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Foreword

This talk is mostly based on

M. Billo, M. Frau, I. Pesando, P. Di Vecchia, A. Lerda and
R. Marotta, “Instanton effects in N=1 brane models and the
Kahler metric of twisted matter,” arXiv:0709.0245 [hep-th].

M. Billo, M. Frau, I. Pesando, P. Di Vecchia, A. Lerda and
R. Marotta, “Instantons in N=2 magnetized D-brane worlds,”
arXiv:0708.3806 [hep-th].

It, of course, builds over a vast literature
I The few references scattered on the slides are of course

not exhaustive. I apologize for the missing ones.
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Introduction



Wrapped brane scenarios

I Type IIB: magnetized D9 branes
I Type IIA (T-dual): intersecting D6 (easier to visualize)

D6b

CY3

D6a
R1,3

Supersymmetric gauge theories on R1,3 with chiral matter and
interesting phenomenology

[review: Blumenhagen et al, Phys. Rept. 445 (2007)]

I families from multiple intersections, tuning different
coupling constants, . . .



Wrapped brane scenarios

I Type IIB: magnetized D9 branes
I Type IIA (T-dual): intersecting D6 (easier to visualize)

D6b

CY3

D6a
R1,3

I low energy described by SUGRA with vector and matter
multiplets

I can be derived directly from string amplitudes (with
different field normaliz.s)

I novel stringy effects (pert. and non-pert.) in the eff. action?



Euclidean branes and instantons
Ordinary instantons

E2 branes wrapped on the same cycle as some D6 branes are
point-like in R1,3 and correspond to instantonic config.s of the
gauge theory on the D6

CY3

R1,3
E3a

D6a

Analogous to the D3/D(-1) system:
I ADHM from strings attached to the instantonic branes

Witten, 1995; Douglas, 1995-1996; ...

I non-trivial instanton profile of the gauge field Billo et al, 2001

N.B. In type IIB, use D9/E5 branes



Euclidean branes and instantons
Exotic instantons

E2 branes wrapped differently from the D6 branes are still
point-like in R1,3 but do not correspond to ordinary instantons
config.s.

CY3

R1,3
D6a

E3c

Still they can,in certain cases, give important non-pert, stringy
contributions to the effective action, .e.g. Majorana masses for
neutrinos, moduli stabilizing terms, . . .

Blumenhagen et al 0609191; Ibanez and Uranga, 0609213; (long list)... ; Petersson 0711.1837

I Potentially crucial for string phenomenology



Perspective of this work

Clarify some aspects of the “stringy instanton calculus”, i.e., of
computing the contributions of Euclidean branes

I Focus on ordinary instantons, but should be useful for
exotic instantons as well

I Choose a toroidal compactification where string theory is
calculable.

I Realize (locally) N = 1 gauge SQCD in type IIB on a
system of D9-branes and discuss contributions of E5
branes to the superpotential

I Analyze the rôle of annuli bounded by E5 and D9 branes in
giving these terms suitable holomorphicity properties



The set-up



The background geometry

Internal space:

T (1)
2 × T (2)

2 × T (3)
2

Z2 × Z2

T (1)
2 T (3)

2T (2)
2

I The Kähler param.s and complex structures determine the
string frame metric and the B field:

G(i) =
T (i)

2

U(i)
2

(
1 U(i)

1
U(i)

1 |U(i)|2

)
and B(i) =

(
0 −T (i)

1
T (i)

1 0

)
.



The background geometry
Complex coordinates

I String fields: X M → (Xµ,Z i) and ψM → (ψµ,Ψi), with

Z i =

√
T (i)

2

2U(i)
2

(X 2i+2 + U(i)X 2i+3)

I 10d spin fields decompose into space-time and internal
parts:

SȦ → (SαS−−−,SαS−++, . . . ,Sα̇S+++, . . .)



The background geometry
The orbifold

I Action of the Z2 × Z2 orbifold group elements:

h1 : (Z 1,Z 2,Z 3)→ (Z 1,−Z 2,−Z 3) ,

h2 : (Z 1,Z 2,Z 3)→ (−Z 1,Z 2,−Z 3) ,

h3 : (Z 1,Z 2,Z 3)→ (−Z 1,−Z 2,Z 3) ,

I The group has 4 irreducible representations:

R0 (trivial), R1,R2,R3

.



The geometric moduli
Supergravity basis- tree level

I Supergravity basis: s, t(i),u(i), with Back Lüst et al, 0404134; ...

Im(s) ≡ s2 =
1

4π
e−φ10 T (1)

2 T (2)
2 T (3)

2 ,

Im(t(i)) ≡ t(i)2 = e−φ10T (i)
2 , u(i) = u(i)

1 + i u(i)
2 = U(i) ,

(real parts from suitable RR or B fields). N.B. s2 ∼ 1/gs.

I N = 1 bulk Kähler potential:
K = − log(s2)−

∑
i=1

log(t(i)2 )−
∑
i=1

log(u(i)
2 )

Antoniadis et al, 9608012



The geometric moduli
Supergravity basis - corrections

At one-loop level, there are corrections to the bulk Kähler
potential (and to the Einstein term)

Antoniadis et al, 9608012; ... ; Berg et al, 0508043

I These lead to non-holomorphic redefinitions of the
supergravity fields s andti w.r.t. the their tree-level
expressions. In particular

s(0)
2 = s2 +

δ

8π2

I Differently from corresponding Heterotic constructions, δ in
these models appears to be of order gs rather than 1.

I It would be interesting [see later!] to clarify if any other
mechanism can induce, in the models we consider, a shift
δ(0) of order 1.



N = 1 from magnetized branes
The gauge sector

Place a stack of Na fractional D9
branes (“color branes” 9a).

9a R0

I Massless spectrum of 9a/9a strings gives rise, in R1,3, to
the N = 1 vector multiplets for the gauge group U(Na)

I The gauge coupling constant is given (at tree level) by

1
g2

a
=

1
4π

e−φ10 T (1)
2 T (2)

2 T (3)
2 = s(0)

2



N = 1 from magnetized branes
The gauge sector

Place a stack of Na fractional D9
branes (“color branes” 9a).

9a R0

I Massless spectrum of 9a/9a strings gives rise, in R1,3, to
the N = 1 vector multiplets for the gauge group U(Na)

I The Wilsonian coupling 1/g̃2
a must correspond to (the

imaginary part of) a chiral field, so it is corrected w.r.t. to
the tree level: Back

1
g2

a
=

1
g̃2

a
+

δ

8π2



N = 1 from magnetized branes
Adding flavors

Add D9-branes (“flavor branes”
9b) with quantized magnetic
fluxes

f (i)
b =

m(i)
b

n(i)
b

and in a different orbifold rep. 9a

R1

R0

9b

I (Bulk) susy requires ν(1)
b − ν(2)

b − ν(3)
b = 0, where

f (i)
b /T (i)

2 = tanπν(i)
b with 0 ≤ ν(i)

b < 1 ,

(other possibilities by sign changes) Marino et al, 9911206



N = 1 from magnetized branes
Adding flavors

Add D9-branes (“flavor branes”
9b) with quantized magnetic
fluxes

f (i)
b =

m(i)
b

n(i)
b

and in a different orbifold rep.

qba ≡ q

9a

R1

R0

9b

I 9a/9b strings are twisted by the relative angles Back

ν
(i)
ba = ν

(i)
b − ν

(i)
a

I If ν(1)
ba − ν

(2)
ba − ν

(3)
ba = 0, this sector is supersymmetric:

massless modes fill up a chiral multiplet qba in the
anti-fundamental rep N̄a of the color group



N = 1 from magnetized branes
Adding flavors

Add D9-branes (“flavor branes”
9b) with quantized magnetic
fluxes

f (i)
b =

m(i)
b

n(i)
b

and in a different orbifold rep.

qba ≡ q

9a

R1

R0

9b

I The degeneracy of this chiral multiplet is Nb|Iab|, where Iab
is the # of Landau levels for the (a,b) “intersection”

Iab =
∏
i=1

(
m(i)

a n(i)
b −m(i)

b n(i)
a
)



Local vs global realization

I Introducing branes in a compact space requires the
cancellation of the associated tadpoles. This can be
achieved by a suitable orientifold projection in the string
description, and severely constrains the set-up.

I We take a “local” approach, and do not discuss the “global”
requirement of tadpole cancellation (which is however to
be assumed) and the contribution of orientifolds in these
models:

I our goal is to understand certain mechanisms of the stringy
instanton calculus rather than provide phenomenological
models

I these aspects can be taken into accout, and the picture
goes through see Akerblom et al, 0705.2366; Blumenhagen et al, 0711.0866



N = 1 from magnetized branes
Engineering N = 1 SQCD

Introduce a third stack of 9c
branes such that we get a chiral
mult. qac in the fundamental rep
Na and that

Nb|Iab| = Nc |Iac | ≡ NF

9c

qba ≡ q
qac ≡ q̃

9a

R1

R0

9b

R1

I This gives a (local) realization of N = 1 SQCD: same
number NF of fundamental and anti-fundamental chiral
multiplets, resp. denoted by qf and q̃f



N = 1 from magnetized branes
Engineering N = 1 SQCD

Introduce a third stack of 9c
branes such that we get a chiral
mult. qac in the fundamental rep
Na and that

Nb|Iab| = Nc |Iac | ≡ NF

9c

qba ≡ q
qac ≡ q̃

9a

R1

R0

9b

R1

Kinetic terms of chiral
mult. scalars from disks
NFX
f=1

n
Dµq†f Dµqf + Dµq̃f Dµq̃†f

o
Sugra Lagrangian: different field
normaliz. s

NFX
f=1

n
KQ DµQ†f DµQf + KQ̃ DµQ̃f DµQ̃†f

o

I Related via the Kähler metrics: q =
√

KQ Q , q̃ =
√

KQ̃ Q̃
Back Back’



Non-perturbative sectors from E5
Adding “ordinary” instantons

Add a stack of k E5 branes
whose internal part coincides
with the D9a:

I ordinary instantons for the
D9a gauge theory

I would be exotic for the
D9b, c gauge theories

9c

9a

R1

9b

R1

5a

R0

I New types of open strings: E5a/E5a (neutral sector),
D9a/E5a (charged sector), D9b/E5a or E5a/D9c (flavored
sectors, twisted)

I These states carry no momentum in space-time: moduli,
not fields. [Collective name: Mk ]

I charged or neutral moduli can have KK momentum



Non-perturbative sectors from E5
The spectrum of moduli

Sector ADHM Meaning Chan-Paton Dimension

5a/5a NS aµ centers adj. U(k) (length)

Dc Lagrange mult.
... (length)−2

R Mα partners
... (length)

1
2

λα̇ Lagrange mult.
... (length)−

3
2

9a/5a NS wα̇ sizes Na × k (length)

5a/9a w̄α̇

... k × Na
...

9a/5a R µ partners Na × k (length)
1
2

5a/9a µ̄
... k × Na

...

9b/5a R µ′ flavored NF × k (length)
1
2

5a/9c µ̃′
... k × NF

...



Non-perturbative sectors from E5
Some observations

I Among the neutral moduli we have the center of mass
position xµ0 and its fermionic partner θα (related to susy
broken by the E5a): Back

aµ = xµ0 11k×k + yµc T c , Mα = θα 11k×k + ζαc T c ,

5a

9c

µ′

9b

R0

R1
R1

µ̃′

I In the flavored sectors only
fermionic zero-modes:

I µ′f (D9b/E5a sector)
I µ̃′f (E5a/D9c sector)



The stringy instanton calculus



Instantonic correlators
The stringy way

In presence of Euclidean branes, dominant contribution to
correlators of gauge/matter fields from one-point functions.

Polchinski, 1994; Green and Gutperle, 1997-2000; Billo et al, 2002; Blumenhagen et al, 2006

E.g., a correlator of chiral fields 〈qq̃ . . .〉 is given by

(
1+ + 1

2. . .

+ . . .

+ . . .

+

)
q q̃

Disks: = − 8π2

g2
a

k + Smod (Mk ) (with moduli insertions)

Annuli: ≡ A5a (no moduli insert.s, otherwise suppressed)



The effective action
in an instantonic sector

The various instantonic correlators can be obtained shifting the
moduli action by terms dependent on the gauge/matter fields. In
the case at hand,

q̃q

+ + + . . .Smod (q, q̃;Mk ) =

= trk

(
iDc

“
w̄α̇(τ c)α̇

β̇w β̇ + iη̄c
µν

ˆ
aµ, aν˜”

− iλα̇
“
µ̄wα̇ + w̄α̇µ+

ˆ
aµ,Mα˜σµ

αα̇

”o
+ trk

X
f

n
w̄α̇

ˆ
q†f qf + q̃f q̃†f

˜
w α̇ − i

2
µ̄ q†fµ′f +

i
2
µ̃′f q̃†f µ

o
.



The effective action
in an instantonic sector

I There are other relevant diagrams involving the
superpartners of q and q̃, related to the above by susy
Ward identities. Complete result:

q(x0) , q̃(x0) → q(x0, θ) , q̃(x0, θ)

in Smod (q, q̃;Mk ).

I The moduli have to be integrated over



The instanton partition function
as an integral over moduli space

Summarizing, the effective action has the form (Higgs branch)

Sk = Ck e
− 8π2

g2
a

k
eA
′
5a

∫
dMk e−Smod (q,q̃;Mk )



The instanton partition function
as an integral over moduli space

Summarizing, the effective action has the form (Higgs branch)

Sk = Ck e
− 8π2

g2
a

k
eA
′
5a

∫
dMk e−Smod (q,q̃;Mk )

I In A′5a
the contribution of zero-modes running in the loop is

suppressed because they’re already explicitly integrated
over

Blumenhagen et al, 2006



The instanton partition function
as an integral over moduli space

Summarizing, the effective action has the form (Higgs branch)

Sk = Ck e
− 8π2

g2
a

k
eA
′
5a

∫
dMk e−Smod (q,q̃;Mk )

I Ck is a normalization factor, determined (up to numerical
constants) counting the dimensions of the moduliMk :

Back

Ck =
(√
α′
)−(3Na−NF )k

(ga)−2Nak .

Notice the appearing of the β-function coeff. b1



Instanton induced superpotential

In Smod (q, q̃;Mk ), the superspace coordinates xµ0 and θα

appear only through superfields q(x0, θ), q̃(x0, θ), . . . Recall

I We can separate x , θ from the other moduli M̂k writing

Sk =

∫
d4x0 d2θ Wk (q, q̃) ,

with the effective superpotential

Wk (q, q̃) = Ck e
− 8π2

g2
a

k
eA
′
5a

∫
dM̂k e−Smod (q,q̃; cMk )



Issues of holomorphicity

A superpotential is expected to be holomorphic. We found

Wk (q, q̃) = Ck e
− 8π2

g2
a

k
eA
′
5a

∫
dM̂k e−Smod (q,q̃; cMk )



Issues of holomorphicity

A superpotential is expected to be holomorphic. We found

Wk (q, q̃) = Ck e
− 8π2

g2
a

k
eA
′
5a

∫
dM̂k e−Smod (q,q̃; cMk )

I Smod (q, q̃;M̂k ) explicitly depends on q† and q̃†. This
dependence disappears upon integrating over M̂k as a
consequence of the cohomology properties of the
integration measure.

I However, we have to re-express the result in terms of the
SUGRA fields Q and Q̃ Recall



Issues of holomorphicity

A superpotential is expected to be holomorphic. We found

Wk (q, q̃) = Ck e
− 8π2

g2
a

k
eA
′
5a

∫
dM̂k e−Smod (q,q̃; cMk )

I The prefactors should combine into a dynamically
generated holomorphic scale Λhol, obtained by integrating
the Wilsonian β-function of the N = 1 SQCD

Novikov et al, 1983; Dorey et al, 2002; ...

I To this effect, it is crucial that A′5a
can introduce a

non-holomorphic dependence on the complex and Kähler
structure moduli of the compactification space. Back

I Our aim is to consider the interplay of all these
observations. For this we need the explicit expression of
the mixed annuli term A′5a



The ADS/TVY superpotential

To be concrete, let’s focus on the single instanton case, k = 1.
In this case, the integral over the moduli can be carried out
explicitly.

I Balancing the fermionic zero-modes requires NF = Na − 1
I The end result is Dorey et al, 2002; Akerblom et al, 2006; Argurio et al, 2007

Wk=1(q, q̃) = Ck e
− 8π2

g2
a

k
eA
′
5a

1
det
(
q̃q
)



The ADS/TVY superpotential

To be concrete, let’s focus on the single instanton case, k = 1.
In this case, the integral over the moduli can be carried out
explicitly.

I Balancing the fermionic zero-modes requires NF = Na − 1
I The end result is Dorey et al, 2002; Akerblom et al, 2006; Argurio et al, 2007

Wk=1(q, q̃) = Ck e
− 8π2

g2
a

k
eA
′
5a

1
det
(
q̃q
)

I Same form as the ADS/TVY superpotential
Affleck et al, 1984; Taylor et al, 1983;



The ADS/TVY superpotential

To be concrete, let’s focus on the single instanton case, k = 1.
In this case, the integral over the moduli can be carried out
explicitly.

I Balancing the fermionic zero-modes requires NF = Na − 1
I The end result is Dorey et al, 2002; Akerblom et al, 2006; Argurio et al, 2007

Wk=1(q, q̃) = Ck e
− 8π2

g2
a

k
eA
′
5a

1
det
(
q̃q
)

I We’ll see how these factors conspire to give an
holomorphic expression in the sugra variables Q and Q̃



Instanton annuli and threshold corrections



The mixed annuli

The amplitude A5a is a sum of cylinder amplitudes with a
boundary on the E5a (both orientations)

= + +

A5a A5a;9a A5a;9b A5a;9c



The mixed annuli

The amplitude A5a is a sum of cylinder amplitudes with a
boundary on the E5a (both orientations)

= + +

A5a A5a;9a A5a;9b A5a;9c

I Both UV and IR divergent. The UV divergences (IR in the
closed string channel) cancel if tadpole cancellation
assumed. Regulate the IR with a scale µ



The mixed annuli

The amplitude A5a is a sum of cylinder amplitudes with a
boundary on the E5a (both orientations)

= + +

A5a A5a;9a A5a;9b A5a;9c

I There is a relation between these instantonic annuli and
the running gauge coupling constant Back

Abel and Goodsell, 2006; Akerblom et al, 2006

A5a = − 8π2k
g2

a(µ)|1−loop
.

I Indeed, in susy theories, mixed annuli compute the running
coupling by expanding around the instanton bkg Billo et al, 2007



Computing the YM effective action
using different backgrounds

There are two gauge backgrounds on which string theory is
computable and yields the effective action for the gauge fields

I Constant gauge field f (turned on a color D9-brane)
I At tree level, the YM action 1

g2
a

∫
d4x Tr 1

2 F 2
µν evaluates to

S(f ) =
Vol4 f 2

2 g2
a

f f

I At loop level, we have (∆ are threshold corrections)

S(f )|1−loop =

(
b1

16π2 logα′µ2 + ∆

)
Vol4 f 2

=
Vol4 f 2

2 g2
a(µ)|1−loop

f f



Computing the YM effective action
using different backgrounds

There are two gauge backgrounds on which string theory is
computable and yields the effective action for the gauge fields

I Instanton background (realized by k E5 branes)
I At tree level, the YM action evaluates to Back

Sinst =
8π2k

g2
a

I At loop level, we have the analogous relation:

Sinst|1−loop =
8π2k

g2
a(µ)|1−loop

= A5a

With susy, the 1-loop determinants of the non-zero-modes
cancel out: the only effect is the renormalization of the
gauge coupling constant.

Dadda et al, 1977; ...



Expression of the annuli
Outline of the computation

The explicit computation of the annuli confirms the relation of
these annuli to the running coupling. Imposing the appropriate
b.c.’s and GSO one starts from∫ ∞

0

dτ
2τ

[
TrNS

(
PGSO Porb. qL0

)
− TrR

(
PGSO Porb. qL0

)]
.

I For A5a;9a , KK copies of zero-modes on internal tori T (i)
2

give a (non-holomorphic) dependence on the Kähler and
complex moduli Lüst and Stieberger, 2003

.
I For A5a;9b and A′5a;9c

, the modes are twisted and the result

depends from the angles ν(i)
ba and ν(i)

ac Recall



Expression of the annuli
Explicit result

Back

A5a;9a = −8π2k
[ 3Na

16π2 log(α′µ2)

+
Na

16π2

∑
i

log
(

U(i)
2 T (i)

2 (η(U(i))4
)]

,

A5a;9b +A5a;9c = 8π2k
( NF

16π2 log(α′µ2)

+
NF

32π2 log (Γba Γac)
)
,



Expression of the annuli
Explicit result

Back

A5a;9a = −8π2k
[ 3Na

16π2 log(α′µ2)

+
Na

16π2

∑
i

log
(

U(i)
2 T (i)

2 (η(U(i))4
)]

,

A5a;9b +A5a;9c = 8π2k
( NF

16π2 log(α′µ2)

+
NF

32π2 log (Γba Γac)
)
,

I β-function coefficient of SQCD: 3Na − NF



Expression of the annuli
Explicit result

Back

A5a;9a = −8π2k
[ 3Na

16π2 log(α′µ2)

+
Na

16π2

∑
i

log
(

U(i)
2 T (i)

2 (η(U(i))4
)]

,

A5a;9b +A5a;9c = 8π2k
( NF

16π2 log(α′µ2)

+
NF

32π2 log (Γba Γac)
)
,

I Non-holomorphic threshold corrections



Expression of the annuli
Explicit result

Back

A5a;9a = −8π2k
[ 3Na

16π2 log(α′µ2)

+
Na

16π2

∑
i

log
(

U(i)
2 T (i)

2 (η(U(i))4
)]

,

A5a;9b +A5a;9c = 8π2k
( NF

16π2 log(α′µ2)

+
NF

32π2 log (Γba Γac)
)
,

I Γba =
Γ(1− ν(1)

ba )

Γ(ν
(1)
ba )

Γ(ν
(2)
ba )

Γ(1− ν(2)
ba )

Γ(ν
(3)
ba )

Γ(1− ν(3)
ba ) Lüst and Stieberger, 2003

Akerblom et al, 2007



Holomorphicity properties



The holomorphic gauge coupling

I Computing the pure instantonic disks and annuli yields the
gauge coupling up to 1 loop in the form Recall

A1−loop = − 8π2k
g2

a(µ)
= −8π2k

g2
a

+A5a

I The very general Kaplunovsky-Louis formula expresses
the one-loop gauge coupling in terms of the wilsonian
coupling 1/g̃2

a = s2 and of other tree-level quantities in the
effective action



Kaplunovsky-Louis relation
at one loop

Dixon et al, 1991; Kaplunovsky and Louis, 1994-95; ...

1
g2(µ)

=
1
g̃2 +

1
8π2

[b
2

log
µ2

M2
P
− f (1) − c

2
K + T (G) log

1
g̃2

−
∑

r

nr T (r) log Kr

]
I Here TA = generators of the gauge group, nr = # chiral

mult. in rep. r and

T (r) δAB = Trr
(
TATB

)
, T (G) = T (adj)

b = 3 T (G)−
∑

r

nr T (r) , c = T (G)−
∑

r

nr T (r) ,
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I Holomorphic function
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]
I Non-holomorphic corrections



Kaplunovsky-Louis relation
at one loop

Dixon et al, 1991; Kaplunovsky and Louis, 1994-95; ...

1
g2(µ)

=
1
g̃2 +

1
8π2

[b
2

log
µ2

M2
P
− f (1) − c

2
K + T (G) log

1
g̃2

−
∑

r

nr T (r) log Kr

]
I Inside the square bracket the bulk Kähler potential K and

the Kähler metrics for the matter multiplets Kr are at tree
level



Kaplunovsky-Louis relation
at one loop

Dixon et al, 1991; Kaplunovsky and Louis, 1994-95; ...

1
g2(µ)

=
1
g̃2 +

1
8π2

[b
2

log
µ2

M2
P
− f (1) − c

2
K + T (G) log

1
g̃2

−
∑

r

nr T (r) log Kr

]
I The only place where the shift δ Recall in the holomorphic

coupling matters is the tree-level term. Moreover only a
shift δ(0) of order 1 in gs is relevant at this level!



Instantonic annuli
in Kaplunovsky-Louis form

The result for the instantonic annuli Recall can be recast in the
following form:

A5a = −8π2k
g̃2

a
+ k

[
−3Na − NF

2
log

µ2

M2
P
− Na

3∑
i=1

log
(
η(u(i))2

)
+

Na − NF

2
K + Na log g2

a − δ(0) +
NF

2
log(ZbaZac)

]
with (similarly for Zac)

Zba =
(
4π s2

)− 1
4
(
t(1)
2 t(2)

2 t(3)
2

)− 1
4
(
u(1)

2 u(2)
2 u(3)

2

)− 1
2
(
Γba
) 1

2

I If δ(0) = 0, Zba coincides with the Kähler metric Kab of the
twisted matter



Instantonic annuli
in Kaplunovsky-Louis form

The result for the instantonic annuli Recall can be recast in the
following form:

A5a = −8π2k
g̃2

a
+ k

[
−3Na − NF

2
log

µ2

M2
P
− Na

3∑
i=1

log
(
η(u(i))2

)
+

Na − NF

2
K + Na log g2

a − δ(0) +
NF

2
log(ZbaZac)

]
I If there is some one-loop shift of s2 of order 1, i.e., δ(0) 6= 0,

then we have
Kab = χab Zba

with
δ(0) +

NF

2
logχabχbc = 0



The Kähler metric for twisted matter
Thus, up to possible factors χ due to one-loop shifts δ(0), the
Kähler metric of chiral multiplets Q arising from twisted
D9a/D9b strings is given by Back

KQ =
(
4π s2

)− 1
4
(
t(1)
2 t(2)

2 t(3)
2

)− 1
4
(
u(1)

2 u(2)
2 u(3)

2

)− 1
2
(
Γba
) 1

2

with

Γba =
Γ(1− ν(1)

ba )

Γ(ν
(1)
ba )

Γ(ν
(2)
ba )

Γ(1− ν(2)
ba )

Γ(ν
(3)
ba )

Γ(1− ν(3)
ba )

This is very interesting because:

I for twisted fields, the Kähler metric cannot be derived from
compactification of DBI



The Kähler metric for twisted matter
Thus, up to possible factors χ due to one-loop shifts δ(0), the
Kähler metric of chiral multiplets Q arising from twisted
D9a/D9b strings is given by Back

KQ =
(
4π s2

)− 1
4
(
t(1)
2 t(2)

2 t(3)
2

)− 1
4
(
u(1)

2 u(2)
2 u(3)

2

)− 1
2
(
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) 1

2

with

Γba =
Γ(1− ν(1)

ba )

Γ(ν
(1)
ba )

Γ(ν
(2)
ba )

Γ(1− ν(2)
ba )

Γ(ν
(3)
ba )

Γ(1− ν(3)
ba )

This is very interesting because:

I the part dependent on the twists, namely Γba, is
reproduced by a direct string computation

Lüst et al, 2004; Bertolini et al, 2005

I the prefactors, depending on the geometric moduli, are
more difficult to get directly: the present suggestion is
welcome!



The Kähler metric for twisted matter
Thus, up to possible factors χ due to one-loop shifts δ(0), the
Kähler metric of chiral multiplets Q arising from twisted
D9a/D9b strings is given by Back

with

Γba =
Γ(1− ν(1)

ba )

Γ(ν
(1)
ba )

Γ(ν
(2)
ba )

Γ(1− ν(2)
ba )

Γ(ν
(3)
ba )

Γ(1− ν(3)
ba )

This is very interesting because:

I We have checked this expression against the known
results for Yukawa couplings of magnetized branes: perfect
consistency! Cremades et al, 2004

N.B. This check also severely constrains the possible extra
pre-factors χba, ....



Back to the instanton calculus
Getting holomorphicity

I Beside being related to the gauge thresholds, the
instantonic annuli A5a are relevant because they enter the
stringy instanton calculus

I In particular, the form of the A5a annuli is crucial for the
holomorphicity properties of E5 non-perturbative
contributions

I We consider for definiteness the ADS/TVY case.



Back to the ADS/TVY superpotential
Making it holomorphic

We found ( recall that NF = Na − 1 in this case)

Wk=1(q, q̃) = Ck e
− 8π2

g2
a

k
eA
′
5a

1
det
(
q̃q
)

I Insert the expression of the annuli, from which we must
subtract the contrib. of the zero-modes running in the loop,
which are responsible for the IR divergences.

I Use the natural UV cut-off of the low-energy theory, the
Planck mass M2

P = 1
α′ e−φ10 s2 and write

A5a = −k
b1

2
log

µ2

M2
P

+A′5a



Back to the ADS/TVY superpotential
Making it holomorphic

Wk=1(q, q̃) = Ck e
− 8π2

g2
a

k
eA
′
5a

1
det
(
q̃q
)

I Make explicit the prefactor Ck Recall

I Allow for a possible shift in the gauge coupling:

1
g2

a
=

1
g̃2

a
+

δ

8π2



Back to the ADS/TVY superpotential
Making it holomorphic

In this way we obtain

Wk=1 = eK/2
3∏

i=1

(
η(u(i))−2Na

)
(
√
α′)−b1 e

− 8π2eg2
a

(
KQ̃KQ

)Na−1
2

1
det
(
q̃q
)

I Rescale the chiral multiplet to their sugra counterparts
assuming KQ̃, KQ are the matter Kähler metrics Recall

I Introduce the invariant scale in the Wilsonian scheme

Λb1
hol = (

√
α′)−b1 e

− 8π2eg2
a



Back to the ADS/TVY superpotential
Making it holomorphic

We get thus

Wk=1 = eK/2
3∏

i=1

(
η(u(i))−2Na

)
Λ2Na+1

hol

1

det(Q̃ Q)

≡ eK/2 Λ̂ 2Na+1
hol

1

det(Q̃Q)

I In the second step the moduli dependent factors of η(u(i))
are readsorbed by a holomorphic redefinition of the scale

I A part from the prefactor eK/2, the final expression is
holomorphic in the variables of the Wilsonian scheme



Back to the ADS/TVY superpotential
Making it holomorphic

We get thus

Wk=1 = eK/2
3∏

i=1

(
η(u(i))−2Na

)
Λ2Na+1

hol

1

det(Q̃ Q)

≡ eK/2 Λ̂ 2Na+1
hol

1

det(Q̃Q)

I The rôle of the annuli in these non-perturbative
considerations leads to equivalent information on the
Kähler metric of the twisted matter as the comparison with
the perturbative KL formula



Remarks and conclusions

I Also in N = 2 toroidal models the instanton-induced
superpotential is in fact holomorphic in the appropriate
sugra variables if one includes the mixed annuli in the
stringy instanton calculus Akerblom et al, 2007; Billo et al, 2007

I W.r.t. to the “color” D9a branes,
the E5a branes are ordinary
instantons. For the gauge
theories on the D9b or the D9c ,
they would be exotic (less clear
from the field theory viewpoint)

I The study of the mixed annuli and
their relation to holomorphicity
can be relevant for exotic, new
stringy effects as well.

5a

9c

µ′

9b

R0

R1
R1

µ̃′
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