phi}^{i} \phi^{i}}$ on the closed string moduli m can be determined from mixed open/closed amplitudes.

The Kähler metric from strings

Mixed amplitudes and the Kähler metric

■ Let V_{m} be the closed string NS-NS vertex for the modulus m. The amplitude

$$
\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m} \sim\left\langle V_{\bar{\phi}^{i}} V_{m} V_{\phi^{i}}\right\rangle
$$

is related to the derivative w.r.t. m of the scalar kinetic term. [Lust et al., 2004]

- String amplitudes would give canonical kinetic terms, so
- We have then

Mixed amplitudes and the Kähler metric

- Let V_{m} be the closed string NS-NS vertex for the modulus m. The amplitude Back

$$
\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m} \sim\left\langle V_{\bar{\phi}^{i}} V_{m} V_{\phi^{i}}\right\rangle
$$

is related to the derivative w.r.t. m of the scalar kinetic term. [Lustetal., 2004]

■ String amplitudes would give canonical kinetic terms, so

$$
V_{\phi^{i}} \rightarrow \sqrt{K_{\bar{\phi}^{i} \phi^{i}}} V_{\phi^{i}}, \quad V_{\bar{\phi}^{i}} \rightarrow \sqrt{K_{\overline{\phi^{i} \phi^{i}}}} V_{\bar{\phi}^{i}}
$$

- We have then

Mixed amplitudes and the Kähler metric

■ Let V_{m} be the closed string NS-NS vertex for the modulus m. The amplitude Back

$$
\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m} \sim\left\langle V_{\bar{\phi}^{i}} V_{m} V_{\phi^{i}}\right\rangle
$$

is related to the derivative w.r.t. m of the scalar kinetic term. [Lustetal., 2004]

■ String amplitudes would give canonical kinetic terms, so

$$
V_{\phi^{i}} \rightarrow \sqrt{K_{\bar{\phi}^{i} \phi^{i}}} V_{\phi^{i}}, \quad V_{\bar{\phi}^{i}} \rightarrow \sqrt{K_{\bar{\phi}^{i} \phi^{i}}} V_{\bar{\phi}^{i}}
$$

■ We have then

$$
\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}=\mathrm{i} K_{\bar{\phi}^{i} \phi^{i}}^{-1} \frac{\partial}{\partial m} \frac{\partial}{\partial \phi^{i}} \frac{\partial}{\partial \bar{\phi}^{i}} \mathcal{L}=\mathrm{i} K_{\bar{\phi}^{i} \phi^{i}}^{-1} \frac{\partial}{\partial m}\left[K_{\bar{\phi}^{i} \phi^{i}}\left(k_{1} k_{2}-M^{2}\right)\right]
$$

Closed string moduli vertices

■ The vertex for the insertion of a generic modulus m reads

$$
V_{m}(z, \bar{z})=\frac{\partial}{\partial m}(G-B)_{M N} V_{L}^{M}(z) V_{R}^{N}(\bar{z})
$$

where

$$
\begin{aligned}
& V_{L}^{M}(z)=\left[\partial X_{L}^{M}(z)+\mathrm{i}\left(k_{L} \cdot \Psi_{L}\right) \Psi^{M}(z)\right] \mathrm{e}^{\mathrm{i} k_{L} \cdot X_{L}(z)} \\
& V_{R}^{N}(\bar{z})=\left[\partial X_{R}^{N}(\bar{z})+\mathrm{i}\left(k_{R} \cdot \Psi_{R}\right) \Psi^{N}(\bar{z})\right] \mathrm{e}^{\mathrm{i} k_{R} \cdot X_{R}(\bar{z})}
\end{aligned}
$$

The form of the amplitude

■ The amplitude $\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}$ reads

- Back

$$
\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}=\left[\frac{\partial}{\partial m}(G-B) \cdot R_{0}\right]_{M N} \mathcal{E}^{M}{ }_{a} \mathcal{E}^{N}{ }_{b} \mathcal{A}^{a b}
$$

The form of the amplitude

■ The amplitude $\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}$ reads

$$
\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}=\left[\frac{\partial}{\partial m}(G-B) \cdot R_{0}\right]_{M N} \mathcal{E}^{M}{ }_{a} \mathcal{E}^{N}{ }_{b} \mathcal{A}^{a b}
$$

- Impose the boundary identification $V_{R}^{M}\left(\bar{z} ; k_{R}\right)=R_{0}^{M}{ }_{N} V_{L}^{N}\left(\bar{z} ; k_{R}\right)$

The form of the amplitude

- The amplitude $\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}$ reads

$$
\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}=\left[\frac{\partial}{\partial m}(G-B) \cdot R_{0}\right]_{M N} \mathcal{E}^{M}{ }_{a} \mathcal{E}^{N}{ }_{b} \mathcal{A}^{a b}
$$

- Switch to the open string complex basis $\mathcal{Z}^{a}=\mathcal{E}^{a}{ }_{M} X^{M}$

The form of the amplitude

■ The amplitude $\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}$ reads

$$
\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}=\left[\frac{\partial}{\partial m}(G-B) \cdot R_{0}\right]_{M N} \mathcal{E}^{M}{ }_{a} \mathcal{E}^{N}{ }_{b} \mathcal{A}^{a b}
$$

The matrix $\mathcal{A}^{a b}$ is the CFT correlator

$$
\mathcal{A}^{a b}=\frac{e^{-\pi i \alpha^{\prime} s / 2}}{8 \pi \alpha^{\prime 2}}\left\langle V_{\bar{\phi}^{i}} V_{L}^{a} V_{L}^{b} V_{\phi^{\prime}}\right\rangle
$$

The form of the amplitude

■ The amplitude $\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}$ reads

$$
\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}=\left[\frac{\partial}{\partial m}(G-B) \cdot R_{0}\right]_{M N} \mathcal{E}^{M}{ }_{a} \mathcal{E}^{N}{ }_{b} \mathcal{A}^{a b}
$$

The matrix $\mathcal{A}^{a b}$ is the CFT correlator

$$
\mathcal{A}^{a b}=\frac{e^{-\pi i \alpha^{\prime} s / 2}}{8 \pi \alpha^{\prime 2}}\left\langle V_{\bar{\phi}^{i}} V_{L}^{a} V_{L}^{b} V_{\phi^{\prime}}\right\rangle
$$

- Overall normalization

The form of the amplitude

■ The amplitude $\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}$ reads

$$
\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}=\left[\frac{\partial}{\partial m}(G-B) \cdot R_{0}\right]_{M N} \mathcal{E}^{M}{ }_{a} \mathcal{E}^{N}{ }_{b} \mathcal{A}^{a b}
$$

The matrix $\mathcal{A}^{a b}$ is the CFT correlator

$$
\mathcal{A}^{a b}=\frac{e^{-\pi i \alpha^{\prime} s / 2}}{8 \pi \alpha^{\prime 2}}\left\langle V_{\bar{\phi}^{i}} V_{L}^{a} V_{L}^{b} V_{\phi^{i}}\right\rangle
$$

- Cocycle to put off-shell in a controlled way the closed string vertex

$$
\begin{aligned}
s & =\left(k_{1}+k_{2}\right)^{2}=\left(k_{L}+k_{R}\right)^{2} \\
& =2\left(k_{1} \cdot k_{2}-M^{2}\right)=2 k_{L} \cdot k_{R}
\end{aligned}
$$

The form of the amplitude

■ The amplitude $\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}$ reads

$$
\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}=\left[\frac{\partial}{\partial m}(G-B) \cdot R_{0}\right]_{M N} \mathcal{E}^{M}{ }_{a} \mathcal{E}^{N}{ }_{b} \mathcal{A}^{a b}
$$

The matrix $\mathcal{A}^{a b}$ is the CFT correlator

$$
\mathcal{A}^{a b}=\frac{e^{-\pi i \alpha^{\prime} s / 2}}{8 \pi \alpha^{\prime 2}}\left\langle V_{\bar{\phi}^{i}} V_{L}^{a} V_{L}^{b} V_{\phi^{\prime}}\right\rangle
$$

- Vertices in the open string complex basis \mathcal{Z}^{a}

The CFT correlator

■ It is easy to see that the correlator $\mathcal{A}^{a b}$ has the matrix form

$$
\mathcal{A} \equiv\left(\begin{array}{cc}
0 & A_{j} \delta^{i j} \\
\bar{A}_{j} \delta^{j j} & 0
\end{array}\right), \text { with } A_{j}=\frac{e^{-\pi i \alpha^{\prime} s / 2}}{8 \pi \alpha^{\prime 2}}\left\langle V_{\bar{\phi}^{i}} V_{L}^{j} \bar{V}_{L}^{j} V_{\phi^{\prime}}\right\rangle
$$

- Now we must:
- insert the explicit form of the vertices $V_{\bar{\phi}^{i}}\left(x_{1}\right)$ and $V_{\phi^{i}}\left(x_{2}\right)$
- integrate their positions $x_{1,2}$ over the real axis and the position z of the closed vertex $V_{L}^{j}(z)$ over the upper half plane, up to $\operatorname{SL}(2, \mathbb{R})$
- We get

The CFT correlator

■ It is easy to see that the correlator $\mathcal{A}^{a b}$ has the matrix form

$$
\mathcal{A} \equiv\left(\begin{array}{cc}
0 & A_{j} \delta^{i j} \\
\bar{A}_{j} \delta^{i j} & 0
\end{array}\right), \text { with } A_{j}=\frac{e^{-\pi i \alpha^{\prime} s / 2}}{8 \pi \alpha^{\prime 2}}\left\langle V_{\bar{\phi}^{i}} V_{L}^{j} \bar{V}_{L}^{j} V_{\phi^{i}}\right\rangle
$$

■ Now we must:

- insert the explicit form of the vertices $V_{\bar{\phi}^{i}}\left(x_{1}\right)$ and $V_{\phi^{i}}\left(x_{2}\right)$
- integrate their positions $x_{1,2}$ over the real axis and the position z of the closed vertex $V_{L}^{j}(z)$ over the upper half plane, up to $\operatorname{SL}(2, \mathbb{R})$
- We get

The CFT correlator

■ It is easy to see that the correlator $\mathcal{A}^{a b}$ has the matrix form

$$
\mathcal{A} \equiv\left(\begin{array}{cc}
0 & A_{j} \delta^{i j} \\
\bar{A}_{j} \delta^{i j} & 0
\end{array}\right), \text { with } A_{j}=\frac{e^{-\pi i \alpha^{\prime} s / 2}}{8 \pi \alpha^{\prime 2}}\left\langle V_{\bar{\phi}^{i}} V_{L}^{j} \bar{V}_{L}^{j} V_{\phi^{i}}\right\rangle
$$

■ Now we must:

- insert the explicit form of the vertices $V_{\bar{\phi}^{i}}\left(x_{1}\right)$ and $V_{\phi^{i}}\left(x_{2}\right)$
- integrate their positions $x_{1,2}$ over the real axis and the position z of the closed vertex $V_{L}^{j}(z)$ over the upper half plane, up to $\operatorname{SL}(2, \mathbb{R})$
■ We get

$$
\begin{aligned}
\mathcal{A}_{j} & =\frac{i \varepsilon_{j(i)}}{4 \pi \alpha^{\prime}} e^{i \pi \theta_{j}} \sin \left[\pi\left(\theta_{j}+\alpha^{\prime} s / 2\right)\right] \frac{\Gamma\left(\alpha^{\prime} s+1\right) \Gamma\left(1-\theta_{j}-\alpha^{\prime} s / 2\right)}{\Gamma\left(1-\theta_{j}+\alpha^{\prime} s / 2\right)} \\
& =\frac{i \varepsilon_{j(i)}}{4 \pi \alpha^{\prime}} e^{i \pi \theta_{j}} \sin \left(\pi \theta_{j}\right)\left(1-\frac{1}{2} \alpha^{\prime} s \rho_{j}\right)+\mathcal{O}\left(\alpha^{\prime} s^{2}\right)
\end{aligned}
$$

The CFT correlator

■ It is easy to see that the correlator $\mathcal{A}^{a b}$ has the matrix form

$$
\mathcal{A} \equiv\left(\begin{array}{cc}
0 & A_{j} \delta^{i j} \\
\bar{A}_{j} \delta^{i j} & 0
\end{array}\right), \text { with } A_{j}=\frac{e^{-\pi i \alpha^{\prime} s / 2}}{8 \pi \alpha^{\prime 2}}\left\langle V_{\bar{\phi}^{i}} V_{L}^{j} \bar{V}_{L}^{j} V_{\phi^{i}}\right\rangle
$$

■ Now we must:

- insert the explicit form of the vertices $V_{\bar{\phi}^{i}}\left(x_{1}\right)$ and $V_{\phi^{i}}\left(x_{2}\right)$
- integrate their positions $x_{1,2}$ over the real axis and the position z of the closed vertex $V_{L}^{j}(z)$ over the upper half plane, up to $\operatorname{SL}(2, \mathbb{R})$
■ We get

$$
\begin{aligned}
\mathcal{A}_{j} & =\frac{i \varepsilon_{j(i)}}{4 \pi \alpha^{\prime}} e^{i \pi \theta_{j}} \sin \left[\pi\left(\theta_{j}+\alpha^{\prime} s / 2\right)\right] \frac{\Gamma\left(\alpha^{\prime} s+1\right) \Gamma\left(1-\theta_{j}-\alpha^{\prime} s / 2\right)}{\Gamma\left(1-\theta_{j}+\alpha^{\prime} s / 2\right)} \\
& =\frac{i \varepsilon_{j(i)}}{4 \pi \alpha^{\prime}} e^{i \pi \theta_{j}} \sin \left(\pi \theta_{j}\right)\left(1-\frac{1}{2} \alpha^{\prime} s \rho_{j}\right)+\mathcal{O}\left(\alpha^{\prime} s^{2}\right)
\end{aligned}
$$

- We have defined $\rho_{j}=\psi\left(1-\theta_{j}\right)+\psi\left(\theta_{j}\right)+2 \gamma_{E}$

The result for the amplitude

■ Altogether, one can write (up to 2-derivative terms, i.e. up to s^{2}) the correlator $\mathcal{A}^{a b}$ in matrix form as

$$
\mathcal{A}=\frac{1}{2} \mathcal{G}^{-1}\left(\mathcal{R}^{-1}-1\right) \mathcal{H}, \quad \mathcal{H}=i\left(\begin{array}{cc}
h_{j} & 0 \\
0 & -h_{j}
\end{array}\right)
$$

with

$$
h_{j}=\frac{\varepsilon_{j(i)}}{4 \pi \alpha^{\prime}}\left(1-\frac{1}{2} \alpha^{\prime} s \rho_{j}\right)=\frac{1}{2 \pi} K_{\bar{\phi}^{\prime} \phi^{i}}^{-1} \frac{\partial}{\partial \theta^{j}} K_{\bar{\phi}^{i} \phi^{i}}\left(k_{1} \cdot k_{2}-M^{2}\right)
$$

and

$$
K_{\bar{\phi}^{i} \phi^{i}}=\mathrm{e}^{2 \gamma_{E} \alpha^{\prime} M^{2}} \sqrt{\frac{\Gamma\left(1-\theta_{i}\right)}{\Gamma\left(\theta_{i}\right)}} \prod_{k \neq i} \sqrt{\frac{\Gamma\left(\theta_{k}\right)}{\Gamma\left(1-\theta_{k}\right)}}
$$

The result for the amplitude

■ Altogether, one can write (up to 2-derivative terms, i.e. up to s^{2}) the correlator $\mathcal{A}^{a b}$ in matrix form as

$$
\mathcal{A}=\frac{1}{2} \mathcal{G}^{-1}\left(\mathcal{R}^{-1}-1\right) \mathcal{H}, \quad \mathcal{H}=i\left(\begin{array}{cc}
h_{j} & 0 \\
0 & -h_{j}
\end{array}\right)
$$

with

$$
h_{j}=\frac{\varepsilon_{j(i)}}{4 \pi \alpha^{\prime}}\left(1-\frac{1}{2} \alpha^{\prime} s \rho_{j}\right)=\frac{1}{2 \pi} K_{\bar{\phi}^{\prime} \phi^{i}}^{-1} \frac{\partial}{\partial \theta^{j}} K_{\bar{\phi}^{i} \phi^{i}}\left(k_{1} \cdot k_{2}-M^{2}\right)
$$

and

$$
K_{\bar{\phi}^{i} \phi^{i}}=\mathrm{e}^{2 \gamma_{E} \alpha^{\prime} M^{2}} \sqrt{\frac{\Gamma\left(1-\theta_{i}\right)}{\Gamma\left(\theta_{i}\right)}} \prod_{k \neq i} \sqrt{\frac{\Gamma\left(\theta_{k}\right)}{\Gamma\left(1-\theta_{k}\right)}}
$$

\square We used the kinematics $s=2\left(k_{1} \cdot k_{2}-M^{2}\right)$, the dependence of M^{2} on θ_{j} and the fact that $\psi(x)=\frac{d \ln \Gamma(x)}{d x}$.

The result for the amplitude

■ Altogether, one can write (up to 2-derivative terms, i.e. up to s^{2}) the correlator $\mathcal{A}^{a b}$ in matrix form as

$$
\mathcal{A}=\frac{1}{2} \mathcal{G}^{-1}\left(\mathcal{R}^{-1}-1\right) \mathcal{H}, \quad \mathcal{H}=i\left(\begin{array}{cc}
h_{j} & 0 \\
0 & -h_{j}
\end{array}\right)
$$

with

$$
h_{j}=\frac{\varepsilon_{j(i)}}{4 \pi \alpha^{\prime}}\left(1-\frac{1}{2} \alpha^{\prime} s \rho_{j}\right)=\frac{1}{2 \pi} K_{\bar{\phi}^{\prime} \phi^{i}}^{-1} \frac{\partial}{\partial \theta^{j}} K_{\bar{\phi}^{i} \phi^{i}}\left(k_{1} \cdot k_{2}-M^{2}\right)
$$

and

$$
K_{\bar{\phi}^{i} \phi^{i}}=\mathrm{e}^{2 \gamma_{E} \alpha^{\prime} M^{2}} \sqrt{\frac{\Gamma\left(1-\theta_{i}\right)}{\Gamma\left(\theta_{i}\right)}} \prod_{k \neq i} \sqrt{\frac{\Gamma\left(\theta_{k}\right)}{\Gamma\left(1-\theta_{k}\right)}}
$$

■ The exponential term goes to 1 in the field theory limit

The magic of the result

■ Substituting into the expression of the correlator $\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}$
(a)call we get after some algebra

$$
\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}=\left.\frac{1}{2} \mathcal{E} G^{-1} \frac{\partial}{\partial m}(G-B)\left(R_{\pi}-R_{0}\right) \mathcal{E}^{-1}\right|_{j} ^{j} h_{j}-\text { h.c. }
$$

■ Comparing with the expression of the dependence of the twists θ_{i} from the moduli m Reall we can write

$$
\mathcal{A}_{\bar{\phi}^{i} \phi^{i} m}=2 \pi \frac{\partial \theta_{j}}{\partial m} h_{j}=K_{\bar{\phi}^{i} \phi^{i}}^{-1} \frac{\partial \theta_{j}}{\partial m} \frac{\partial}{\partial \theta^{j}} K_{\bar{\phi}^{i} \phi^{i}}\left(k_{1} \cdot k_{2}-M^{2}\right)
$$

- This is the expression we expected ${ }^{-1}{ }_{\overline{\phi^{i}} \phi^{i}}$ really is the Kähler metric

The field theory Kähler metric

■ Summarizing, in the field theory limit the expression of the Kähler metric $K_{\bar{\phi}^{i} \phi^{i}}$ for the scalar ϕ^{i} depends on the moduli only through the open string twists

$$
\theta_{i}^{(0)}=\lim _{\alpha^{\prime} \rightarrow 0} \theta_{i}
$$

in an $\mathcal{N}=1$ configuration. Explicitly,

$$
K_{\bar{\phi}^{i} \phi^{i}}=\sqrt{\frac{\Gamma\left(1-\theta_{i}^{(0)}\right)}{\Gamma\left(\theta_{i}^{(0)}\right)}} \prod_{k \neq i} \sqrt{\frac{\Gamma\left(\theta_{k}^{(0)}\right)}{\Gamma\left(1-\theta_{k}^{(0)}\right)}}
$$

■ This holds for a general toroidal compactification, and with arbitrary magnetic fluxes, also non-commuting

Relation to the Yukawa couplings

Stringy expression of the Yukawa couplings

In the stringy description, Yukawa couplings have the form $Y_{i j k}=\mathcal{A}_{i j k} \mathcal{W}_{i j k}$, where

- $\mathcal{W}_{i j k}=$ classical contribution from extended world-sheets bordered by the intersecting branes. [Cremades et al. 2003],[Abel-Owen, 2003],...
- Multiple intersections \rightarrow families
- different minimal world-sheets \rightarrow
 exponential hierarchy of couplings
- have counterparts in magnetized brane worlds [Cremades et al., 2004]

■ $\mathcal{A}_{i j k}=$ quantum fluctuations given by the correlator of the twisted vertices located at the intersections. [Cvelic-Papadimitriou, 2003].
© Back

Yukawa couplings and $N=1$ superpotential

■ In $\mathcal{N}=1$ susy, the Yukawa couplings arise from the superpotential

$$
\int d^{2} \theta W\left(\Phi^{i}\right)+\text { c.c } \rightarrow \ldots+\frac{\partial W}{\partial \phi^{i} \partial \phi^{j}} \chi^{i} \chi^{j}+\text { h.c. }
$$

For $W=W_{i j k} \Phi^{i} \Phi^{j} \Phi^{k}$, the $W_{i j k}$ are the Yukawa couplings in the basis where the kinetic terms are determined by the Kähler potential K - Reall

- When realized in string compactifications, non-renormalization property: W gets no perturbative α^{\prime} corrections
- In the brane-world context, we identify therefore the $W_{i j k}$ as the classical world-sheet instanton contributions:

Yukawa couplings and $N=1$ superpotential

■ In $\mathcal{N}=1$ susy, the Yukawa couplings arise from the superpotential

$$
\int d^{2} \theta W\left(\Phi^{i}\right)+\text { c.c } \rightarrow \ldots+\frac{\partial W}{\partial \phi^{i} \partial \phi^{j}} \chi^{i} \chi^{j}+\text { h.c. }
$$

For $W=W_{i j k} \Phi^{i} \Phi^{j} \Phi^{k}$, the $W_{i j k}$ are the Yukawa couplings in the basis where the kinetic terms are determined by the Kähler potential K
■ When realized in string compactifications, non-renormalization property: W gets no perturbative α^{\prime} corrections
[GSW, vol. 2], [Burgess et al, 2005], ...

- In the brane-world context, we identify therefore the $W_{i j k}$ as the classical world-sheet instanton contributions:

Yukawa couplings and $N=1$ superpotential

■ In $\mathcal{N}=1$ susy, the Yukawa couplings arise from the superpotential

$$
\int d^{2} \theta W\left(\Phi^{i}\right)+\text { c.c } \rightarrow \ldots+\frac{\partial W}{\partial \phi^{i} \partial \phi^{j}} \chi^{i} \chi^{j}+\text { h.c. }
$$

For $W=W_{i j k} \Phi^{i} \Phi^{j} \Phi^{k}$, the $W_{i j k}$ are the Yukawa couplings in the basis where the kinetic terms are determined by the Kähler potential K - Recall

■ When realized in string compactifications, non-renormalization property: W gets no perturbative α^{\prime} corrections
[GSW, vol. 2], [Burgess et al, 2005], ...
■ In the brane-world context, we identify therefore the $W_{i j k}$ as the classical world-sheet instanton contributions:

$$
W_{i j k}=\mathcal{W}_{i j k}
$$

Kähler metric and quantum Yukawas

- The $\mathcal{N}=1$ holomorphic couplings $W_{i j k}$ are related to the physical ones, $Y_{i j k}$ (the ones provided by the string computation) by rescaling the fields $\phi^{i}, \chi^{j}, \chi^{k}$ to give them canonical kinetic terms.

```
, Recall
```

- One has thus

$$
Y_{i j k}=\left(K_{\bar{\phi}^{i} \phi^{i}} K_{\bar{\phi}^{j} \phi^{j}} K_{\bar{\phi}^{k} \phi^{k}}\right)^{-1 / 2} W_{i j k}
$$

■ We had already found

$$
Y_{i j k}=\mathcal{A}_{i j k} W_{i j k}
$$

■ Hence, the amplitude $\mathcal{A}_{i j k}$ for the three twisted vertices should be factorizable into

$$
\mathcal{A}_{i j k}=\left(K_{\bar{\phi}^{i} \phi^{i}} K_{\bar{\phi}^{j} \phi^{j}} K_{\bar{\phi}^{k} \phi^{k}}\right)^{-1 / 2}
$$

The abelian case

- In the case of a factorized torus with commuting angles (or for D-branes at angles) the direct computation of the string amplitude $\mathcal{A}_{i j k}$ is possible
It involves in particular the correlator of three
twist fields on the torus which are
expressible in terms of twist
- This correlator is computable by factorization of the 4-twist amplitude, and its dependence on the three sets of angles factorizes
- In the end, one indeed finds
in agreement with the non-renormalization theorem

The abelian case

- In the case of a factorized torus with commuting
 angles (or for D-branes at angles) the direct computation of the string amplitude $\mathcal{A}_{i j k}$ is possible
■ It involves in particular the correlator of three bosonic twist fields on the torus which are simultaneously expressible in terms of twist angles $\left\{\theta_{i}\right\},\left\{\nu_{i}\right\},\left\{\lambda_{i}\right\}$
- This correlator is computable by factorization of the 4-twist amplitude, and its dependence on the three sets of angles factorizes
- In the end, one indeed finds
in agreement with the non-renormalization theorem

The abelian case

- In the case of a factorized torus with commuting
 angles (or for D-branes at angles) the direct computation of the string amplitude $\mathcal{A}_{i j k}$ is possible
■ It involves in particular the correlator of three bosonic twist fields on the torus which are simultaneously expressible in terms of twist angles $\left\{\theta_{i}\right\},\left\{\nu_{i}\right\},\left\{\lambda_{i}\right\}$
■ This correlator is computable by factorization of the 4-twist amplitude, and its dependence on the three sets of angles factorizes
- In the end, one indeed finds
in agreement with the non-renormalization theorem

The abelian case

- In the case of a factorized torus with commuting
 angles (or for D-branes at angles) the direct computation of the string amplitude $\mathcal{A}_{i j k}$ is possible
■ It involves in particular the correlator of three bosonic twist fields on the torus which are simultaneously expressible in terms of twist angles $\left\{\theta_{i}\right\},\left\{\nu_{i}\right\},\left\{\lambda_{i}\right\}$
- This correlator is computable by factorization of the 4-twist amplitude, and its dependence on the three sets of angles factorizes
- In the end, one indeed finds

$$
\mathcal{A}_{i j k}=\left(K_{\bar{\phi}^{i} \phi^{i}} K_{\bar{\phi}^{j} \phi^{j}} K_{\bar{\phi}^{k} \phi^{k}}\right)^{-1 / 2}
$$

in agreement with the non-renormalization theorem
[Cvetic-Papadimitriou, 2003, Lust et al.., 2004]

The non-abelian case?

■ We have considered the general case in which the reflection matrices at the various boundaries do not commute, and shown that the Kähler metric remains the same

```
- Hence the monodromy matrices }\mp@subsup{R}{0,\nu,\lambda}{}\mathrm{ induced by the the three
twist operators cannot, in general, be simultaneously diagonalized
- We have thus to deal with ("non-ahelian twrist fields"), whose
3-point CFT correlators are not known. Their computation
represents a challenge.
■ The non-renormalization theorem, however, suggests that the
correlator still factorizes and depends on the three sets
    of monodromy eigenvalues
```


The non-abelian case?

■ We have considered the general case in which the reflection matrices at the various boundaries do not commute, and shown that the Kähler metric remains the same

■ Hence the monodromy matrices $R_{\theta, \nu, \lambda}$ induced by the the three twist operators cannot, in general, be simultaneously diagonalized

The non-abelian case?

■ We have considered the general case in which the reflection matrices at the various boundaries do not commute, and shown that the Kähler metric remains the same
■ Hence the monodromy matrices $R_{\theta, \nu, \lambda}$ induced by the the three twist operators cannot, in general, be simultaneously diagonalized
■ We have thus to deal with ("non-abelian twist fields"), whose 3-point CFT correlators are not known. Their computation represents a challenge.

The non-abelian case?

■ We have considered the general case in which the reflection matrices at the various boundaries do not commute, and shown that the Kähler metric remains the same
■ Hence the monodromy matrices $R_{\theta, \nu, \lambda}$ induced by the the three twist operators cannot, in general, be simultaneously diagonalized
■ We have thus to deal with ("non-abelian twist fields"), whose 3-point CFT correlators are not known. Their computation represents a challenge.
$■$ The non-renormalization theorem, however, suggests that the correlator still factorizes and depends on the three sets $\left\{\theta_{i}\right\},\left\{\nu_{i}\right\}$, $\left\{\lambda_{i}\right\}$ of monodromy eigenvalues

Fl susy breaking from string diagrams

The mass of the scalars and the FI mechanism

\square When the θ_{i} are close to $\mathcal{N}=1$ values: $\theta_{i}=\theta_{i}^{0}+2 \pi \alpha^{\prime} \delta_{i}$, with $\sum_{j} \varepsilon_{j(i)} \theta_{i}^{0}=0$, the twisted scalar ϕ^{i} acquires a mass

$$
M^{2}=\frac{1}{2 \pi \alpha^{\prime}} \sum_{j} \varepsilon_{j(i)} \theta_{i}=\sum_{j} \varepsilon_{j(i)} \delta_{i}
$$

■ This susy breaking arises as a FI process involving the auxiliary fields D in the (untwisted) gauge multiplets

■ The twisted fields transform in the bi-fundamental

- We espect by susy a coupling to the auxiliary fields D_{π}, D_{0} of the gauge multiplets:

$$
\left(D_{\pi}-D_{0}\right) \bar{\phi}^{i} \phi^{i}
$$

Stringy description of auxiliary fields

■ The vertex describing the auxiliary field D w.r.t. to the preserved susy (Recall is Back

$$
V_{D} \propto \sum_{j} \varepsilon_{j(i)} \bar{\Psi}^{i} \Psi^{i}
$$

- These diagrams account for the interaction term

$$
\left(D_{\pi}-D_{0}\right) \bar{\phi}^{i} \phi^{i}
$$

The VEV of the auxiliary fields

- The auxiliary field D gets a vev $\langle D\rangle$ in presence of NS-NS background

■ This diagram computes the derivative $\partial_{m}\langle D\rangle$ w.r.t. a generic NS-NS modulus m :

$$
\begin{aligned}
& \partial_{m}\langle D\rangle=\left\langle V_{m} V_{D}\right\rangle \\
& =\frac{1}{4 \pi \alpha^{\prime}} \frac{\partial}{\partial m}(G-B)_{M N}\left\langle V_{L}^{M} V_{R}^{N} V_{D}\right\rangle
\end{aligned}
$$

■ Boundary reflection: $V_{R}^{N}=R_{P}^{N} V_{L}^{N}$. Go to the complex basis ψ^{i}, get a simple correlator. Finally

$$
\partial_{m}\langle D\rangle=-\left.\frac{1}{4 \pi \alpha^{\prime}} \sum_{i=1}^{3} \mathcal{E} G^{-1} \frac{\partial(G-B)}{\partial m} R \mathcal{E}^{-1}\right|_{i i}-\text { h.c. }
$$

The induced mass term for the twisted scalars

■ The coupling to the D fields induces a mass term for ϕ^{i}

$$
M^{2} \bar{\phi}^{i} \phi^{i}=\left(\left\langle D_{\pi}\right\rangle-\left\langle D_{0}\right\rangle\right) \bar{\phi}^{i} \phi^{i}
$$

■ From the above direct string computation we find

$$
\begin{align*}
\frac{\partial M^{2}}{\partial m} & =\frac{\partial}{\partial m}\left\langle D_{\pi}-D_{0}\right\rangle \\
& =-\left.\frac{1}{4 \pi \alpha^{\prime}} \sum_{i} \mathcal{E} G^{-1} \frac{\partial(G-B)}{\partial m}\left(R_{\pi}-R_{0}\right) \mathcal{E}^{-1}\right|_{i i}-\text { h.c. } \tag{1}
\end{align*}
$$

We reconstruct the Jacobian $\partial \theta_{i} / \partial m$ Reaill

- We get thus

$$
\begin{equation*}
\frac{\partial M^{2}}{\partial m}=\frac{1}{2 \alpha^{\prime}} \frac{\partial}{\partial m} \sum_{j} \varepsilon_{j(i)} \theta_{j} \tag{2}
\end{equation*}
$$

What about the F auxiliary fields?

■ The stringy vertex for the untwiwsted auxiliary fields F

$$
V_{F_{(i)}} \propto \sum_{j} \epsilon_{i j k} \psi^{j} \Psi^{k}
$$

- Notice the difference w.r.t. the D vertex
$■$ Gets a v.e.v. $\left\langle F_{(i)}\right\rangle$ from the interaction with the NS-NS moduli m similarly to the D field \square
- However, it is non-zero only when the reflection matrix R has $(2,0)$ components in the complex basis ψ^{i}
■ The $F_{(i)}$ have no trilinear coupling to $\bar{\phi}^{i}, \phi^{i}$ so its v.e.v. does not give a mass to ϕ^{i}.

Conclusions and outlook

Summary

- We discuss the derivation of the $\mathcal{N}=1$ effective action for the chiral matter arising from twisted open strings in magnetized/intersecting brane worlds directly from string diagrams
■ We extend the derivation of the Kähler metric to the general case:
- compactification on a non-factorized \mathcal{I}_{6}, with any $G_{M N}, B_{M N}$;
- oblique magnetic fluxes on the branes
- susy breaking á la FI inducing a mass term for the scalars

■ The connection to the Yukawa couplings provided by the non-renormalization of the superpotential leads to a conjecture about correlators of non-abelian twist fields.

Outlook

■ The most pressing task:

- ... finish the paper!
- Investigate the CFT of non-abelian twist fields - The dependence from RR closed backarounds

Outlook

■ The most pressing task:

- ... finish the paper!
- Investigate the CFT of non-abelian twist fields - The dependence from RR closed backgrounds

Outlook

■ The most pressing task:

- ... finish the paper!

■ Investigate the CFT of non-abelian twist fields

- The dependence from RR closed backgrounds

Outlook

■ The most pressing task:

- ... finish the paper!

■ Investigate the CFT of non-abelian twist fields

- The dependence from RR closed backgrounds

Some references

A few ref.s on magnetized and intersecting branes

(i. Bachas, arXiv:hep-th/9503030.

国 M. Berkooz, M. R. Douglas and R. G. Leigh, Nucl. Phys. B 480 (1996) 265 [arXiv:hep-th/9606139].

围 R. Rabadan, Nucl. Phys. B 620 (2002) 152 [arXiv:hep-th/0107036].

Some reviews on IBW＇s

葍 A．M．Uranga，Class．Quant．Grav． 20 （2003）S373 ［arXiv：hep－th／0301032］．
圊 E．Kiritsis，Fortsh．Phys． 52200 （2004），［arXiv：hep－th／0310001］．
囯 D．Lust，Class．Quant．Grav．21，S1399（2004）， ［arXiv：hep－th／0401156］．

国 R．Blumehagen，M．Cvetic，P．Langacker and G．Shiu（2005） hep－th／0502005．

A few ref．s on Yukawas in brane－worlds

园 D．Cremades，L．E．Ibanez and F．Marchesano，JHEP 0307 （2003） 038 ［arXiv：hep－th／0302105］．
R M．Cvetic and I．Papadimitriou，Phys．Rev．D 68 （2003） 046001 ［Erratum－ibid．D 70 （2004）029903］［arXiv：hep－th／0303083］．
速 S．A．Abel and A．W．Owen，Nucl．Phys．B 663 （2003） 197 ［arXiv：hep－th／0303124］．

目 D．Cremades，L．E．Ibanez and F．Marchesano，JHEP 0405 （2004） 079 ［arXiv：hep－th／0404229］．

A few other ref．s（mixed amplitudes，oblique fluxes，．．．）

R．Lust，P．Mayr，R．Richter and S．Stieberger，Nucl．Phys．B 696 （2004） 205 ［arXiv：hep－th／0404134］．

围 I．Antoniadis and T．Maillard，Nucl．Phys．B 716 （2005） 3 ［arXiv：hep－th／0412008］．

目 M．Bianchi and E．Trevigne，arXiv：hep－th／0506080；M．Bianchi and E．Trevigne，JHEP 0508 （2005） 034 ［arXiv：hep－th／0502147］．
固 G．Villadoro and F．Zwirner，JHEP 06， 047 （2005）， ［arXiv：hep－th／0503169］．

围 C．P．Burgess，C．Escoda and F．Quevedo，arXiv：hep－th／0510213．

