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Foreword

This talk is mostly based on

M. Billo, L. Ferro, M. Frau, F. Fucito, A. Lerda and
J.F. Morales “Flux interactions on D-branes and instantons,”
to appear soon.

M. Billo, L. Ferro, M. Frau, F. Fucito, A. Lerda and
J.F. Morales “Non-perturbative flux superpotentials” to
appear soon.

It builds over a vast literature
I The few references scattered on the slides are of course

not exhaustive. I apologize for the missing ones.



Plan of the talk

1 Introduction

2 CFT derivation: flux amplitudes on disks

3 Flux-induced interactions on branes

4 Effects on the moduli action of D-instantons

5 Flux-aware stringy instanton calculus

6 Conclusions



Introduction



Motivations

In studying the properties of brane-world models embedded in
string compactifications two issues which are attracting much
interest are the following

I The incorporation of internal bulk fluxes, which “extend” the
possibilities offered by the choice of the compactification
manifold with great implications, e.g., on the moduli
stabilization problem

Reviews by Grana, Douglas and Kachru, Denef et al, ...

I The exploration of the non-perturbative effects induced by
instantonic (Euclidean wrapped) branes



Ordinary and stringy instantons

Let’s focus on the gauge theory sector living on a stack of
D-branes wrapped on some cycle c,

I Euclidean branes wrapped on c and point-like in
space-time correspond to ordinary gauge instantons,
reproducing the corresponding non-perturbative effects via
a “stringy instanton calculus”

Witten, 1995; Douglas, 1995-1996; Green-Gutperle 1997-, ...

I Instantonic branes wrapped on c′ 6= c potentially yield
novel non-pert. effects (Majorana masses for neutrinos, ...)

Blumenhagen et al 0609191; Ibanez and Uranga, 0609213; (long list)... ;

and may play a rôle in the moduli stabilization problem.
Such branes are known as “exotic” or “stringy” instantons



Fluxes for non-perturbative effects?

I The spectrum of moduli from the exotic instantonic branes
is peculiar, and it is difficult to saturate the fermionc
zero-mode integration

Argurio et al, 0704.0262; Bianchi et al, 0704.0784; ...

I Among other mechanisms, it has been suggested that in
presence of internal fluxes additional interactions can lift
these fermionic zero modes allowing the actual generation
of non-perturbative effects from exotic instantons

Blumenhagen et al, 0708.0403; Petersson, 0711.1837;...

I Such non-perturbtaive effects depend crucially on the form
of the flux interaction terms on the (instantonic) branes.

I Various cases have been investigated by
supergravity/κ-symmetry methods

M. Grana, 0202118; Marolf et al, 0306066; ...

I A systematic derivation from world-sheet methods is
missing



Objectives

I Derive by world-sheet methods (disk diagrams) the
interaction of bulk fluxes with open string modes

I We focus on fermionic open string state, but we consider
the generically twisted case, corresponding to various
possible D-brane setups

I Use the explicit result for the flux-induced modification of
the moduli action on ordinary and exotic instantons to
derive flux-dependent non-perturbative effects

I We work in an N = 1 context, with a brane realization of
SQCD

I We find that fluxes allow effects in the exotic case, but they
also generate new non-perturbative effects from ordinary
instantonic branes



CFT derivation: flux amplitudes on disks



The disk diagrams

VΘ VΘ′ VΘ VΘ′

a) b)

~ϑ = 0

VF ,VH

Untwisted

~ϑ 6= 0

Twisted

VF ,VH

I Θ and Θ′ are massless fermions from the R sector of open
strings



The disk diagrams

VΘ VΘ′ VΘ VΘ′

a) b)

~ϑ = 0

VF ,VH

Untwisted

~ϑ 6= 0

Twisted

VF ,VH

I F (H) is a closed string vertex corresponding to a RR
(NS-NS) field strength



The disk diagrams

VΘ VΘ′ VΘ VΘ′

a) b)

~ϑ = 0

VF ,VH

Untwisted

~ϑ 6= 0

Twisted

VF ,VH

I We can treat open string with generic b.c., including both
the twisted and untwisted case



The disk diagrams

VΘ VΘ′ VΘ VΘ′

a) b)

~ϑ = 0

VF ,VH

Untwisted

~ϑ 6= 0

Twisted

VF ,VH

I We work in a flat geometry (non-compact, toroidal or
orbifolded directions)



Boundary conditions

I D-branes↔ boundary conditions, e.g.

∂xM
∣∣∣
σ=0,π

= (Rσ)M
N ∂xN

∣∣∣
σ=0,π

,

with Rσ =
(
1−Fσ

)−1 (1 + Fσ
)

I For a string stretching between
different branes, we get twisted
fields:

X M(e2πiz) = RM
N X N(z) , R = R−1

π R0

Cz
Imz

∂X(z) = ∂x(z)

Rez

∂X(z) = R0∂̄x(z)

∂X(z) = R−1
π R0∂x(z)



Twisted world-sheet fields

I Choose a complex basis Z I , I = 1, . . .5, where

R = diag
(

e2πiϑ1
, e−2πiϑ1

, . . . , e2πiϑ5
, e−2πiϑ5

)
,

I The Z I fields are twisted: ∂Z I(e2πiz) = e2πiϑI
∂Z I(z).

I Similarly for w.s. fermions: ΨI(e2πiz) = η e2πiϑI
ΨI(z)

(η = 1 for NS, η = −1 for R sector).



General result (RR)

AF = −8cF Θ′ΓMΘ
[
FR0(2I1−I2)

]
M +

4cF

3!
Θ′ΓMNPΘ

[
FR0I2

]
MNP

I ΘA: polarization of the open string R vertex Details

I A = 1, . . . ,16 = (antichiral) 10d spinor index labeling
~εA = 1

2 (±,±,±,±,±)
I However εIA = − 1

2 if ϑI > 0



General result (RR)

AF = −8cF Θ′ΓMΘ
[
FR0(2I1−I2)

]
M +

4cF

3!
Θ′ΓMNPΘ

[
FR0I2

]
MNP

I The IIB RR vertex is a bi-spinor containing the fields
strengths: Details

FAB =
∑

n=1,3,5

1
n!

FM1...Mn

(
ΓM1...Mn

)
AB

,



General result (RR)

AF = −8cF Θ′ΓMΘ
[
FR0(2I1−I2)

]
M +

4cF

3!
Θ′ΓMNPΘ

[
FR0I2

]
MNP

I l.m. and r.m. fields identification at the boundary:

X̃ M(z) = (R0)M
N X N(z) , s̃~εA(z) = (R0)AB s~εB(z)

where R0 is the spinorial reflection matrix. Thus

FAB → (FR0)AB



General result (RR)

AF = −8cF Θ′ΓMΘ
[
FR0(2I1−I2)

]
M +

4cF

3!
Θ′ΓMNPΘ

[
FR0I2

]
MNP

I I1 and I2 are ~ϑ-dependent diagonal matrices:

(
I1
) A3
A3

=
1
2

e−
iπα′s

2

(
e−2πi

(
α′t−~ϑ·~ε3

)
− 1
)

B
(
α′s;α′t − ~ϑ · ~ε3

)
(
I2
) A3
A3

=
1
2

e−
iπα′s

2

(
e−2πi

(
α′t−~ϑ·~ε3

)
− 1
)

B
(
α′s + 1;α′t − ~ϑ · ~ε3

)
where ~ε3 is the spinorial weight of the r.m. part of the RR
vertex



General result (RR)

AF = −8cF Θ′ΓMΘ
[
FR0(2I1−I2)

]
M +

4cF

3!
Θ′ΓMNPΘ

[
FR0I2

]
MNP

I cF : factor arising from disk and vertices normalizations,
that can be fixed



General result (NS-NS)

AH = −4cH Θ′ΓNΘ δMP [∂BR0(2I1 − I2)
]

[MN]P

+ 2cH Θ′ΓMNPΘ
[
∂BR0I2

]
MNP

I We use an effective NS-NS vertex containing the
derivatives of B

VH(z, z) = NH
(
∂MBNP

)
e−iπα′kL·kR

[
ψMψNei kL·X

]
(z)

×
[
ψ̃P e−

eφ ei kR·eX ](z)



General result (NS-NS)

AH = −4cH Θ′ΓNΘ δMP [∂BR0(2I1 − I2)
]

[MN]P

+ 2cH Θ′ΓMNPΘ
[
∂BR0I2

]
MNP

I In presence of D-branes, the left-right identifications leads
to

(∂B)→ (∂BR0)

with the vectorial reflection matrix R0



General result (NS-NS)

AH = −4cH Θ′ΓNΘ δMP [∂BR0(2I1 − I2)
]

[MN]P

+ 2cH Θ′ΓMNPΘ
[
∂BR0I2

]
MNP

I I1 and I2 are again given by:

(
I1
) A3
A3

=
1
2

e−
iπα′s

2

(
e−2πi

(
α′t−~ϑ·~ε3

)
− 1
)

B
(
α′s;α′t − ~ϑ · ~ε3

)
(
I2
) A3
A3

=
1
2

e−
iπα′s

2

(
e−2πi

(
α′t−~ϑ·~ε3

)
− 1
)

B
(
α′s + 1;α′t − ~ϑ · ~ε3

)
but ~ε3 is now the vectorial weight associated to ψP(z3) in
the r.m. part of the NS-NS vertex



Various cases

The general result can be applied to many different situations
and generate various types of flux interactions

I ϑI = 0: all fields untwisted, open strings with both ends on
the same stack of D-branes

I fields in the adjoint of a gauge theory from space-filling
branes

I neutral instanton moduli from instantonic branes
I ϑ4 = ϑ5 = 1

2 : ND spacetime. Open strings between a
space-filling D brane and an instantonic brane

I ϑi = 0: twisted open strings↔ charged ADHM instanton
moduli. “Ordinary” gauge instantons.

I ϑi 6= 0: “exotic” instantons of truly stringy nature



Various cases

The general result can be applied to many different situations
and generate various types of flux interactions

I ϑ4 = ϑ5 = 0 (spacetime), ϑi 6= 0 (i = 1,2,3): open strings
stretching between different stacks of D branes.

I Matter fields ∈ bi-fundamentals. Always include massless
chiral fermions.

I In certain cases, e.g.,
∑

i ϑ
i = 2π, also massless scalars,

hence N = 1 chiral multiplets (matter content of
brane-world models).



Flux-induced interactions on branes



Specializing the result

I We will concentrate here on toroidal (orbifold)
compactifications to 4d and consider the interactions
induced by constant internal fluxes F3 and H on

I space-filling branes. In this case we consider untwisted
strings

I instantonic branes. We consider untwisted strings (neutral
moduli) but also also twisted ND strings (charged moduli.



Untwisted case

I The general result reduces to (m,n . . . are internal indices)

A ≡ AF +AH =
2πi
3

cF ΘΓmnpΘ Tmnp

with

Tmnp = (FR0)mnp+
1
gs

[(∂BR0)mnp+(∂BR0)npm+(∂BR0)pmn]

I The factor of gs is due to the relative normalizazion of RR and
NS-NS vertices to account for their 10d kinetic terms in the
Einstein frame



Untwisted case

I The general result reduces to (m,n . . . are internal indices)

A ≡ AF +AH =
2πi
3

cF ΘΓmnpΘ Tmnp

with

Tmnp = (FR0)mnp+
1
gs

[(∂BR0)mnp+(∂BR0)npm+(∂BR0)pmn]

I For unmegnetized branes,the reflection matrix R0 is simply +1
for NN and -1 for DD directions

I The spinorial reflection is simply R0 =
∏

m̂∈DD Γm̂



Unmagnetized branes

The coupling Tmnp depends on the type of brane: Back

0-3 4 5 6 7 8 9 Tmnp

D3 − × × × × × × (∗6F )mnp − 1
gs

Hmnp

D5 − − − × × × × 1
gs

Hm̂n̂p ; − 1
2 F qr

m̂ εqrnp ; − 1
gs

Hmnp

D7 − − − − − × × F q
m̂n̂ εqp + 1

gs
Hm̂n̂p

D9 − − − − − − − Fm̂n̂p̂

I We negleced the H-components that would be projected
out by the appropriate orientifold projections



Unmagnetized branes

The coupling Tmnp depends on the type of brane: Back

0-3 4 5 6 7 8 9 Tmnp

D3 − × × × × × × (∗6F )mnp − 1
gs

Hmnp

D5 − − − × × × × 1
gs

Hm̂n̂p ; − 1
2 F qr

m̂ εqrnp ; − 1
gs

Hmnp

D7 − − − − − × × F q
m̂n̂ εqp + 1

gs
Hm̂n̂p

D9 − − − − − − − Fm̂n̂p̂

I Can be extended to magnetized branes, by taking general
reflection matrices R0, R0



Unmagnetized branes

The coupling Tmnp depends on the type of brane: Back

0-3 4 5 6 7 8 9 Tmnp

D3 − × × × × × × (∗6F )mnp − 1
gs

Hmnp

D5 − − − × × × × 1
gs

Hm̂n̂p ; − 1
2 F qr

m̂ εqrnp ; − 1
gs

Hmnp

D7 − − − − − × × F q
m̂n̂ εqp + 1

gs
Hm̂n̂p

D9 − − − − − − − Fm̂n̂p̂

I F and H do not appear of the same footing.



4d notation

I Decomposing the 10d spinors into 4+6-dimensional parts:
ΘA → (ΘαA,Θα̇A), the flux coupling in 4d notation reads

−i ΘαAΘ B
α

(
Σ

mnp)
AB T IASD

mnp − i Θα̇AΘα̇
B
(
Σmnp)AB T ISD

mnp

I ISD and IASD tensors are defined as follows:

T ISD
mnp =

1
2
(
T − i ∗6T

)
mnp , T IASD

mnp =
1
2
(
T + i ∗6T

)
mnp ,



4d notation

I Decomposing the 10d spinors into 4+6-dimensional parts:
ΘA → (ΘαA,Θα̇A), the flux coupling in 4d notation reads

−i ΘαAΘ B
α

(
Σ

mnp)
AB T IASD

mnp − i Θα̇AΘα̇
B
(
Σmnp)AB T ISD

mnp

I In a complex basis,

T ISD → T(0,3) ⊕ T(2,1)P ⊕ T(1,2)NP

T IASD → T(3,0) ⊕ T(1,2)P ⊕ T(2,1)NP

where (N)P stands for (non)-primitive



Majorana masses for gauginos

I Focusing on a stack of D3-branes,
I the fermions ΘαA correspond to the chiral part of the 4

gauginos ΛαA (for a toroidal compactification)
I the coupling tensor Tmnp can be written as

Tmnp = (∗6F )mnp − Hmnp/gs = Re
(
∗6G − iG

)
mnp

in terms of the complex 3-form flux G = F − iH/gs

I We get thus Majorana mass terms for gauginos of the
form: Back

−2πicF

3!
Tr
[

ΛαAΛ B
α

(
Σ

mnp)
AB GIASD

mnp + Λ̄α̇AΛ̄α̇B
(
Σmnp)AB (GIASD

mnp
)∗ ]

I No coupling to ISD flux!, in agreement with literature based
on SUGRA approach

Grana, 2002; Marolf et al, 2003; ...



Instantonic branes

I For unmagnetized Euclidean branes one can derive a table
of couplings analogous to that for D-branes Recall

I The space-time directions are now transverse, and
D(-1),E1,E3 and E5 replace respectively the D3, D5, D7
and D9.

I The couplings are similar but not identical!
I For D-instantons, R0 = −1 and R0 = iΓE

(11). One gets

Tmnp = −iGmnp

I In 4d notation, one gets flux-induced fermionic 0-modes
bilinears in the moduli action of the form Back

−
2πic′F

3!

[
ΘαAΘ B

α

(
Σ

mnp)
AB GIASD

mnp + Θα̇AΘα̇
B
(
Σmnp)AB GISD

mnp

]
Both ISD and IASD parts of G play a rôle.



Coupling to twisted instanton moduli

The only twisted case we consider here is that of D3/D(-1)
strings↔ carged (or flavored) fermionic instanton moduli.
Twists and spinor weights are as follows:

I ~θ = (0,0,0, 1
2 ,

1
2), ε1 = (εA,−1

2 ,−
1
2)

I ~θ′ = −~θ = (0,0,0,−1
2 ,−

1
2), ε4 = (εA,

1
2 ,

1
2)

D(-1)µA

D3 µ̄A

The flux interaction diagrams turn out to give simply

−4πi
3!

c′F µ̄
AµB (Σmnp)

AB GIASD
mnp



Bulk fluxes and gauge theories

In an N = 1 context (e.g. orbifold/orientifold) introduce a
gauge-matter theory sector by (wrapped) D-branes and
instantonic sectors via (wrapped) Euclidean branes.

I Fluxes “generalize” the bulk geometry and correspond in
SUGRA to GVW superpotentials for the bulk fields Details

Gukov et al, 9906070; Taylor and Vafa, 9912152

I Via the couplings we have computed in CFT they influence
directly also the gauge/matter sector

I Induce soft-supersymmetry breaking terms in the gauge
theory such as the gaugino mass we’ve discussed

Grana, 0209200; Camara et al, 0311241; ...

I Modify the couplings of the fermionic zero modes on
instantonic branes. The integration over the instantonic
moduli can then lead to new non-perturbative contributions
to the effective action

Blumenhagen et al, 0708.0403; Garcia-Extebarrial et al, 0805.0713



Effects on the moduli action of D-instantons



A simple laboratory: C3/(Z2 × Z2)

To analyize the flux effects on the non-perturbative effective
action of brane-world gauge theories, it is useful to focalize on
a simple (yet non-trivial) example

I We consider a local model of an N = 1 compactification
given by the orbifold C3/(Z2 × Z2), generated by

h1 : (Z 1,Z 2,Z 3)→ (Z 1,−Z 2,−Z 3)

h2 : (Z 1,Z 2,Z 3)→ (−Z 1,Z 2,−Z 3)

I The properties of the 4 irreducible representations, and the
transformations of the string fields under this group are
esaily worked out Details



The quiver

We consider fractional D3 branes transverse to the orbifold

I 4 types of fD3’s: the CP indices of
open string endpoints attached to
fD3(A) transform in the orbifold irrep
RA

I Given a system of {NA} fD3’s, the
open string massless spectrum is
encoded in a quiver

N1

N2

N0

N3

I Nodes↔ U(NA) N = 1 vector multiplets
I Arrows: bifundamental chiral multiplets



A realization of SQCD

A system of N0 (N1) fD3’s of type 0 (1) realizes SQCD Back

I U(N0)× U(N1) N = 1 gauge theory
I Two chiral multiplets:

Φ ∈ N0 × N̄1 , Φ̃ ∈ N̄0 × N1

Φ

Φ̃ N1

N0

We’re interested in the low-energy effective theory of this
system

I The diagonal U(1) factor is decoupled, the other U(1)
factor is IR free→ we in fact have an SU(N0)× SU(N1)
theory

I We focus on one the gauge factors, so we see a SQCD
with

Nc = N0 , Nf = N1



Incorporating flux effects

At the microspopic level, G3,0 gives mass to the gaugino
Details while G3,0 induces a gravitino mass
I We want to investigate flux effects in the low energy

effective theory for the massless d.o.f. in the Higgs phase,
parametrizing solutions to the D-flatness eq.s Back

Φu
f Φ†fv = Φ̃†uf Φ̃f

v

I The fluxes may modify the non-perturbative contributions
which in this context are due to (fractional) D(-1) branes



“Ordinary” D-instantons

I Including k0 fractional D(-1) of type 0
corresponds to work in the instanton
# k0 sector of the gauge theory

k0

N0 = Nc N1 = Nf

I In SQCD, the k0 = 1 sector is responsible of
I the ADS/VTY superpotential for Nf = Nc − 1

Affleck et al, 1984; Taylor et al, 1983

I Beasley-Witten F-terms for Nf ≥ Nc
Beasley and Witten, 0409149, 0512039

I In presence of fluxes, other effects (some of stringy nature)
arise



Exotic D-instantons

D(-1)’s of type 2 or 3 give “exotic”, a.k.a. “stringy”
non-perturbative effects

I “Exotic” non-perturbative
contributions have attracted much
interest recently in brane-world
constructions

I Could generate very interesting
terms (neutrino masses ...)

Blumenhagen et al 0609191; Ibanez and Uranga, 0609213; ... ;

N0 = Nc N1 = Nf

k2

I However, severe restrictions from integration over
fermionic 0-modes: difficult to get non-vanishing results

Argurio et al, 0704.0262; Bianchi et al, 0704.0784; ...

I To this aim, fluxes might come to the rescue!
Blumenhagen et al, 0708.0403; Petersson, 0711.1837;...



Flux-aware stringy instanton calculus



Stringy instanton calculus
(hyper-sketchy)

Given a configuration of space-filling branes supporting the
gauge/matter theory and of instantonic branes

I Individuate the spectrum of open string states M with at
least one end on an instantonic brane: they carry no
momentum, represent moduli

I Compute the disk interactions of moduli, also with
insertions of gauge/matter fields parametrizing the
classical low-energy theory to get Smod (M; Φ(x))

I integrate over the moduli to get the effective action

Seff (Φ) =

∫
d4x

∫
dM̂ e−Smod (M;Φ(x))

(the position x is one of the moduli)



Ordinary instanton: spectrum

Let us focus on a single D(-1) of type 0 in
the SQCD set-up

N0 = Nc N1 = Nf

k0 = 1

I Neutral moduli: {xµ,Dc , θ
α, λα̇}

I x , θ: position of the instanton + superpartner
I Dc (c = 1,2,3): auxiliary fields (see later)

I Charged moduli: {wα̇u, µu}, {w̄u
α̇ , µ

u} from the two
orientations.

I wα̇ bosonic, µ fermionic: effect of ND b.c.’s.
I u= color index

I Flavored moduli: µ′f , µ̄
′f from the two orientations

I Fermionic only! D(-1) of type 0, D3 of type 1 can be seen
as branes wrapped on non-parallel (exceptional cycles):
“exotic” configuration

I f= flavor index
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I f= flavor index



Ordinary instanton: action

The disks with moduli insertions yield the action

Smod =
DcDc

2g2
0

+ iDc(w̄uτ cwu) + iλ · (µ̄uwu + w̄uµu)

The dimensions of the moduli are chosen as follows:

xµ Dc θα λα̇ wα̇ µ µ′

M−1 M2 M−1/2 M3/2 M−1 M−1/2 M−1/2

I In the field theory limit α′ → 0, Dc and λα̇ are Lagrange
multiplier for the bosonic and fermionic constraints of the
ADHM construction.

I Indeed, 1/g2
0 ∝ (2πα′)2/gs goes to 0 for gs fixed, i.e. fixed

gauge coupling



Ordinary instanton: action

The disks with moduli insertions yield the action

Smod =
DcDc

2g2
0

+ iDc(w̄uτ cwu) + iλ · (µ̄uwu + w̄uµu)

The dimensions of the moduli are chosen as follows:

xµ Dc θα λα̇ wα̇ µ µ′

M−1 M2 M−1/2 M3/2 M−1 M−1/2 M−1/2

I xµ, θα have the dimensions of supercoordinates
I They do not enter in the pure moduli action



Ordinary instanton: action

The disks with moduli insertions yield the action

Smod =
DcDc

2g2
0

+ iDc(w̄uτ cwu) + iλ · (µ̄uwu + w̄uµu)

The dimensions of the moduli are chosen as follows:

xµ Dc θα λα̇ wα̇ µ µ′

M−1 M2 M−1/2 M3/2 M−1 M−1/2 M−1/2

I The wα̇u are related to the size and orientation of the
instanton: w̄u · wu = ρ2 once the constraints are solved



Field-dependent terms

With insertions of matter fields from D3(0)/D3(1) strings Recall

the moduli action becomes Back Back2

Smod + w̄u
α̇

(
φ̃†(x)Φ̃(x , θ) + Φ(x , θ)φ†(x)

)
w α̇

v

+ µ̄uφ̃†fu (x)µ′f − µ̄
′fφ†uf (x)µu + w̄ α̇uψ̃†α̇u (x)µ′ − µ̄′ψ†uα̇ (x)w α̇

u

I Φu
f and Φ̃f

u are chiral multiplets:

Φ(x , θ) = φ(x) + θαψα(x) + θ2F (x)

I The moduli x , θ enter in the moduli action only through this
expansion



Field-dependent terms

With insertions of matter fields from D3(0)/D3(1) strings Recall

the moduli action becomes Back Back2

Smod + w̄u
α̇

(
φ̃†(x)Φ̃(x , θ) + Φ(x , θ)φ†(x)

)
w α̇

v

+ µ̄uφ̃†fu (x)µ′f − µ̄
′fφ†uf (x)µu + w̄ α̇uψ̃†α̇u (x)µ′ − µ̄′ψ†uα̇ (x)w α̇

u

I The moduli action is not holomorphic.
I The dependence on φ†(x) = Φ†(x , θ̄ = 0), is not extended

(in the α′ → 0 limit) to anti-chiral multiplets Φ†(x , θ̄), (same
for tilded fields)



Field-dependent terms

With insertions of matter fields from D3(0)/D3(1) strings Recall

the moduli action becomes Back Back2

Smod + w̄u
α̇

(
φ̃†(x)Φ̃(x , θ) + Φ(x , θ)φ†(x)

)
w α̇

v

+ µ̄uφ̃†fu (x)µ′f − µ̄
′fφ†uf (x)µu + w̄ α̇uψ̃†α̇u (x)µ′ − µ̄′ψ†uα̇ (x)w α̇

u

I These terms involve the “quarks”, and can be rewritten in
terms of Dα̇Φ†(x , θ̄)

∣∣
θ̄=0 and Dα̇Φ̃†(x , θ̄)

∣∣∣
θ̄=0

I These moduli interactions are responsible of
Beasley-Witten multifermion terms in the effective action
(see later)

Blumenhagen et al, 0708.0403; Garcia-Extebarria, 0805.0713



Usual instanton effects

Low energy effective action in the instanton sector:

Seff =

∫
d4x d2θ e2πτYM (Ms)(Ms)3Nc−Nf

∫
dM̂ e−Smod (Φ,Φ̃)



Usual instanton effects

Low energy effective action in the instanton sector:

Seff =

∫
d4x d2θ e2πτYM (Ms)(Ms)3Nc−Nf

∫
dM̂ e−Smod (Φ,Φ̃)

I The pure disks and annuli attached to the D(-1) give the
exponential of the classical instanton action with the 1-loop
coupling τYM evaluated at Ms

I The dimensionality of dM implies the factor M3Nc−Nf
s

I Together, these terms reconstruct the dynamical scale
Λ3Nf−Nc



Usual instanton effects

Low energy effective action in the instanton sector:

Seff =

∫
d4x d2θ Λ3Nf−Nc

∫
dM̂ e−Smod (Φ,Φ̃)

I Seff should depend on low-energy fields only.
I In Smod we incorporated the dependence on the

microscopic “quark” multiplets
I We have to impose the D-flatness condition Recall on the

fields.
I By doing so, in the result of the integration over dM only on

the low-energy d.o.f. (meson fields, ...) appear



Usual instanton effects

Low energy effective action in the instanton sector:

Seff =

∫
d4x d2θ Λ3Nf−Nc

∫
dM̂ e−Smod (Φ,Φ̃)

I The integrals can be done
I The fermionic integrations impose severe restrictions:

contributions to the effective action depend on Nf



Usual instanton effects

Low energy effective action in the instanton sector:

Seff =

∫
d4x d2θ Λ3Nf−Nc

∫
dM̂ e−Smod (Φ,Φ̃)

I For Nf = Nc − 1 one gets

Seff =

∫
d4x d2θW (M)

whereM is the meson superfield (M) f ′
f = Φ̃ u

f Φ f ′
u and

W (M) =
Λ2Nc+1

detM

is the ADS/TVY superpotential



Usual instanton effects

Low energy effective action in the instanton sector:

Seff =

∫
d4x d2θ Λ3Nf−Nc

∫
dM̂ e−Smod (Φ,Φ̃)

I For Nf ≥ Nc , one brings down from the moduli action also
“quark” terms w̄ α̇uψ̃†α̇u (x)µ′ + ... Recall

I This generates the multifermionic F-terms of
Beasley-Witten, of the schematic form

Λ2Nc

∫
d4x d2θ

D̄α̇Φ†D̄α̇Φ†|θ̄=0
Φ†Φ2Nc−1

which are suspersymmetric, and can be written explicitly in
terms of the low energy fields



Flux corrections

Applying our results for the flux interactions on D(-1)’s Recall

one gets the following extra contributions to the moduli action:

S(flux)
mod = α′

2G(0,3)λα̇λ
α̇ + G(3,0)θαθ

α + G(3,0)µ̄uµ
u

I Recall that , w.r.t. to the gauge thory living on the color
branes,

I G(3,0) appears directly as a gaugino mass mΛ

I G(0,3) appears only in the bulk as a gravitino mass m3/2

I I will now discuss some of the effects that these extra terms
induce in the non-perturbative low energy effective action
(very briefly/sketchy: some are just preliminary results!)



Multifermion terms at Nf = Nc − 1

I If one pulls down once the term G(3,0)µ̄uµ
u, the pattern of

integration over the µ̄, µ and µ̄, µ′ becomes similar the
Nf = Nc case. One gets BW multifermion terms with the
structure

G(3,0)Λ2Nc+1
∫

d4x d2θ
D̄α̇Φ†D̄α̇Φ†|θ̄=0

(Φ†)3Φ2N

I This appears to be an effect at low energy of the soft susy
breaking induced by G(3,0) in the microscopic theory. No
explicit α′, should be computable directly in field theory



Stringy effects in ordinary instantons

G(0,3) appears in the moduli action with an α′2 in front. We must
include other terms vanishing in the α′ → 0 limit

I From disk diagrams one has extra terms that correspond to

Φ†(x , θ̄ = 0)→ Φ†(x , θ̄ = α′λ)

D̄α̇Φ†(x , θ̄ = 0)→ D̄α̇Φ†(x , θ̄ = α′λ)

in the field-dependent moduli action Recall . .
When the λ-integration is saturated using θ̄-terms in the above
superfields

I The fermionic ADHM constraint is not imposed: we loose
contact with gauge instanton solutions



Stringy effects in ordinary instantons

G(0,3) appears in the moduli action with an α′2 in front. We must
include other terms vanishing in the α′ → 0 limit

I From disk diagrams one has extra terms that correspond to

Φ†(x , θ̄ = 0)→ Φ†(x , θ̄ = α′λ)

D̄α̇Φ†(x , θ̄ = 0)→ D̄α̇Φ†(x , θ̄ = α′λ)

in the field-dependent moduli action Recall . .
When the λ-integration is saturated using θ̄-terms in the above
superfields

I We get explicit α′ factors in front of the corresponding
contributions, which are D-terms

(α′)2
∫

d4x d2θ d2θ̄ f
(
M,M†, . . .

)



Non-holomorphic terms at Nf = Nc

At Nf = Nc − 1, by saturating the λ integration with the G(0,3)

interaction, one gets in the end a non-holomorphic contribution
of the form (e.g., for Nc = 2)

α′2G(0,3)

∫
d4x d2θ

det
(
M†

)
Tr (M†M)

1
2



Exotic (stringy) instantons

I Let us consider a set-up in which the
instantonic brane does not
correspond to a classical instanton
for the gauge group

I D(-1)/D3 strings have only fermionic
excitations µu, µ̄

u and µ′f , µ̄′f k2 = 1

N1 = NfN0 = Nc

Φ̃

µ′

Φ

µ

The field-dependent and flux-corrected moduli action is
(considering only G(0,3) and G(0,3))

Smod = (α′)2DcDc+µuΦ(x , θ)u
f µ̄
′f−µ′f Φ̃(x , θ)f

uµ̄
u+α′2G(0,3)λα̇λ

α̇

I Without flux, the integration over the λ’s kills any
contribution to the effective action



Exotic (stringy) instantons

I Let us consider a set-up in which the
instantonic brane does not
correspond to a classical instanton
for the gauge group

I D(-1)/D3 strings have only fermionic
excitations µu, µ̄

u and µ′f , µ̄′f k2 = 1

N1 = NfN0 = Nc

Φ̃

µ′

Φ

µ

The field-dependent and flux-corrected moduli action is
(considering only G(0,3) and G(0,3))

Smod = (α′)2DcDc+µuΦ(x , θ)u
f µ̄
′f−µ′f Φ̃(x , θ)f

uµ̄
u+α′2G(0,3)λα̇λ

α̇

I Notice that the field-dependent terms are now holomorphic



Exotic but Holomorphic

I Thanks to the presence of the flux, we get exotic effects.
For Nf = Nc , we get a superpotential contribution:

Seff ∝ M2N−2
s G(0,3)

∫
d4x d2θ det(M)

expressed in terms of the meson fieldM



Conclusions



Conclusions

I I’m sure we all agree that

1 Villa Mondragone is a spectacular location
2 Social dinner is very welcome at this point

I I hope I have been able to convey the following messages
I We derived the perturbative couplings of NS-NS and RR

fluxes to R open strings, twisted or not [toroidal/orbifold].
Can be used in many relevant cases: ssb on D-branes,
modification of the moduli action on instantonic branes, . . .

I Stringy instanton calculus provides interesting extra
non-perturbative terms in the l.e.e.t for gauge/matter in
presence of fluxes and when α′ corrections are considered

I Thank you for your attention!
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Open string R vertex

Back

Open string R massles vertex

VΘ(z) = NΘ ΘA
[
σ~ϑ s

~εA+~ϑ
e−

1
2φ ei k ·X ](z)

I A = 1, . . . ,16: (chiral) spinor index of SO(10); runs over
possible choices of the weight vector

~εA =
1
2

(
±,±,±,±,±

)



Open string R vertex

Back

Open string R massles vertex

VΘ(z) = NΘ ΘA
[
σ~ϑ s

~εA+~ϑ
e−

1
2φ ei k ·X ](z)

I σ~ϑ(z) is the bosonic twist field
I s~q(z) is the fermionic one:

s~q(z) = ei P
I qIϕI(z)

where ϕI(z) bosonize the world-sheet fermions: ψI = eiϕI



Open string R vertex

Back

Open string R massles vertex

VΘ(z) = NΘ ΘA
[
σ~ϑ s

~εA+~ϑ
e−

1
2φ ei k ·X ](z)

I Conformal weight 1 restricts the allowed polarizations:

ΘA 6= 0 only if εIA =

{
±1

2 for ϑI = 0
−1

2 for ϑI 6= 0

I All ϑI = 0: 10D chiral spinor
I Only ϑ4 = ϑ5 = 0: space-time chiral spinor
I ϑ4 = ϑ5 = 1

2 (instantonic branes): fermion w/o a spacetime
spinor index (as for ADHM charged fermionic instanton
moduli)



RR Vertex

Back

Closed string RR vertex (field strengths of type IIB)

VF (z, z) = NF FAB e−iπα′kL·kR
[
s~εA e−

1
2φ ei kL·X

]
(z)×

[
s̃~εB e−

1
2

eφ ei kR·eX ](z) .

I Bi-spinor polarization contains the IIB RR field strengths

FAB =
∑

n=1,3,5

1
n!

FM1...Mn

(
ΓM1...Mn

)
AB

,



RR Vertex

Back

Closed string RR vertex (field strengths of type IIB)

VF (z, z) = NF FAB e−iπα′kL·kR
[
s~εA e−

1
2φ ei kL·X

]
(z)×

[
s̃~εB e−

1
2

eφ ei kR·eX ](z) .

I In presence of D-branes, left- and right-moving fields
identified at the boundary:

X̃ M(z) = (R0)M
N X N(z) , s̃~εA(z) = (R0)AB s~εB(z)

where R0 is the spinorial representative of the reflection
matrix R0. Thus

FAB → (FR0)AB



NS-NS vertex

Back

Closed string NS-NS vertex (effective vertex for H = DB):

VH(z, z) = NH
(
∂MBNP

)
e−iπα′kL·kR

[
ψMψNei kL·X

]
(z)×

[
ψ̃P e−

eφ ei kR·eX ](z)

I In presence of D-branes, the left-right identifications leads
to

(∂B)→ (∂BR0)

with the vectorial reflection matrix R0



Bulk dependence of gauge lagrangian

Back

I Open strings interact with closed strings. In N = 1 cases,
the gauge theory on D-branes depends on the bulk moduli
M through the gauge kinetic function:

− i
8π

∫
d2θ f

(
M(θ)

)
Tr
(
Wα(θ)Wα(θ)

)
+ h.c. (1)

I Spurion mechanism naturally realized: θ2 components of
f (M)↔ gaugino mass. Soft susy breaking.

I The flux-induced gaugino mass fits in this scheme iff
internal fluxes↔ auxiliary fields for bulk chiral multiplets



Fluxes as auxiliary fields

I This is indeed the case, as encoded in the 4d SUGRA
description via the superpotential

W =
1
κ2

10

∫
G ∧ Ω =

4
κ2

4
G(0,3)

where G = F − τ H, and τ = C0 + ie−φ. This corresponds
to an auxiliary field F τ ∝ G(0,3). G(3,0) is related to m3/2

I In an explicit orbifold setup, e.g. T6/(Z2 × Z2), D3 gauge
kinetic function f ∝ τ . From the mass term computed in
CFT Recall we get Back

|mΛ| = |eϕF τ/2|

in full agreement (including normalizations and dilaton
factors) with the GVW superpotential



Details on the orbifold

Back

I Character table and Clebsh-Gordan series:
e h1 h2 h3

R0 1 1 1 1
R1 1 1 −1 −1
R2 1 −1 1 −1
R3 1 −1 −1 1

R0 ⊗ RA = RA , Ri ⊗ Rj = δijR0 + |εijk |Rk

I Transformations of massless string fields:

NS fields irrep

∂Z i , Ψi Ri
,

chiral SA anti-chiral SA irrep

S0 ≡ S+++ S0 ≡ S−−− R0

S1 ≡ S+−− S1 ≡ S−++ R1

S2 ≡ S−+− S2 ≡ S+−+ R2

S3 ≡ S−−+ S3 ≡ S++− R3
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