Stringy instanton corrections to $\mathcal{N}=2$ gauge couplings

Marco Billò
D.F.T., Università di Torino
e I.N.F.N., sez. di Torino

Cortona, 28 Maggio 2010

Disclaimer

- This talk builds over a vast literature - some scattered references are given in the slides
- I apologize for missing ones...
- The results presented here come mostly from
- M. Billo, M. Frau, F. Fucito, A. Lerda, F. Morales and R. Poghossyan, "Stringy instanton corrections to $\mathcal{N}=2$ gauge couplings", to appear on JHEP, arXiv:1002.4322 [hep-th]
- Previous computation in an eigth-dimensional setting:
- M. Billo, L. Ferro, M. Frau, L. Gallot, A. Lerda and I. Pesando, "Exotic instanton counting and heterotic/type I' duality," JHEP 0907 (2009) 092, arXiv:0905.4586 [hep-th]

Plan of the talk

Introduction and motivations

The set-up

D-instanton effects

Explicit computation by localization

Conclusions

D-brane worlds

- SM-like sector from open strings on stacks of $D(3+p)$ branes wrapped on some internal p-cycles C_{p}
- Gravitational sector from closed strings in the bulk

D-brane worlds

- SM-like sector from open strings on stacks of $D(3+p)$ branes wrapped on some internal p-cycles C_{p}
- Gravitational sector from closed strings in the bulk

- Gauge and gravitational couplings depend on different volumes (expressed in units of $\sqrt{\alpha^{\prime}}$):

$$
\kappa_{4}^{2} \sim g_{s}^{2} \alpha^{\prime} / V\left(Y_{6}\right), \quad g_{Y M}^{2} \sim g_{s} / V\left(C_{p}\right)
$$

- String mass scale α^{\prime} can be much lower than 4-d $M_{P I}$

D-brane worlds

- SM-like sector from open strings on stacks of $D(3+p)$ branes wrapped on some internal p-cycles C_{p}
- Gravitational sector from closed strings in the bulk

- Gauge groups from multiple branes, bifundamental chiral matter from "twisted" strings, replicas from multiple intersections
see, e.g., [Uranga, 2003, Kiritsis, 2004, Lust, 2004, Blumenhagen et al., 2005]
- (String) topology of the internal space + choice of branes (subject to tadpole cancellation): a rich model building scenario (using intersecting/magnetized branes of various dimensions)

Perturbative effects

of extra-dimension

- The higher-dimensional, stringy origin of a given D-brane world model bears also on the quantum properties of its low-energy effective action
- Perturbative corrections are affected by the extra states in the theory, resulting in threshold corrections

Perturbative effects

of extra-dimension

- The higher-dimensional, stringy origin of a given D-brane world model bears also on the quantum properties of its low-energy effective action
- Perturbative corrections are affected by the extra states in the theory, resulting in threshold corrections

- Also non-perturbative corrections can be influenced

Non-perturbative corrections

Gauge instantons \& D-brane instantons

- Non-perturbative sectors: partially wrapped E(uclidean)-branes
- Pointlike in $\mathbb{R}^{1,3}$: instanton configurations

Non-perturbative corrections

Gauge instantons \& D-brane instantons

- Non-perturbative sectors: partially wrapped E(uclidean)-branes
- Pointlike in $\mathbb{R}^{1,3}$: instanton configurations

- E-branes identical to a given D-brane stack in the internal directions: instantons for that gauge theory
- ADHM from strings attached to the instantonic branes

Witten, 1995; Douglas, 1995-1996;

- non-trivial instanton profile of the gauge field
- Rules and techniques to embed the instanton calculus in string theory have been constructed

More non-perturbative corrections

"Stringy" or "exotic" instantons

- E-branes wrapped on a different internal cycle $C_{p^{\prime}}^{\prime}$ yield exotic (a.k.a. stringy) non-perturbative corrections

- Ordinary gauge instanton effects suppressed by $\mathrm{e}^{-\frac{8 \pi^{2}}{g_{Y M}^{2}}}$
- Exotic instanton effects suppressed by e $\mathrm{e}^{-\frac{8 \pi^{2}}{g_{Y M}^{2}} \frac{V\left(C_{p^{\prime}}^{\prime}\right)}{V\left(C_{p}\right)}}$
- they would be ordinary instanton for the gauge theory of branes wrapped on $C_{p^{\prime}}^{\prime}$

More non-perturbative corrections

"Stringy" or "exotic" instantons

- E-branes wrapped on a different internal cycle $C_{p^{\prime}}^{\prime}$ yield exotic (a.k.a. stringy) non-perturbative corrections

- Exotic instantons may lead to interactions that would be perturbatively forbidden in these models
- Such effects could be of great phenomenological relevance (Neutrino Majorana masses, Yukawas in certain GUT models,...)

Blumenhagen et al '06; Ibanez and Uranga, '06; Haack et al, '06; Blumenhagen et al, 2008;

- Need to understand their status in the gauge theory and to construct precise rules for the "exotic" instanton calculus

Computing stringy instanton corrections

- Stringy computational techniques for ordinary instantonic branes reproduce gauge theory instanton calculus
- Same kind of techniques techniques should extend to exotic instantonic branes, even if these conf.s have no field theory analogues
- Our strategy to test this assumption: select a set-up such that
- exotic instantonic branes can contribute to the gauge effective action (not killed by fermionic zero-modes)
- there are couplings to which all instanton numbers contribute (as it happens for ordinary gauge instantons in $\mathcal{N}=2$ SYM)
- the theory possesses a computable heterotic dual, so that the results of the exotic calculus can be tested against it

A 4-dimensional example

- We start from Type I', namely type IIB on a two-torus \mathcal{T}_{2} modded out by

$$
\Omega=\omega(-1)^{F_{L}} I_{2}
$$

$\omega=$ w.s. parity, $F_{L}=$ left-moving fermion $\#, I_{2}=$ inversion on \mathcal{T}_{2}

- A D7/D(-1) system in this theory provides an example of exotic corrections to an 8d gauge theory Billo et al, 2009
- We compactify it on $\mathcal{T}_{4} / \mathbb{Z}_{2}$
- Can be seen as the BS-GP model Bianchi:Sgagnotti 1991; Gimon-Polchinski, 1996 compactified on \mathcal{T}_{2} and T-dualized
- The 4d gauge theory we will consider is a conformal $\mathcal{N}=2$ theory, but it exhibits a series of exotic non-perturbative corrections to its quadratic prepotential

The set-up

- In Type I', Ω has 4 fixed points on \mathcal{T}_{2}, where 407 planes are located

The set-up

- Take an orbifold of \mathcal{T}_{4} by \mathbb{Z}_{2} generated by g
- There are 64 O 3 planes fixed by Ωg

The set-up

- (Local) tadpole cancellation requires 4 D7's at each O7 f.p.
- The action of Ω and Ωg on the C.P. factors implies that the gauge group on the D 7 is $\mathrm{U}(4) \hookrightarrow \mathrm{SO}(8)$ for each stack
- The gauge theory is compactified on \mathcal{T}_{4}, so it is 4-dimensional with a gauge coupling

$$
t_{2} \equiv \frac{4 \pi}{g_{Y M}^{2}} \sim \frac{\operatorname{Vol}\left(\mathcal{T}_{4}\right)}{g_{s}}
$$

The set-up

\mathcal{T}_{4}

- Tadpole cancellation also requires 8 dynamical D3's, to be distributed in the various fixed points.
- Place 4 half-D3's at 4 distinct \mathcal{T}_{4} fixed points on top of the chosen D7 stack

The set-up

\mathcal{T}_{4}

- The $\mathrm{U}(4) \mathcal{N}=2$ gauge theory on the D7 world-volume contains
- adjoint vector mult. +2 antisymm hypers (from D7/D7 strings)
- 4 fundamental hypers (from D7/D3 strings)
- The theory is conformal: for the $\operatorname{SU}(4)$ part,

$$
b_{1} \propto 4-m \quad \text { with } m \text { fundam. hypers }
$$

Effective action on the D7

- With $\mathcal{N} \geq 1$ susy, the quadratic effective action in the gauge fields involves holomorphic couplings $f_{a b}$ (functions of the "moduli" scalar fields):

$$
S=\int d^{4} x\left\{(\operatorname{Re} f)_{a b} F_{\mu \nu}^{a} F^{b \mu \nu}+i(\operatorname{lm} f)_{a b} F_{\mu \nu}^{a} * F^{b \mu \nu}\right\}
$$

- In terms of the $\mathcal{N}=2$ multiplet encoding our $\mathrm{U}(4)$ gauge d.o.f:

$$
\Phi(x, \theta)=\phi(x)+\theta^{\alpha} \wedge_{\alpha}(x)+\left(\theta \gamma^{\mu \nu} \theta\right) F_{\mu \nu}(x)
$$

we will have, distinguishing the two colour structures,

$$
S=\int d^{4} x d^{4} \theta\left\{f \operatorname{Tr} \Phi^{2}+f^{\prime}(\operatorname{Tr} \Phi)^{2}\right\}+\text { c.c }
$$

Perturbative results

- In accordance with the general structure of holomorphic couplings derived from string computations dkL 1991; de Wit et al, 1995 we find tree level terms, one-loop threshold corrections and non-perturbative terms

$$
\begin{array}{cl}
\text { single trace: } & \operatorname{Re} f=t_{2}+f_{n . p} \\
\text { double trace: } & \operatorname{Re} f^{\prime}=-4|\eta(U)|^{4}+f_{n . p}^{\prime}
\end{array}
$$

- One loop diagrams:

Non-perturbative corrections

- In this set-up there are BPS sectors including $\mathrm{D}(-1)$'s or E3 branes along $\mathcal{T}_{4} / \mathbb{Z}_{2}$
- We focus on the D-instanton contributions billoe a a 2010 .
- Work in progress on the E3 sectors
- The $\mathrm{D}(-1)$'s correspond to exotic instantons w.r.t. to the D 7 gauge theory. Corrections weighted by

$$
\mathrm{e}^{-k S_{D(-1)}} \sim \mathrm{e}^{-\frac{2 \pi k}{g_{s}}} \sim \mathrm{e}^{-\frac{8 \pi^{2} k}{g_{Y M}^{2} \operatorname{Vol}\left(\tau_{4}\right)}} \sim \mathrm{e}^{-2 \pi k \frac{t_{2}}{\operatorname{Vol}\left(T_{4}\right)}}
$$

which is not the usual gauge istanton factor $\mathrm{e}^{-\frac{8 \pi^{2} k}{g_{Y M}}}$

Effective action from D-instantons

D7-branes

- Open strings with at least one end on a $\mathrm{D}(-1)$ carry no momentum: they are moduli rather than dynamical fields.
- Effective interactions between gauge fields (encoded in Φ) can be mediated by D-instanton moduli through mixed disks

connected by integration over the instanton moduli $\mathcal{M}_{(k)}$

Effective action from D-instantons

D7-branes

- Open strings with at least one end on a $D(-1)$ carry no momentum: they are moduli rather than dynamical fields.
- We must sum over $\mathrm{D}(-1)$ conf.s and instanton \# k and compute

$$
\sum_{\text {conf.s }} \sum_{k} e^{2 \pi i \tau k} \int d \mathcal{M}_{(k)} e^{-\mathcal{S}\left(\mathcal{M}_{(k)}, \Phi\right)}
$$

- $2 \pi i \tau k$ is the classical value of the instanton action
- $\mathcal{S}\left(\mathcal{M}_{(k)}, \Phi\right)$ arises from (mixed) disk diagrams describing interactions of the moduli among themselves and with the gauge fields
- From this we should extract the n.p. effective action in the form

Back(1) (Back(2)

$$
S_{n . p .}(\Phi)=\int d^{4} x d^{4} \theta \mathcal{F}_{n . p .}(\Phi)
$$

D-instanton configurations

\mathcal{T}_{4}

\mathcal{T}_{2}

- There are different configurations of $D(-1)$'s, which have different spectra of moduli excitations from mixed strings
- The $\mathrm{D}(-1) / \mathrm{D} 7$ mixed moduli are always present (only fermionic: typical of exotic instantons)
- In certain configurations (a) also $\mathrm{D}(-1) / \mathrm{D} 3$ mixed moduli are present

D-instanton configurations

\mathcal{T}_{4}

\mathcal{T}_{2}

- There are also configurations (b) where no $\mathrm{D}(-1) / \mathrm{D} 3$ are present: the ground states are massive, since the $D(-1)$ and the D3 are separated in the internal space

From BPS to BRS

- We face a very complicated matrix integral:
- the moduli spectrum contains bosonic and fermionic moduli with different transformation properties under the Chan-Paton groups

$$
U(k) \times U(4) \times U(m)
$$

pertaining to strings ending on $\mathrm{D}(1)$, $\mathrm{D} 7, \mathrm{D} 3$

- The moduli action $S_{\text {mod }}$ contains many moduli interactions

From BPS to BRS

- We face a very complicated matrix integral:
- the moduli spectrum contains bosonic and fermionic moduli with different transformation properties under the Chan-Paton groups

$$
U(k) \times U(4) \times U(m)
$$

pertaining to strings ending on $\mathrm{D}(1)$, D 7 , D3

- The moduli action $S_{\text {mod }}$ contains many moduli interactions
- However, our brane system is BPS; there are susy transformations among the moduli leaving $S_{\text {mod }}$ invariant

From BPS to BRS

- We face a very complicated matrix integral:
- the moduli spectrum contains bosonic and fermionic moduli with different transformation properties under the Chan-Paton groups

$$
U(k) \times U(4) \times U(m)
$$

pertaining to strings ending on $D(1)$, $D 7$, D3

- The moduli action $S_{\text {mod }}$ contains many moduli interactions
- However, our brane system is BPS; there are susy transformations among the moduli leaving $S_{\text {mod }}$ invariant
- Select a particular component of the susy charge as a BRS charge Q
- The "Lorentz" symmetry $S O(4) \times S O(4)$ is restricted to the $S U(2)^{3}$ subgroup that leaves Q invariant

From BPS to BRS

- We face a very complicated matrix integral:
- the moduli spectrum contains bosonic and fermionic moduli with different transformation properties under the Chan-Paton groups

$$
U(k) \times U(4) \times U(m)
$$

pertaining to strings ending on $D(1)$, $D 7$, D3

- The moduli action $S_{\text {mod }}$ contains many moduli interactions
- However, our brane system is BPS; there are susy transformations among the moduli leaving $S_{\text {mod }}$ invariant
- Select a particular component of the susy charge as a BRS charge Q
- The "Lorentz" symmetry $S O(4) \times S O(4)$ is restricted to the $S U(2)^{3}$ subgroup that leaves Q invariant
- This leads to an equivariant cohomological BRST structure and (upon suitable deformations) to the localization of the moduli integrals
- Same type of techniques used by Nekrasov to check SW prepotential with instanton calculus Nekrasov, 2002

BRS structure: spectrum

Spectrum: ($m=1$ for conf.s of type (a), $m=0$ for type (b))

sector	$\left(\mathcal{M}_{0}, \mathcal{M}_{1}\right)$	$U(k) \times U(4) \times U(m)$	$S U(2)^{3}$
$\mathrm{D}(-1) / \mathrm{D}(-1)$	$\left(B_{\ell}, M_{\ell}\right)$	$(\mathrm{adj}, \mathbf{1}, \mathbf{1})$	$(\mathbf{2}, \mathbf{1}, 2)$
	$\left(B_{\dot{\ell}}, M_{\dot{\ell}}\right)$	$(\square \square, \mathbf{1}, \mathbf{1})+$ h.c.	$(\mathbf{1}, \mathbf{2}, \mathbf{2})$
	$\left(N_{\dot{\alpha} \dot{a}}, D_{\dot{\alpha} \dot{a}}\right)$	$(\square, \mathbf{1}, \mathbf{1})+$ h.c.	$(\mathbf{2}, \mathbf{2}, \mathbf{1})$
	$\left(N_{m}, d_{m}\right)$	$(\mathrm{adj}, \mathbf{1}, \mathbf{1})$	$(\mathbf{1}, \mathbf{1}, \mathbf{3})$
	$(\bar{\chi}, \eta)$	$(\mathrm{adj}, \mathbf{1}, \mathbf{1})$	$(\mathbf{1}, \mathbf{1}, \mathbf{1})$
	χ	$(\mathrm{adj}, \mathbf{1}, \mathbf{1})$	$(\mathbf{1}, \mathbf{1}, \mathbf{1})$
		$(\square, \bar{\square}, \mathbf{1})+$ h.c.	$(\mathbf{1}, \mathbf{1}, \mathbf{1})$
$\mathrm{D}(-1) / \mathrm{D} 7$	$\left(\mu^{\prime}, h^{\prime}\right)$	$(\square, \overline{\mathbf{l}})$	
$\mathrm{D}(-1) / \mathrm{D} 3$	$\left(w_{\alpha}, \mu_{\alpha}\right)$	$(\square, \bar{\square})+$ h.c.	$(\mathbf{1}, \mathbf{1}, \mathbf{2})$
	$\left(\mu_{\dot{a}}, h_{\dot{a}}\right)$	$(\square, \mathbf{1}, \square)+$ h.c.	$(\mathbf{1}, \mathbf{2}, \mathbf{1})$

- $B_{\ell} \sim$ positions of the $\mathrm{D}(-1)$'s in spacetime; M_{l} superpartner
- Component along the identity \sim Goldstone modes of broken (super)-translations \sim supercoordinates (x, θ).

BRS structure: spectrum

Spectrum: ($m=1$ for conf.s of type (a), $m=0$ for type (b))

sector	$\left(\mathcal{M}_{0}, \mathcal{M}_{1}\right)$	$U(k) \times U(4) \times U(m)$	$S U(2)^{3}$
$\mathrm{D}(-1) / \mathrm{D}(-1)$	$\left(B_{\ell}, M_{\ell}\right)$	(adj, 1, 1)	$(2,1,2)$
	$\left(B_{\dot{\ell}}, M_{\dot{\ell}}\right)$	$(\square \square, 1,1)+$ h.c.	$(1,2,2)$
	$\left(N_{\dot{\alpha} \dot{a}}, D_{\dot{\alpha} \dot{a}}\right)$	$(\square, \mathbf{1}, \mathbf{1})+$ h.c.	$(2,2,1)$
	$\left(N_{m}, d_{m}\right)$	(adj, 1, 1)	$(1,1,3)$
	$(\bar{\chi}, \eta)$	$(\operatorname{adj}, \mathbf{1}, \mathbf{1})$	$(1,1,1)$
	χ	$(\operatorname{adj}, \mathbf{1}, \mathbf{1})$	(1, 1, 1)
D (-1)/D7	$\left(\mu^{\prime}, h^{\prime}\right)$	$(\square, \bar{\square}, \mathbf{1})+$ h.c.	$(1,1,1)$
D(-1)/D3	$\left(w_{\alpha}, \mu_{\alpha}\right)$	$(\square, \mathbf{1}, \square)+$ h.c.	$(1,1,2)$
	$\left(\mu_{\dot{a}}, h_{\dot{a}}\right)$	$(\square, \mathbf{1}, \square)+$ h.c.	$(1,2,1)$

- $\left(B_{\dot{\ell}}, M_{\dot{\ell}}\right) \sim$ posn.s of the $\mathrm{D}(-1)$'s in $\mathcal{T}_{4} / \mathbb{Z}_{2}$

BRS structure: spectrum

Spectrum: ($m=1$ for conf.s of type (a), $m=0$ for type (b))

sector	$\left(\mathcal{M}_{0}, \mathcal{M}_{1}\right)$	$U(k) \times U(4) \times U(m)$	$S U(2)^{3}$
$\mathrm{D}(-1) / \mathrm{D}(-1)$	$\left(B_{\ell}, M_{\ell}\right)$	$(\mathrm{adj}, \mathbf{1}, \mathbf{1})$	$(\mathbf{2}, \mathbf{1}, \mathbf{2})$
	$\left(B_{\dot{\ell}}, M_{\dot{\ell}}\right)$	$(\square \square, \mathbf{1}, \mathbf{1})+$ h.c.	$(\mathbf{1}, \mathbf{2}, \mathbf{2})$
	$\left(N_{\dot{\alpha} \dot{a}}, D_{\dot{\alpha} \dot{a}}\right)$	$(\square, \mathbf{1}, \mathbf{1})+$ h.c.	$(\mathbf{2}, \mathbf{2}, \mathbf{1})$
	$\left(N_{m}, d_{m}\right)$	$(\mathrm{adj}, \mathbf{1}, \mathbf{1})$	$(\mathbf{1}, \mathbf{1}, \mathbf{3})$
	$(\bar{\chi}, \eta)$	$(\mathrm{adj}, 1,1)$	$(1,1,1)$
	χ	$(\mathrm{adj}, \mathbf{1}, \mathbf{1})$	$(1,1,1)$
$\mathrm{D}(-1) / \mathrm{D} 7$	$\left(\mu^{\prime}, h^{\prime}\right)$	$(\square, \bar{\square}, \mathbf{1})+$ h.c.	$(\mathbf{1}, \mathbf{1}, \mathbf{1})$
$\mathrm{D}(-1) / \mathrm{D} 3$	$\left(w_{\alpha}, \mu_{\alpha}\right)$	$(\square, \mathbf{1}, \bar{\square})+$ h.c.	$(\mathbf{1}, \mathbf{1}, \mathbf{2})$
	$\left(\mu_{\dot{a}}, h_{\dot{a}}\right)$	$(\square, \mathbf{1}, \square)+$ h.c.	$(\mathbf{1}, \mathbf{2}, \mathbf{1})$

- $\chi, \bar{\chi} \sim$ posn.s on \mathcal{T}_{2}
- χ has a particular rôle and does not belong to a BRS doublet

BRS structure: spectrum

Spectrum: ($m=1$ for conf.s of type (a), $m=0$ for type (b))

sector	$\left(\mathcal{M}_{0}, \mathcal{M}_{1}\right)$	$U(k) \times U(4) \times U(m)$	$S U(2)^{3}$
$\mathrm{D}(-1) / \mathrm{D}(-1)$	$\left(B_{\ell}, M_{\ell}\right)$	$(\mathrm{adj}, \mathbf{1}, \mathbf{1})$	$(\mathbf{2}, \mathbf{1}, \mathbf{2})$
	$\left(B_{\dot{\ell}}, M_{\dot{\ell}}\right)$	$(\square \square, \mathbf{1}, \mathbf{1})+$ h.c.	$(\mathbf{1}, \mathbf{2}, \mathbf{2})$
	$\left(N_{\dot{\alpha} \dot{a}}, D_{\dot{\alpha} \dot{a}}\right)$	$(\square, \mathbf{1}, \mathbf{1})+$ h.c.	$(\mathbf{2}, \mathbf{2}, \mathbf{1})$
	$\left(N_{m}, d_{m}\right)$	$(\mathrm{adj}, \mathbf{1}, \mathbf{1})$	$(\mathbf{1}, \mathbf{1}, \mathbf{3})$
	$(\bar{\chi}, \eta)$	$(\mathrm{adj}, \mathbf{1}, \mathbf{1})$	$(\mathbf{1}, \mathbf{1}, \mathbf{1})$
	χ	$(\mathrm{adj}, \mathbf{1}, \mathbf{1})$	$(\mathbf{1}, \mathbf{1}, \mathbf{1})$
$\mathrm{D}(-1) / \mathrm{D} 7$	$\left(\mu^{\prime}, h^{\prime}\right)$	$(\square, \bar{\square}, \mathbf{1})+$ h.c.	$(\mathbf{1}, \mathbf{1}, \mathbf{1})$
$\mathrm{D}(-1) / \mathrm{D} 3$	$\left(w_{\alpha}, \mu_{\alpha}\right)$	$(\square, \mathbf{1}, \bar{\square})+$ h.c.	$(\mathbf{1}, \mathbf{1}, \mathbf{2})$
	$\left(\mu_{\dot{a}}, h_{\dot{a}}\right)$	$(\square, \mathbf{1}, \square)+$ h.c.	$(\mathbf{1}, \mathbf{2}, \mathbf{1})$

- $\mathrm{D}(-1) / \mathrm{D} 7$ moduli μ^{\prime} fermionic only: typical of exotic instantons (h^{\prime} are auxiliary)

BRS structure: spectrum

Spectrum: ($m=1$ for conf.s of type (a), $m=0$ for type (b))

sector	$\left(\mathcal{M}_{0}, \mathcal{M}_{1}\right)$	$U(k) \times U(4) \times U(m)$	$S U(2)^{3}$
$\mathrm{D}(-1) / \mathrm{D}(-1)$	(B_{ℓ}, M_{ℓ})	(adj, 1, 1)	$(2,1,2)$
	$\left(B_{\dot{\ell}}, M_{\dot{\ell}}\right)$	$(\square \square, \mathbf{1}, \mathbf{1})+$ h.c.	$(1,2,2)$
	$\left(N_{\dot{\alpha} \dot{a}}, D_{\dot{\alpha} \dot{a}}\right)$	$(\square, \mathbf{1}, \mathbf{1})+$ h.c.	$(2,2,1)$
	$\left(N_{m}, d_{m}\right)$	(adj, 1, 1)	$(1,1,3)$
	$(\bar{\chi}, \eta)$	(adj, 1, 1)	$(1,1,1)$
	χ	$(\operatorname{adj}, \mathbf{1}, 1)$	$(1,1,1)$
D (-1)/D7	$\left(\mu^{\prime}, h^{\prime}\right)$	$(\square, \bar{\square}, \mathbf{1})+$ h.c.	$(1,1,1)$
D(-1)/D3	$\left(w_{\alpha}, \mu_{\alpha}\right)$	$(\square, \mathbf{1}, \bar{\square})+$ h.c.	$(1,1,2)$
	$\left(\mu_{\mathfrak{a}}, h_{\dot{a}}\right)$	$(\square, \mathbf{1}, \square)+$ h.c.	$(1,2,1)$

- All moduli (except χ) organize into BRS doublets $\left(\mathcal{M}_{0}, \mathcal{M}_{1}\right)$

BRS structure: transformations

- The moduli doublets are connected by BRS transformations

$$
Q \mathcal{M}_{0}=\mathcal{M}_{1}
$$

such that Q is equivariantly closed:

$$
Q^{2} \mathcal{M}_{0}=T_{U(k)}(\chi) \mathcal{M}_{0}+T_{U(4)}(\phi) \mathcal{M}_{0}+T_{U(m)}(\varphi) \mathcal{M}_{0}+T_{S U(2)^{3}}(\epsilon) \mathcal{M}_{0}
$$

where

- $T_{U(k)}(\chi)=$ inf.mal $U(k)$ rotation parametrized by χ
- $T_{U(4)}(\varphi)=$ inf.mal $U(4)$ rotation param.d by ϕ (D7/D7 scalar)
- $T_{U(m)}(\varphi)=$ inf.mal $\mathrm{U}(\mathrm{m})$ rotation param.d by π (D3/D3 scalar)
- $T_{S U(2)^{3}}(\epsilon)=$ inf.mal $\operatorname{SU}(2)^{3}$ rotation param.d by ϵ (RR backg.d)

BRS-exactness of the action

- The moduli action $S_{\text {mod }}$ includes "deformation' terms describing the interaction of moduli with the D7/D7 $\mathcal{N}=2$ multiplet Φ, its D3/D3 analogue Π and a suitable RR 3-form background ϵ
- These terms can all be consistently derived from disk diagrams
- In the following computation it will suffice to consider v.e.v.'s for Φ, Π, ϵ (but be careful!...)

BRS-exactness of the action

- The moduli action $S_{\text {mod }}$ includes "deformation' terms describing the interaction of moduli with the D7/D7 $\mathcal{N}=2$ multiplet Φ, its D3/D3 analogue Π and a suitable RR 3-form background ϵ
- These terms can all be consistently derived from disk diagrams
- In the following computation it will suffice to consider v.e.v.'s for Φ, Π, ϵ (but be careful!...)

- The deformed action is BRS-exact w.r.t. to the action of Q just defined:

$$
S_{\text {mod }}=Q \equiv
$$

BRS-exactness of the action

- The moduli action $S_{\text {mod }}$ includes "deformation' terms describing the interaction of moduli with the D7/D7 $\mathcal{N}=2$ multiplet Φ, its D3/D3 analogue Π and a suitable RR 3-form background ϵ
- These terms can all be consistently derived from disk diagrams
- In the following computation it will suffice to consider v.e.v.'s for Φ, Π, ϵ (but be careful!...)

- The deformed action is BRS-exact w.r.t. to the action of Q just defined:

$$
S_{\text {mod }}=Q \equiv
$$

- The (deformed) BRST structure allows to suitably rescale the integration variables and show that the semiclassical approximation is exact

Scaling to localization

- The integrals over all moduli except χ become quadratic and yield in the end

$$
\prod_{\mathcal{M}_{0}} \operatorname{det}_{\mathcal{M}_{0}}^{ \pm \frac{1}{2}}\left(Q^{2}\right)
$$

where $\mathcal{M}_{0}=$ first components of BRS doublets in the spectrum

- The action of Q^{2} on \mathcal{M}_{0} is completely determined by the symmetry properties of \mathcal{M}_{0} Reanlil (1)enti)

Scaling to localization

- The integrals over all moduli except χ become quadratic and yield in the end

$$
\prod_{\mathcal{M}_{0}} \operatorname{det}_{\mathcal{M}_{0}}^{ \pm \frac{1}{2}}\left(Q^{2}\right)
$$

where $\mathcal{M}_{0}=$ first components of BRS doublets in the spectrum

- The action of Q^{2} on \mathcal{M}_{0} is completely determined by the symmetry properties of \mathcal{M}_{0}
- By taking the parameters χ, ϕ, π and ϵ in the Cartan directions, we get a rational function determined by the weigths of the rep.s to which the \mathcal{M}_{0} moduli belong

Scaling to localization

- The integrals over all moduli except χ become quadratic and yield in the end

$$
\prod_{\mathcal{M}_{0}} \operatorname{det}_{\mathcal{M}_{0}}^{ \pm \frac{1}{2}}\left(Q^{2}\right)
$$

where $\mathcal{M}_{0}=$ first components of BRS doublets in the spectrum

- The action of Q^{2} on \mathcal{M}_{0} is completely determined by the symmetry properties of \mathcal{M}_{0}
- By taking the parameters χ, ϕ, π and ϵ in the Cartan directions, we get a rational function determined by the weigths of the rep.s to which the \mathcal{M}_{0} moduli belong
- Then, we still have to integrate over the χ moduli

D-instanton partition function

- At instanton \# k we get

$$
\begin{aligned}
& Z_{k}^{(m)}(\phi, \pi, \epsilon)=\left(\frac{s_{3}}{\epsilon_{1} \epsilon_{2}}\right)^{k} \int \prod_{i=1}^{k} \frac{d \chi_{i}}{2 \pi i} \prod_{i<j}^{k}\left(\chi_{i}-\chi_{j}\right)^{2}\left(\left(\chi_{i}-\chi_{j}\right)^{2}-s_{3}^{2}\right) \\
& \times \prod_{i<j}^{k} \prod_{\ell=1}^{2} \frac{\left(\left(\chi_{i}+\chi_{j}\right)^{2}-s_{\ell}^{2}\right)}{\left(\left(\chi_{i}-\chi_{j}\right)^{2}-\epsilon_{\ell}^{2}\right)\left(\left(\chi_{i}+\chi_{j}\right)^{2}-\epsilon_{\ell+2}^{2}\right)} \\
& \times \prod_{i=1}^{k}\left[\prod_{\ell=1}^{2} \frac{1}{\left(4 \chi_{i}^{2}-\epsilon_{\ell+2}^{2}\right)} \prod_{r=1}^{m} \frac{\left(\left(\chi_{i}+\pi_{r}\right)^{2}-\frac{\left(\epsilon_{3}-\epsilon_{4}\right)^{2}}{4}\right)}{\left(\left(\chi_{i}-\pi_{r}\right)^{2}-\frac{\left(\epsilon_{1}+\epsilon_{2}\right)^{2}}{4}\right)} \prod_{u=1}^{4}\left(\chi_{i}-\phi_{u}\right)\right]
\end{aligned}
$$

(here $\left\{\epsilon_{A}\right\}$ with $\sum_{A=1}^{4} \epsilon_{A}=0$ are the Cartan param.s of $S U(2)^{3}$ embedded in $\boldsymbol{S O}(4) \times \boldsymbol{S O}(4)$ rot.s and $\left.s_{1}=\epsilon_{2}+\epsilon_{3}, s_{2}=\epsilon_{1}+\epsilon_{3}, s_{3}=\epsilon_{1}+\epsilon_{2}\right)$

D-instanton partition function

- At instanton \# k we get

$$
\begin{aligned}
& Z_{k}^{(m)}(\phi, \pi, \epsilon)=\left(\frac{s_{3}}{\epsilon_{1} \epsilon_{2}}\right)^{k} \int \prod_{i=1}^{k} \frac{d \chi_{i}}{2 \pi i} \prod_{i<j}^{k}\left(\chi_{i}-\chi_{j}\right)^{2}\left(\left(\chi_{i}-\chi_{j}\right)^{2}-s_{3}^{2}\right) \\
& \times \prod_{i<j}^{k} \prod_{\ell=1}^{2} \frac{\left(\left(\chi_{i}+\chi_{j}\right)^{2}-s_{\ell}^{2}\right)}{\left(\left(\chi_{i}-\chi_{j}\right)^{2}-\epsilon_{\ell}^{2}\right)\left(\left(\chi_{i}+\chi_{j}\right)^{2}-\epsilon_{\ell+2}^{2}\right)} \\
& \times \prod_{i=1}^{k}\left[\prod_{\ell=1}^{2} \frac{1}{\left(4 \chi_{i}^{2}-\epsilon_{\ell+2}^{2}\right)} \prod_{r=1}^{m} \frac{\left(\left(\chi_{i}+\pi_{r}\right)^{2}-\frac{\left(\epsilon_{3}-\epsilon_{4}\right)^{2}}{4}\right)}{\left(\left(\chi_{i}-\pi_{r}\right)^{2}-\frac{\left(\epsilon_{1}+\epsilon_{2}\right)^{2}}{4}\right)} \prod_{u=1}^{4}\left(\chi_{i}-\phi_{u}\right)\right]
\end{aligned}
$$

(here $\left\{\epsilon_{A}\right\}$ with $\sum_{A=1}^{4} \epsilon_{A}=0$ are the Cartan param.s of $S U(2)^{3}$ embedded in $\boldsymbol{S O}(4) \times \boldsymbol{S O}(4)$ rot.s and $\left.s_{1}=\epsilon_{2}+\epsilon_{3}, s_{2}=\epsilon_{1}+\epsilon_{3}, s_{3}=\epsilon_{1}+\epsilon_{2}\right)$

- The χ integrals can be done as contour integrals and the final result for $Z_{k}(\phi, \pi, \epsilon)$ comes from a sum over residues

Taking the logarithm

- Once the integrals are done, we should be able to remove the ϵ-deformations and get the contributions to the eff. action.
- In the deformed theory, at instanton number k, there are disconnected contributions from smaller instantons k_{i} (with $\left.\sum_{i} k_{i}=k\right)$.
- To isolate the connected components we have to take the log of the "grand-canonical" part. function:

$$
Z^{(m)} \equiv \sum_{k} Z_{k}^{(m)} q^{k} \rightarrow \log Z^{(m)}
$$

where $q=\exp (2 \pi i \tau)$.

The 8-dimensional part

- $\log Z^{(m)}$ is still divergent as $1 /\left(\epsilon_{1} \epsilon_{2} \epsilon_{3} \epsilon_{4}\right)$.
- With Φ, Π restricted to their v.e.v's and the def.s turned on, this factor arises from the integral over the moduli corresponding to the (super)coordinates in the first 8 directions
- Let us define

$$
\mathcal{F}_{I V}(\phi)=\lim _{\epsilon \rightarrow 0} \epsilon_{1} \epsilon_{2} \epsilon_{3} \epsilon_{4} \log Z^{(m)}(\phi, \pi, \epsilon)
$$

- It has an 8d interpretation as a quartic prepotential for Φ. It agrees with the one computed in the D7/D(-1) system in type I' Bill e etal, 2009
- It does not depend on the D3 d.o.f. π (hence not on m)

The 4d prepotential

- $\log Z^{(m)}$ has also subleading divergences in $1 /\left(\epsilon_{1} \epsilon_{2}\right)$
- To isolate them we define

$$
\mathcal{F}_{l \|}^{(m)}(\phi)=\left.\lim _{\epsilon \rightarrow 0}\left(\epsilon_{1} \epsilon_{2} \log Z^{(m)}(\phi, \pi, \epsilon)-\frac{1}{\epsilon_{3} \epsilon_{4}} \mathcal{F}_{I V}(\phi)\right)\right|_{\pi=0}
$$

(we neglect the D3 vevs as we're interested in the D7 d.o.f.)

The 4d prepotential

- $\log Z^{(m)}$ has also subleading divergences in $1 /\left(\epsilon_{1} \epsilon_{2}\right)$
- To isolate them we define

$$
\mathcal{F}_{l \|}^{(m)}(\phi)=\left.\lim _{\epsilon \rightarrow 0}\left(\epsilon_{1} \epsilon_{2} \log Z^{(m)}(\phi, \pi, \epsilon)-\frac{1}{\epsilon_{3} \epsilon_{4}} \mathcal{F}_{I V}(\phi)\right)\right|_{\pi=0}
$$

(we neglect the D3 vevs as we're interested in the D7 d.o.f.)

- Explicit result, up to 3 instantons:

$$
\begin{aligned}
& \mathcal{F}_{I I}^{(m=0)}(\phi)=\left(-\sum_{i<j} \phi_{i} \phi_{j}\right) q+\left(\sum_{i<j} \phi_{i} \phi_{j}-\frac{1}{4} \sum_{i} \phi_{i}^{2}\right) q^{2}+\left(-\frac{4}{3} \sum_{i<j} \phi_{i} \phi_{j}\right) q^{3}+\cdots \\
& \mathcal{F}_{I I}^{(m=1)}(\phi)=\left(3 \sum_{i<j} \phi_{i} \phi_{j}\right) q+\left(\sum_{i<j} \phi_{i} \phi_{j}+\frac{7}{4} \sum_{i} \phi_{i}^{2}\right) q^{2}+\left(4 \sum_{i<j} \phi_{i} \phi_{j}\right) q^{3}+\cdots
\end{aligned}
$$

The 4d prepotential

- $\log Z^{(m)}$ has also subleading divergences in $1 /\left(\epsilon_{1} \epsilon_{2}\right)$
- To isolate them we define

$$
\mathcal{F}_{l \|}^{(m)}(\phi)=\left.\lim _{\epsilon \rightarrow 0}\left(\epsilon_{1} \epsilon_{2} \log Z^{(m)}(\phi, \pi, \epsilon)-\frac{1}{\epsilon_{3} \epsilon_{4}} \mathcal{F}_{I V}(\phi)\right)\right|_{\pi=0}
$$

(we neglect the D3 vevs as we're interested in the D7 d.o.f.)

- Explicit result, up to 3 instantons:

$$
\begin{aligned}
& \mathcal{F}_{I I}^{(m=0)}(\phi)=\left(-\sum_{i<j} \phi_{i} \phi_{j}\right) q+\left(\sum_{i<j} \phi_{i} \phi_{j}-\frac{1}{4} \sum_{i} \phi_{i}^{2}\right) q^{2}+\left(-\frac{-}{3} \sum_{i<j} \phi_{i} \phi_{j}\right) q^{3}+\cdots \\
& \mathcal{F}_{I I}^{(m=1)}(\phi)=\left(3 \sum_{i<j} \phi_{i} \phi_{j}\right) q+\left(\sum_{i<j} \phi_{i} \phi_{j}+\frac{7}{4} \sum_{i} \phi_{i}^{2}\right) q^{2}+\left(4 \sum_{i<j} \phi_{i} \phi_{j}\right) q^{3}+\cdots \cdot
\end{aligned}
$$

- We still have to sum over configurations of type (a) and (b) CReall The correct combinatorial factors imply that we should consider

$$
\mathcal{F}_{n . p .}=12 \mathcal{F}_{\| l}^{(m=0)}+4 \mathcal{F}_{\| /}^{(m=1)}
$$

The 4d prepotential (continued)

- The $1 /\left(\epsilon_{1} \epsilon_{2}\right)$ factor arose in our computation from the integration over the moduli x, θ which correspond to the 4 d spacetime supercoordinates. We reinstate these integrals, and promote the v.e.v. ϕ to the multiplet $\Phi(x, \theta)$
- We obtain thus the following non-perturbative contributions to the effective action:

$$
\begin{aligned}
& S_{\text {n.p. }}(\Phi)=\int d^{4} x d^{4} \theta \mathcal{F}_{n . p .}(\Phi) \\
& \mathcal{F}_{n . p .}(\Phi)=4\left[-\operatorname{Tr} \Phi^{2}+2(\operatorname{Tr} \phi)^{2}\right] q^{2}+O\left(q^{4}\right)
\end{aligned}
$$

- In other words, the n.p holomorphic couplings read

$$
f_{\text {n.p. }}=\alpha q^{2}+O\left(q^{4}\right), \quad f_{\text {n.p. }}^{\prime}=-2 \alpha q^{2}+O\left(q^{4}\right)
$$

(α an overalll normaliz.)

- No contrib.s in q and q^{3} (as effect of sum over conf.s)
- At order q^{2}, a fixed ratio between f and f^{\prime}

Heterotic check

- The type I' on $\mathcal{T}_{2} \times T_{4} / \mathbb{Z}_{2}$ has a computable heterotic dual: the $\mathrm{U}(16)$ compactification of the $\mathrm{SO}(32)$ heterotic string on T_{4} / \mathbb{Z}_{2} plus Wilson lines on \mathcal{T}_{2} breaking $\mathrm{U}(16)$ to $\mathrm{U}(4)^{4}$

- The holomorphic gauge couplings for a $U(4)$ factor are derived from a protected one-loop threshold computation
- Not present in the literature, so we carried it out finding precise agreement (under the heterotic/type I' duality map) with our D-instanton predictions
- This represents a very non-trivial duality check, but we mainly regard it as a test of the correctness of our procedure to tackle exotic instanton calculus

Conclusions

- We've considered a consistent string set-up where the 4 d gauge theory living on a D-brane stack receives non-perturbative corrections from "exotic" brane instantons which do not correspond to usual gauge instantons
- We computed explicitly such corrections by integrating over exotic instanton moduli space by means of localization techniques
- We successfully checked the result against a dual heterotic computation

Perspectives

- In the set-up I described, there are other possible n.p. corrections from E3 branes wrapped on $\mathcal{T}_{4} / \mathbb{Z}_{2}$. They correspond to usual gauge instantons for the D7 theory, and would be n.p. on the heterotic side. We're investigating them.

Perspectives

- In the set-up I described, there are other possible n.p. corrections from E3 branes wrapped on $\mathcal{T}_{4} / \mathbb{Z}_{2}$. They correspond to usual gauge instantons for the D7 theory, and would be n.p. on the heterotic side. We're investigating them.
- The n.p. description of D7 bacgkrounds should be geometrized by F-theory. D7/D3/D(-1) systems are a testing ground to link directly F-theory curves to n.p. prepotentials both in 8d and 4d. Work in progress.

Perspectives

- In the set-up I described, there are other possible n.p. corrections from E3 branes wrapped on $\mathcal{T}_{4} / \mathbb{Z}_{2}$. They correspond to usual gauge instantons for the D7 theory, and would be n.p. on the heterotic side. We're investigating them.
- The n.p. description of D7 bacgkrounds should be geometrized by F-theory. D7/D3/D(-1) systems are a testing ground to link directly F-theory curves to n.p. prepotentials both in 8d and 4d. Work in progress.
- Most important, the exotic instanton calculus might be applied in different set-ups and to diferent kind of couplings, possibly of more direct (string)-phenomenological interest

