# Instantons in (deformed) gauge theories from RNS open strings

Marco Billò<sup>1,2</sup>

<sup>1</sup>Dipartimento di Fisica Teorica Università di Torino

<sup>2</sup>Istituto Nazionale di Fisica Nucleare Sezione di Torino

S.I.S.S.A, Trieste - April 28, 2004





# This talk is mostly based on...

- M. Billo, M. Frau, I. Pesando, F. Fucito, A. Lerda and A. Liccardo, "Classical gauge instantons from open strings," JHEP **0302** (2003) 045 [arXiv:hep-th/0211250].
- $\blacksquare$  M. Billo, M. Frau, I. Pesando and A. Lerda, "N = 1/2 gauge theory and its instanton moduli space from open strings in R-R background," arXiv:hep-th/0402160.



#### Introduction

Instantons from perturbative strings

The set-up

The  $\mathcal{N}=1$  gauge theory from open strings

The ADHM moduli space of the  $\mathcal{N}=1$  theory

The instanton profile

Deformations of gauge theories from closed strings

The  $\mathcal{N}=1/2$  gauge theory

The deformed ADHM moduli space

The deformed instanton solution

Typeset with IATEX erspectives using the beamer class



#### Introduction

#### Instantons from perturbative strings

The set-up

The  $\mathcal{N}=1$  gauge theory from open strings

The ADHM moduli space of the  $\mathcal{N}=1$  theory

The instanton profile

#### Deformations of gauge theories from closed strings

The  $\mathcal{N}=1/2$  gauge theory

The deformed ADHM moduli space

The deformed instanton solution

Conclusions and perspectives
Typeset with LATEX
using the beamer class



#### Introduction

#### Instantons from perturbative strings

The set-up

The  $\mathcal{N}=1$  gauge theory from open strings

The ADHM moduli space of the  $\mathcal{N}=1$  theory

The instanton profile

#### Deformations of gauge theories from closed strings

The  $\mathcal{N}=1/2$  gauge theory

The deformed ADHM moduli space

The deformed instanton solution

Conclusions and perspectives Typeset with LATEX using the beamer class



#### Introduction

#### Instantons from perturbative strings

The set-up

The  $\mathcal{N}=1$  gauge theory from open strings

The ADHM moduli space of the  $\mathcal{N}=1$  theory

The instanton profile

#### Deformations of gauge theories from closed strings

The  $\mathcal{N}=1/2$  gauge theory

The deformed ADHM moduli space

The deformed instanton solution

# Conclusions and perspectives

using the beamer class



#### Introduction





# Field theory from strings

- String theory as a tool to study field theories.
- A single string scattering amplitude reproduces, for  $\alpha' \to 0$ , a sum of Feynman diagrams:



Moreover,

String theory S-matrix elements  $\Rightarrow$  Field theory eff. actions



# String amplitudes

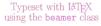
• A N-point string amplitude  $A_N$  is schematically given by

$$\mathcal{A}_N = \int_{\Sigma} \langle V_{\phi_1} \cdots V_{\phi_N} \rangle_{\Sigma}$$

•  $V_{\phi_i}$  is the vertex for the emission of the field  $\phi_i$ :

$$V_{\phi_i} \equiv \phi_i \, \mathcal{V}_{\phi_i}$$

- $\bullet$   $\Sigma$  is a Riemann surface of a given topology
- $\langle \ldots \rangle_{\Sigma}$  is the v.e.v. in C.F.T. on  $\Sigma$ .

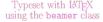




# Gauge theories and D-branes

 In the contemporary string perspective, we can in particular study gauge theories by considering the lightest d.o.f. of open strings suspended between D-branes in a well-suited limit

 $\alpha' \rightarrow 0$  with gauge quantities fixed.





# Many useful outcomes

- perturbative amplitudes (many gluons, ...) via string techniques;
- construction of "realistic" extensions of Standard model (D-brane worlds)
- AdS/CFT and its extensions to non-conformal cases;
- hints about non-perturbative aspects (Matrix models á la Dijkgraaf-Vafa, certain cases of gauge/gravity duality, ...);
- description of gauge instantons moduli space by means of D3/D(-1) systems.



# Non-perturbative aspects: instantons

We will focus mostly on the stringy description of instantons.

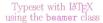
[Witten, 1995, Douglas, 1995, Dorey et al, 1999],  $\dots$ 

- Our goal is to show how the stringy description of instantons via D3/D(-1) systems is more than a convenient book-keeping for the description of instanton moduli space á la ADHM.
- The D(-1)'s represent indeed the sources responsible for the emission of the non-trivial gauge field profile in the instanton solution.



# Deformations by closed string backgrounds

- Open strings interact with closed strings. We can turn on a closed string background and still look at the massless open string d.o.f..
- In this way, deformations of the gauge theory are naturally suggested by their string realization. Such deformations are characterized by
  - new geometry in (super)space-time;
  - new mathematical structures
  - new types of interactions and couplings.

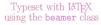






# Deformations by closed string backgrounds

- Open strings interact with closed strings. We can turn on a closed string background and still look at the massless open string d.o.f..
- In this way, deformations of the gauge theory are naturally suggested by their string realization. Such deformations are characterized by
  - new geometry in (super)space-time;
  - new mathematical structures;
  - new types of interactions and couplings.





## Non-(anti)commutative theories

- The most famous example is that of (gauge) field theories in the background of the  $B^{\mu\nu}$  field of the NS-NS sector of closed string. One gets non-commutative field theories, *i.e.* theories defined on a non commutative space-time
- Another case, recently attracting attention, is that of gauge (and matter) fields in the background of a "graviphoton" field strength  $C_{\mu\nu}$  from the Ramond-Ramond sector of closed strings. These turn out to be defined on a non-anticommutative superspace

[Ooguri-Vafa, 2003, de Boer et al, 2003, Seiberg, 2003], ...



#### **Instantons from perturbative strings**



## Usual string perturbation

- ullet The lowest-order world-sheets  $\Sigma$  in the string perturbative expansion are
  - spheres for closed strings, disks for open strings.
- Closed or open vertices have vanishing tadpoles on them:

$$\left\langle \left. \mathcal{V}_{\phi_{\mathrm{closed}}} \right. \right\rangle_{\mathrm{sphere}} = 0 \ , \qquad \left\langle \left. \mathcal{V}_{\phi_{\,\mathrm{open}}} \right. \right\rangle_{\mathrm{disk}} = 0 \ .$$

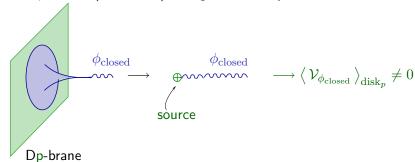
No tadpoles 

 these surfaces can describe only the trivial
 vacua around which ordinary perturbation theory is performed,
 but are inadequate to describe non-pertubative backgrounds!



### Closed string tadpoles and D-brane solutions

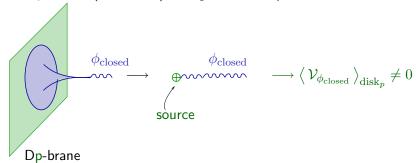
 The microscopic realization of supergravity p-brane solutions as Dp-branes (Polchinski) changes drastically the situation!



• (The F.T. of) this diagram gives directly the leading
Typeset with IATX
Using the beamer class ehaviour of the Dp-brane SUGRA solution

### Closed string tadpoles and D-brane solutions

• The microscopic realization of supergravity p-brane solutions as Dp-branes (Polchinski) changes drastically the situation!



 (The F.T. of) this diagram gives directly the leading long-distance behaviour of the Dp-brane SUGRA solution

## Open string tadpoles and instantons

- This approach can be be generalized to the non-perturbative sector of open strings, in particular to instantons of gauge theories.
- The world-sheets corresponding to istantonic backgrounds are mixed disks, with boundary partly on a D-instanton.



 In this case, this diagram should give the leading long-distance behaviour of the instanton solution.

using the beamer class

UNIVERSITÀ DEGLI STUDI DI

# Instantons & and their moduli (flashing review)

• Consider the k=1 instanton of SU(2) theory

$$A^c_{\mu}(x)=2\frac{\eta^c_{\mu\nu}(x-x_0)^\nu}{(x-x_0)^2+\rho^2}$$
 winding # 1 map 
$$S_3^\infty$$
 
$$S_3=\mathrm{SU}(2)$$

•  $\eta^c_{\mu\nu}$  are the self-dual 't Hooft symbols, and  $F_{\mu\nu}$  is self-dual

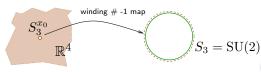


# Instantons:Singular gauge

• With a singular gauge transf.  $\rightarrow$  so-called singular gauge:  $(F_{\mu\nu} \text{ still self-dual despite the } \bar{\eta}^c_{\mu\nu})$ 

$$A_{\mu}^{c}(x) = 2\rho^{2} \bar{\eta}_{\mu\nu}^{c} \frac{(x-x_{0})^{\nu}}{(x-x_{0})^{2} \left[ (x-x_{0})^{2} + \rho^{2} \right]}$$

$$\simeq 2\rho^{2} \bar{\eta}_{\mu\nu}^{c} \frac{(x-x_{0})^{\nu}}{(x-x_{0})^{4}} \left( 1 - \frac{\rho^{2}}{(x-x_{0})^{2}} + \dots \right)$$



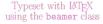


### Instantons: parameters

• Parameters (moduli) of k = 1 sol. in SU(2) theory:

| moduli       | meaning        | # |
|--------------|----------------|---|
| $-x_0^{\mu}$ | center         | 4 |
| ho           | size           | 1 |
| $ec{	heta}$  | orientation(*) | 3 |

(\*) from "large" gauge transf.s  $A \to U(\theta)AU^\dagger(\theta)$ 





### Instantons: parameters

ullet For an  $\mathrm{SU}(N)$  theory, embed the  $\mathrm{SU}(2)$  instanton in  $\mathrm{SU}(N)$ :

$$A_{\mu} = U \begin{pmatrix} \mathbf{0}_{N-2 \times N-2} & \mathbf{0} \\ \mathbf{0} & A_{\mu}^{\mathrm{SU}(2)} \end{pmatrix} U^{\dagger}$$

Thus, there are 4N-5 moduli parametrizing  $\frac{\mathrm{SU}(N)}{\mathrm{SU}(N-2)\times\mathrm{U}(1)}$   $\to$  total # of parameters: 4N.

• For instanton # k in SU(N): total # of moduli: 4Nk, described by ADHM construction: moduli space as a HiperKähler quotient.



## Instanton charge and D-instantons

 $\bullet$  The world-volume action of N Dp-branes with a U(N) gauge field  ${\pmb F}$  is

D. B. I. + 
$$\int_{D_p} \left[ C_{p+1} + \frac{1}{2} C_{p-3} \operatorname{Tr} (F \wedge F) + \ldots \right]$$

- A gauge instanton ( i.e.  $\operatorname{Tr}\left(F \wedge F\right) \neq 0$  )  $\leadsto$  a localized charge for the RR field  $C_{p-3} \sim$  a localized  $\operatorname{D}(p-3)$ -brane inside the  $\operatorname{D}p$ -branes.
- Instanton-charge k sol.s of 3+1 dims. SU(N) gauge theories k D-instantons inside N D3-branes

Typeset with IATEX

Marco Billò

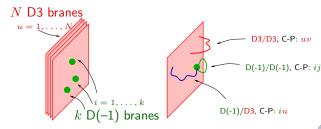
UNIVERSITÀ DEGLI STUDI DI TORINO

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ □ ♥ ♀ ○

[Witten, 1995, Douglas, 1995, Dorev et al. 1999]

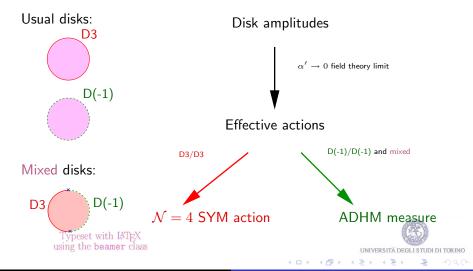
# Stringy description of gauge instantons

|       | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|-------|---|---|---|---|---|---|---|---|---|----|
| D3    | _ | _ | _ | _ | * | * | * | * | * | *  |
| D(-1) | * | * | * | * | * | * | * | * | * | *  |





### Disk amplitudes and effective actions



#### Plan

- We will now discuss a bit more in detail the stringy description of instantons, focusing on the case of pure SU(N),  $\mathcal{N} = 1$  SYM.
- Though for simplicity we well discuss mostly its "bosonic" part, this is the supersymmetric theory we will later deform to  $\mathcal{N}=1/2$ .



#### Plan

- We will now discuss a bit more in detail the stringy description of instantons, focusing on the case of pure SU(N),  $\mathcal{N} = 1$  SYM.
- Though for simplicity we well discuss mostly its "bosonic" part, this is the supersymmetric theory we will later deform to  $\mathcal{N}=1/2$ .



# The $\mathbb{C}^3/(\mathbb{Z}_2 \times \mathbb{Z}_2)$ orbifold

• Type IIB string theory on target space

$$\mathbb{R}^4 \times \frac{\mathbb{R}^6}{\mathbb{Z}_2 \times \mathbb{Z}_2}$$

Decompose 
$$x^M \to (x^{\mu}, x^a), (\mu = 1, ...4, a = 5, ..., 10).$$

- $\mathbb{Z}_2 \times \mathbb{Z}_2 \subset SO(6)$  is generated by  $\pi$  in the 7-8 and by  $-\pi$ 
  - $g_1$ : a rotation by  $\pi$  in the i-5 and by  $-\pi$  in the 9-10 plane; •  $g_1$ : a rotation by  $\pi$  in the 5-6 and by  $-\pi$  in the 9-10 plane.
- The origin is a fixed point ⇒ the orbifold is a singular, non-compact, Calabi-Yau space.



# The $\mathbb{C}^3/(\mathbb{Z}_2 \times \mathbb{Z}_2)$ orbifold

• Type IIB string theory on target space

$$\mathbb{R}^4 \times \frac{\mathbb{R}^6}{\mathbb{Z}_2 \times \mathbb{Z}_2}$$

Decompose  $x^M \to (x^{\mu}, x^a), (\mu = 1, ...4, a = 5, ..., 10).$ 

- $\mathbb{Z}_2 \times \mathbb{Z}_2 \subset SO(6)$  is generated by
  - $g_1$ : a rotation by  $\pi$  in the 7-8 and by  $-\pi$  in the 9-10 plane;
  - $g_1$ : a rotation by  $\pi$  in the 5-6 and by  $-\pi$  in the 9-10 plane.
- The origin is a fixed point ⇒ the orbifold is a singular, non-compact, Calabi-Yau space.



# The $\mathbb{C}^3/(\mathbb{Z}_2 \times \mathbb{Z}_2)$ orbifold

Type IIB string theory on target space

$$\mathbb{R}^4 \times \frac{\mathbb{R}^6}{\mathbb{Z}_2 \times \mathbb{Z}_2}$$

Decompose  $x^M \to (x^{\mu}, x^a), (\mu = 1, ...4, a = 5, ..., 10).$ 

- $\mathbb{Z}_2 \times \mathbb{Z}_2 \subset SO(6)$  is generated by
  - $g_1$ : a rotation by  $\pi$  in the 7-8 and by  $-\pi$  in the 9-10 plane;
  - $g_1$ : a rotation by  $\pi$  in the 5-6 and by  $-\pi$  in the 9-10 plane.
- The origin is a fixed point ⇒ the orbifold is a singular, non-compact, Calabi-Yau space.



# Residual supersymmetry

• Of the 8 spinor weights of SO(6),  $\vec{\lambda}=(\pm\frac{1}{2},\pm\frac{1}{2},\pm\frac{1}{2})$  , only

$$\vec{\lambda}^{(+)} = (+\frac{1}{2}, +\frac{1}{2}, +\frac{1}{2}) \ , \qquad \vec{\lambda}^{(-)} = (-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2})$$

are invariant ones w.r.t. the generators  $g_{1,2}$ . They are the orbifold realization of the 2(=8/4) Killing spinors of the CY.

- We remain with 8(=32/4) real susies in the bulk.
- Only two spin fields survive the orbifold projection:

$$S^{(\pm)} = e^{\pm \frac{i}{2}(\varphi_1 + \varphi_2 + \varphi_3)}$$

Typeset with LATE cosonize the SO(6) current algebra. using the beamer class



# Residual supersymmetry

• Of the 8 spinor weights of SO(6),  $\vec{\lambda}=(\pm\frac{1}{2},\pm\frac{1}{2},\pm\frac{1}{2})$  , only

$$\vec{\lambda}^{(+)} = (+\frac{1}{2}, +\frac{1}{2}, +\frac{1}{2}) \ , \qquad \vec{\lambda}^{(-)} = (-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2})$$

are invariant ones w.r.t. the generators  $g_{1,2}$ . They are the orbifold realization of the 2(=8/4) Killing spinors of the CY.

- We remain with 8(=32/4) real susies in the bulk.
- Only two spin fields survive the orbifold projection:

$$S^{(\pm)} = e^{\pm \frac{i}{2}(\varphi_1 + \varphi_2 + \varphi_3)}$$

Where with  $M_{\rm E}$  cosonize the SO(6) current algebra. using the beamer class



# Residual supersymmetry

• Of the 8 spinor weights of  $SO(6),\ \vec{\lambda}=(\pm\frac{1}{2},\pm\frac{1}{2},\pm\frac{1}{2})$  , only

$$\vec{\lambda}^{(+)} = (+\frac{1}{2}, +\frac{1}{2}, +\frac{1}{2}) \ , \qquad \vec{\lambda}^{(-)} = (-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2})$$

are invariant ones w.r.t. the generators  $g_{1,2}$ . They are the orbifold realization of the 2(=8/4) Killing spinors of the CY.

- We remain with 8(=32/4) real susies in the bulk.
- Only two spin fields survive the orbifold projection:

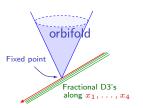
$$S^{(\pm)} = e^{\pm \frac{i}{2}(\varphi_1 + \varphi_2 + \varphi_3)}$$
,

where  $\varphi_{1,2,3}$  bosonize the SO(6) current algebra.

using the beamer class



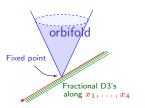
#### Fractional D3-branes



- Place N fractional D3 branes, localized at the orbifold fixed point. The branes preserve 4=8/2 real supercharges.
- The Chan-Patons of open strings attached to fractional branes transform in an irrep of  $\mathbb{Z}_2 \times \mathbb{Z}_2$ .
- The fractional branes must sit at the orbifold fixed point.



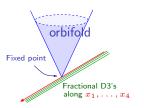
### Fractional D3-branes



- Place N fractional D3 branes, localized at the orbifold fixed point. The branes preserve 4=8/2 real supercharges.
- The Chan-Patons of open strings attached to fractional branes transform in an irrep of  $\mathbb{Z}_2 \times \mathbb{Z}_2$ .
- The fractional branes must sit at the orbifold fixed point.



### Fractional D3-branes



- Place N fractional D3 branes, localized at the orbifold fixed point. The branes preserve 4=8/2 real supercharges.
- The Chan-Patons of open strings attached to fractional branes transform in an irrep of  $\mathbb{Z}_2 \times \mathbb{Z}_2$ .
- The fractional branes must sit at the orbifold fixed point.



# Fractional D3 branes and pure $\mathcal{N}=1$ gauge theory

• Spectrum of massless open strings attached to N fractional D3's of a given type corresponds to  $\mathcal{N}=1$  pure  $\mathrm{U}(N)$  gauge theory. Schematically,

$$\text{NS:} \left\{ \begin{array}{ccc} \psi^{\mu} & \to & A_{\mu} \\ \psi^{a} & \text{no scalars!} \end{array} \right. \quad \text{R:} \left\{ \begin{array}{ccc} S^{\alpha}S^{(+)} & \to & \Lambda_{\alpha} \\ S^{\dot{\alpha}}S^{(-)} & \to & \Lambda_{\dot{\alpha}} \end{array} \right.$$

• The standard action is retrieved from disk amplitudes in the  $\alpha' \to 0$  limit:

$$S = \frac{1}{g_{\rm YM}^2} \int d^4x \, {\rm Tr} \Big( \frac{1}{2} F_{\mu\nu}^2 - 2 \bar{\Lambda}_{\dot{\alpha}} \bar{\mathcal{D}}^{\dot{\alpha}\beta} \Lambda_\beta \Big) \ . \label{eq:S}$$



# Fractional D3 branes and pure $\mathcal{N}=1$ gauge theory

• Spectrum of massless open strings attached to N fractional D3's of a given type corresponds to  $\mathcal{N}=1$  pure  $\mathrm{U}(N)$  gauge theory. Schematically,

$$\text{NS:} \left\{ \begin{array}{ccc} \psi^{\mu} & \to & A_{\mu} \\ \psi^{a} & \text{no scalars!} \end{array} \right. \quad \text{R:} \left\{ \begin{array}{ccc} S^{\alpha}S^{(+)} & \to & \Lambda_{\alpha} \\ S^{\dot{\alpha}}S^{(-)} & \to & \Lambda_{\dot{\alpha}} \end{array} \right.$$

• The standard action is retrieved from disk amplitudes in the  $\alpha' \to 0$  limit:

$$S = \frac{1}{g_{\rm YM}^2} \int d^4x \, {\rm Tr} \Big( \frac{1}{2} F_{\mu\nu}^2 - 2 \bar{\Lambda}_{\dot{\alpha}} \bar{D}^{\dot{\alpha}\beta} \Lambda_{\beta} \Big) \ .$$



# Auxiliary fields

• The action can be obtained from cubic diagram only introducing the (anti-selfdual) auxiliary field  $H_{\mu\nu} \equiv H_c \bar{\eta}^c_{\mu\nu}$ :

$$S' = \frac{1}{g_{YM}^2} \int d^4x \operatorname{Tr} \left\{ \left( \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \right) \partial^{\mu} A^{\nu} + 2i \partial_{\mu} A_{\nu} \left[ A^{\mu}, A^{\nu} \right] - 2\bar{\Lambda}_{\dot{\alpha}} \bar{D}^{\dot{\alpha}\beta} \Lambda_{\beta} + H_c H^c + H_c \bar{\eta}_{\mu\nu}^c \left[ A^{\mu}, A^{\nu} \right] \right\} ,$$

• Integrating out  $H_c$  gives  $H_{\mu\nu} \propto [A_\mu, A_
u]$  and the usual action



# Auxiliary fields

• The action can be obtained from cubic diagram only introducing the (anti-selfdual) auxiliary field  $H_{\mu\nu} \equiv H_c \bar{\eta}^c_{\mu\nu}$ :

$$S' = \frac{1}{g_{YM}^2} \int d^4x \operatorname{Tr} \left\{ \left( \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \right) \partial^{\mu} A^{\nu} + 2i \partial_{\mu} A_{\nu} \left[ A^{\mu}, A^{\nu} \right] - 2\bar{\Lambda}_{\dot{\alpha}} \bar{D}^{\dot{\alpha}\beta} \Lambda_{\beta} + H_c H^c + H_c \bar{\eta}_{\mu\nu}^c \left[ A^{\mu}, A^{\nu} \right] \right\} ,$$

• Integrating out  $H_c$  gives  $H_{\mu 
u} \propto [A_\mu, A_
u]$  and the usual action



## Auxiliary fields in the open string set-up

• The auxiliary field  $H_{\mu\nu}$  is associated to the (non-BRST invariant) vertex

$$V_H(y;p) = (2\pi\alpha') \frac{H_{\mu\nu}(p)}{2} \, \psi^{\nu} \psi^{\mu}(y) \, \mathrm{e}^{i\sqrt{2\pi\alpha'}p \cdot X(y)} \; .$$

We have then, for instance,



$$\frac{1}{2} \langle\!\langle V_H V_A V_A \rangle\!\rangle = -\frac{1}{g_{\rm YM}^2} \operatorname{Tr} \left( H_{\mu\nu}(p_1) A^{\mu}(p_2) A^{\nu}(p_3) + \text{ other ordering} \right)$$

🕁 last term in the previous action.



## Auxiliary fields in the open string set-up

• The auxiliary field  $H_{\mu\nu}$  is associated to the (non-BRST invariant) vertex

$$V_H(y;p) = (2\pi\alpha') \frac{H_{\mu\nu}(p)}{2} \psi^{\nu} \psi^{\mu}(y) e^{i\sqrt{2\pi\alpha'}p \cdot X(y)}$$
.

We have then, for insta



last term in the previous action.



## Auxiliary fields in the open string set-up

• The auxiliary field  $H_{\mu\nu}$  is associated to the (non-BRST invariant) vertex

$$V_H(y;p) = (2\pi\alpha') \frac{H_{\mu\nu}(p)}{2} \psi^{\nu} \psi^{\mu}(y) e^{i\sqrt{2\pi\alpha'}p \cdot X(y)}$$
.

We have then, for instance,

$$\frac{1}{2} \langle\!\langle \mathbf{\textit{V}}_{\mathbf{\textit{H}}} \, V_A \, V_A \, \rangle\!\rangle = -\frac{1}{g_{\mathrm{YM}}^2} \operatorname{Tr} \left( \frac{\mathbf{\textit{H}}_{\mu\nu}(p_1) A^{\mu}(p_2) A^{\nu}(p_3) \right)$$
 
$$+ \text{ other ordering}$$

→ last term in the previous action.

Typeset with LATEX using the beamer class

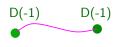


Marco Billò

# Moduli spectrum in the $\mathcal{N}=1$ case

### D(-1)/D(-1) strings

With k D(-1)'s, all vertices have Chan-Paton factors in the adjoint of U(k).



#### Neveu-Schwarz sector

The vertices surviving the orbifold projection are

$$V_a(y) = (2\pi\alpha')^{\frac{1}{2}} g_0 a_\mu \psi^\mu(y) e^{-\phi(y)}$$
.



# Moduli spectrum in the $\mathcal{N}=1$ case

### D(-1)/D(-1) strings

With k D(-1)'s, all vertices have Chan-Paton factors in the adjoint of  $\mathrm{U}(k)$ .



#### Neveu-Schwarz sector

The vertices surviving the orbifold projection are

$$V_a(y) = (2\pi\alpha')^{\frac{1}{2}} g_0 a_\mu \psi^\mu(y) e^{-\phi(y)}$$
.

• Here  $g_0$  is the coupling on the D(-1) theory:

$$C_0 = \frac{1}{2\pi^2 \alpha'^2} \frac{1}{g_0^2} = \frac{8\pi^2}{g_{YM}^2} .$$



# Moduli spectrum in the $\mathcal{N}=1$ case

### D(-1)/D(-1) strings

With k D(-1)'s, all vertices have Chan-Paton factors in the adjoint of U(k).



#### Neveu-Schwarz sector

The vertices surviving the orbifold projection are

$$V_a(y) = (2\pi\alpha')^{\frac{1}{2}} g_0 a_\mu \psi^\mu(y) e^{-\phi(y)}$$
.

•  $C_0$  = normaliz. of disks with (partly) D(-1) boundary. Since  $g_{YM}$  is fixed as  $\alpha' \to 0$ ,  $g_0$  blows up.



# Moduli spectrum in the $\mathcal{N}=1$ case

### D(-1)/D(-1) strings

With k D(-1)'s, all vertices have Chan-Paton factors in the adjoint of U(k).



#### Neveu-Schwarz sector

The vertices surviving the orbifold projection are

$$V_a(y) = (2\pi\alpha')^{\frac{1}{2}} g_0 a_\mu \psi^\mu(y) e^{-\phi(y)}$$
.

• The moduli  $a_{\mu}$  are rescaled with powers of  $g_0$  so that their interactions survive when  $\alpha' \to 0$  with  $g_{YM}^2$  fixed.



# Moduli spectrum in the $\mathcal{N}=1$ case

### D(-1)/D(-1) strings

With k D(-1)'s, all vertices have Chan-Paton factors in the adjoint of U(k).



#### Neveu-Schwarz sector

The vertices surviving the orbifold projection are

$$V_a(y) = (2\pi\alpha')^{\frac{1}{2}} g_0 a_\mu \psi^\mu(y) e^{-\phi(y)}$$
.

• The moduli  $a_{\mu}$  have dimension (length)  $\sim$  positions of the (multi)center of the instanton



# Moduli spectrum in the $\mathcal{N}=1$ case

### D(-1)/D(-1) strings

With k D(-1)'s, all vertices have Chan-Paton factors in the adjoint of  $\mathrm{U}(k)$ .



#### Neveu-Schwarz sector

The vertices surviving the orbifold projection are

$$V_a(y) = (2\pi\alpha')^{\frac{1}{2}} g_0 a_\mu \psi^\mu(y) e^{-\phi(y)}$$
.

Moreover, we have the auxiliary vertex decoupling the quartic interactions

$$V_D(y) = (2\pi\alpha') \frac{D_c \,\bar{\eta}_{\mu\nu}^c}{2} \,\psi^{\nu}\psi^{\mu}(y) ,$$



## Moduli spectrum in the $\mathcal{N}=1$ case

#### D(-1)/D(-1) strings

With k D(-1)'s, all vertices have Chan-Paton factors in the adjoint of U(k).



#### Ramond sector

The vertices surviving the orbifold projection are

$$V_M(y) = (2\pi\alpha')^{\frac{3}{4}} \frac{g_0}{\sqrt{2}} M'^{\alpha} S_{\alpha}(y) S^{(-)}(y) e^{-\frac{1}{2}\phi(y)}$$
$$V_{\lambda}(y) = (2\pi\alpha')^{\frac{3}{4}} \lambda_{\dot{\alpha}} S^{\dot{\alpha}}(y) S^{(+)}(y) e^{-\frac{1}{2}\phi(y)} .$$

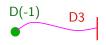
•  $M'^{\alpha}$  has dimensions of  $(\text{length})^{\frac{1}{2}}$ ,  $\lambda_{\dot{\alpha}}$  of  $(\text{length})^{-\frac{3}{2}}$ .



## Moduli spectrum in the $\mathcal{N}=1$ case

### D(-1)/D3 strings

All vertices have Chan-Patons in the bifundamental of  $U(k) \times U(N)$ .



#### Neveu-Schwarz sector

The vertices surviving the orbifold projection are

$$V_w(y) = (2\pi\alpha')^{\frac{1}{2}} \frac{g_0}{\sqrt{2}} w_{\dot{\alpha}} \Delta(y) S^{\dot{\alpha}}(y) e^{-\phi(y)} ,$$
  
$$V_{\bar{w}}(y) = (2\pi\alpha')^{\frac{1}{2}} \frac{g_0}{\sqrt{2}} \bar{w}_{\dot{\alpha}} \bar{\Delta}(y) S^{\dot{\alpha}}(y) e^{-\phi(y)} ,$$

• The (anti-)twist fields  $\Delta, \bar{\Delta}$  switch the b.c.'s on the  $X^{\mu}$  string fields. with IATDX

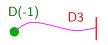
using the beamer class



## Moduli spectrum in the $\mathcal{N}=1$ case

### D(-1)/D3 strings

All vertices have Chan-Patons in the bifundamental of  $U(k) \times U(N)$ .



#### Neveu-Schwarz sector

The vertices surviving the orbifold projection are

$$V_w(y) = (2\pi\alpha')^{\frac{1}{2}} \frac{g_0}{\sqrt{2}} w_{\dot{\alpha}} \, \Delta(y) \, S^{\dot{\alpha}}(y) \, \mathrm{e}^{-\phi(y)} ,$$
  
$$V_{\bar{w}}(y) = (2\pi\alpha')^{\frac{1}{2}} \frac{g_0}{\sqrt{2}} \, \bar{w}_{\dot{\alpha}} \, \bar{\Delta}(y) \, S^{\dot{\alpha}}(y) \, \mathrm{e}^{-\phi(y)} ,$$

 w and w have dimensions of (length) and are related to the size of the instanton solution.

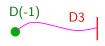
using the beamer class



# Moduli spectrum in the $\mathcal{N}=1$ case

### D(-1)/D3 strings

All vertices have Chan-Patons in the bifundamental of  $U(k) \times U(N)$ .



#### Ramond sector

The vertices surviving the orbifold projection are

$$V_{\mu}(y) = (2\pi\alpha')^{\frac{3}{4}} \frac{g_0}{\sqrt{2}} \,\mu \,\Delta(y) \,S^{(-)}(y) \,\mathrm{e}^{-\frac{1}{2}\phi(y)} ,$$

$$V_{\bar{\mu}}(y) = (2\pi\alpha')^{\frac{3}{4}} \frac{g_0}{\sqrt{2}} \,\bar{\mu} \,\bar{\Delta}(y) \,S^{(-)}(y) \,\mathrm{e}^{-\frac{1}{2}\phi(y)} .$$

ullet The fermionic moduli  $\mu,ar{\mu}$  have dimensions of  $(\operatorname{length})^{1/2}$ 



### The $\mathcal{N}=1$ moduli action

ullet (Mixed) disk diagrams with the above moduli, for lpha' 
ightarrow 0 yield

$$S_{\text{mod}} = \text{tr} \left\{ -i D_c \left( W^c + i \bar{\eta}_{\mu\nu}^c \left[ a'^{\mu}, a'^{\nu} \right] \right) \right.$$
$$\left. -i \lambda^{\dot{\alpha}} \left( w^u_{\dot{\alpha}} \bar{\mu}_u + \mu^u \bar{w}_{\dot{\alpha}u} + \left[ a'_{\alpha\dot{\alpha}}, M'^{\alpha} \right] \right) \right\}$$

where 
$$\left| \; \left( W^c \right)_j{}^i = w^{iu}_{\;\;\dot{\alpha}} \left( \tau^c \right)^{\dot{\alpha}}_{\;\;\dot{\beta}} \, \bar{w}^{\dot{\beta}}_{\;\;uj} \right.$$

ullet  $D_c$  and  $\lambda^{\dot{lpha}}\sim$  Lagrange multipliers for the (super)ADHM



### The $\mathcal{N}=1$ moduli action

using the beamer class

ullet (Mixed) disk diagrams with the above moduli, for lpha' 
ightarrow 0 yield

$$S_{\text{mod}} = \operatorname{tr} \left\{ -i D_c \left( W^c + i \bar{\eta}_{\mu\nu}^c \left[ a'^{\mu}, a'^{\nu} \right] \right) \right.$$
$$\left. -i \lambda^{\dot{\alpha}} \left( w^u_{\dot{\alpha}} \bar{\mu}_u + \mu^u \bar{w}_{\dot{\alpha}u} + \left[ a'_{\alpha\dot{\alpha}}, M'^{\alpha} \right] \right) \right\}$$

where 
$$\left| \; \left( W^c \right)_j{}^i = w^{iu}_{\;\;\dot{\alpha}} \left( \tau^c \right)^{\dot{\alpha}}_{\;\;\dot{\beta}} \, \bar{w}^{\dot{\beta}}_{\;\;uj} \right.$$

•  $D_c$  and  $\lambda^{\dot{\alpha}}\sim$  Lagrange multipliers for the (super)ADHM constraints

### The $\mathcal{N}=1$ ADHM constraints

• The ADHM constraints are three  $k \times k$  matrix eq.s

$$W^c + \mathrm{i}\bar{\eta}^c_{\mu\nu} \big[ a'^{\mu}, a'^{\nu} \big] = \mathbf{0} \ .$$

and their fermionic counterparts

$$w^{u}_{\dot{\alpha}}\bar{\mu}_{u} + \mu^{u}\bar{w}_{\dot{\alpha}u} + \left[a'_{\alpha\dot{\alpha}}, M'^{\alpha}\right] = \mathbf{0}$$
.

Once these constraints are satisfied, the moduli action vanishes.



### The $\mathcal{N}=1$ ADHM constraints

• The ADHM constraints are three  $k \times k$  matrix eq.s

$$W^c + \mathrm{i}\bar{\eta}^c_{\mu\nu} \big[ a'^{\mu}, a'^{\nu} \big] = \mathbf{0} \ .$$

and their fermionic counterparts

$$w^{u}_{\dot{\alpha}}\bar{\mu}_{u} + \mu^{u}\bar{w}_{\dot{\alpha}u} + \left[a'_{\alpha\dot{\alpha}}, M'^{\alpha}\right] = \mathbf{0}$$
.

 Once these constraints are satisfied, the moduli action vanishes.



# Parameter counting

• E.g., for the bosonic parameters

|                                      | #         |
|--------------------------------------|-----------|
| $a'^{\mu}$                           | $4k^2$    |
| $w_{\dot{lpha}}, ar{w}_{\dot{lpha}}$ | 4kN       |
| <b>ADHM</b> constraints              | $-3k^{2}$ |
| Global $\mathrm{U}(k)$ inv.          | $-k^2$    |
| True moduli                          | 4kN       |

After imposing the constraints, more or less

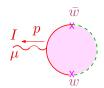
$$a'^{\mu} \longrightarrow \text{multi-center positions, ...}$$
  $w_{\dot{\alpha}}, \bar{w}_{\dot{\alpha}} \longrightarrow \text{size, orientation inside } \mathrm{SU}(N),...$ 



### The instanton solution from mixed disks

Mixed disks = sources for gauge theory fields.
 The amplitude for emitting a gauge field is

$$A^{I}_{\mu}(p) = \left\langle \left. \mathcal{V}_{A^{I}_{\mu}}(-p) \right. \right\rangle_{\text{m.d}} = \left\langle \left. \left\langle \left. V_{\bar{w}} \, \mathcal{V}_{A^{I}_{\mu}}(-p) \, V_{w} \, \right. \right\rangle \right.$$
$$= i \left( T^{I} \right)^{v}_{u} p^{\nu} \, \bar{\eta}^{c}_{\nu\mu} \left( w^{u}_{\dot{\alpha}} \left( \tau^{c} \right)^{\dot{\alpha}}_{\dot{\beta}} \, \bar{w}^{\dot{\beta}}_{v} \right) e^{-ip \cdot x_{0}} .$$

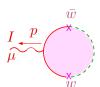




### The instanton solution from mixed disks

Mixed disks = sources for gauge theory fields.
 The amplitude for emitting a gauge field is

$$A^{I}_{\mu}(p) = \left\langle \mathcal{V}_{A^{I}_{\mu}}(-p) \right\rangle_{\text{m.d}} = \left\langle \left\langle V_{\bar{w}} \mathcal{V}_{A^{I}_{\mu}}(-p) V_{w} \right\rangle \right\rangle$$
$$= \mathrm{i} \left( T^{I} \right)^{v}_{u} p^{\nu} \bar{\eta}^{c}_{\nu\mu} \left( w^{u}_{\dot{\alpha}} \left( \tau^{c} \right)^{\dot{\alpha}}_{\dot{\beta}} \bar{w}^{\dot{\beta}}_{v} \right) e^{-\mathrm{i} p \cdot x_{0}}.$$



ullet  $\mathcal{V}_{A_n^I}(-p)$  : no polariz., outgoing p, 0-picture

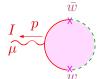
$$\mathcal{V}_{A_{\mu}^{I}}(z;-p) = 2iT^{I} (\partial X_{\mu} - ip \cdot \psi \psi_{\mu}) e^{-ip \cdot X}(z)$$



### The instanton solution from mixed disks

Mixed disks = sources for gauge theory fields.
 The amplitude for emitting a gauge field is

$$A^{I}_{\mu}(p) = \left\langle \left. \mathcal{V}_{A^{I}_{\mu}}(-p) \right. \right\rangle_{\text{m.d}} = \left\langle \left. \left\langle \left. V_{\bar{w}} \, \mathcal{V}_{A^{I}_{\mu}}(-p) \, V_{w} \, \right. \right\rangle \right.$$
$$= i \left( T^{I} \right)^{v}_{u} p^{\nu} \, \bar{\eta}^{c}_{\nu\mu} \left( w^{u}_{\dot{\alpha}} \left( \tau^{c} \right)^{\dot{\alpha}}_{\dot{\beta}} \, \bar{w}^{\dot{\beta}}_{v} \right) e^{-ip \cdot x_{0}} .$$



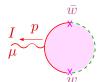
• N.B. From now on we set k=1, i.e. we consider instanton number 1.



### The instanton solution from mixed disks

Mixed disks = sources for gauge theory fields.
 The amplitude for emitting a gauge field is

$$A^{I}_{\mu}(p) = \left\langle \left. \mathcal{V}_{A^{I}_{\mu}}(-p) \right. \right\rangle_{\text{m.d}} = \left\langle \left. \left\langle \left. V_{\bar{w}} \, \mathcal{V}_{A^{I}_{\mu}}(-p) \, V_{w} \, \right. \right\rangle \right.$$
$$= i \left( T^{I} \right)^{v}_{u} p^{\nu} \, \bar{\eta}^{c}_{\nu\mu} \left( w^{u}_{\dot{\alpha}} \left( \tau^{c} \right)^{\dot{\alpha}}_{\dot{\beta}} \, \bar{w}^{\dot{\beta}}_{v} \right) e^{-ip \cdot x_{0}} .$$



 x<sub>0</sub> = pos. of the D(-1). Broken transl. invariance in the D3 world-volume → "tadpole"

$$\langle e^{-ip \cdot X} \rangle_{\text{m.d}} \propto e^{ip \cdot x_0}$$



# The classical profile

 The classical profile of the gauge field emitted by the mixed disk is obtained by attaching a free propagator and Fourier transforming:

$$A^{I}_{\mu}(x) = \int \frac{d^{4}p}{(2\pi)^{2}} A^{I}_{\mu}(p) \frac{1}{p^{2}} e^{ip \cdot x}$$

$$= 2 (T^{I})^{v}_{u} \left[ (T^{c})^{u}_{v} \right] \bar{\eta}^{c}_{\mu\nu} \frac{(x - x_{0})^{\nu}}{(x - x_{0})^{4}} ,$$

where  $(T^I)^v_{\ u}$  are the  $\mathrm{U}(N)$  generators and

$$(T^c)^u_{\ v} = w^u_{\dot{\alpha}} (\tau^c)^{\dot{\alpha}}_{\dot{\beta}} \bar{w}^{\dot{\beta}}_{\ v} .$$



## The classical instanton profile

• In the above solution we still have the unconstrained moduli  $\bar{w},w.$ 



## The classical instanton profile

- In the above solution we still have the unconstrained moduli  $\bar{w},w.$
- We must still impose the bosonic ADHM constraints

$$W^c \equiv w^u_{\dot{\alpha}}(\tau^c)^{\dot{\alpha}}_{\dot{\beta}} \bar{w}^{\dot{\beta}}_{\ v} = 0.$$



## The classical instanton profile

- In the above solution we still have the unconstrained moduli  $\bar{w},w.$
- Iff  $W^c = 0$ , the  $N \times N$  matrices

$$(t_c)^u_{\ v} \equiv \frac{1}{2\rho^2} \left( w_{\dot{\alpha}}^{\ u} (\tau_c)^{\dot{\alpha}}_{\ \dot{\beta}} \bar{w}^{\dot{\beta}}_{\ v} \right) ,$$

where

$$2\rho^2 = w^u_{\dot{\alpha}} \, \bar{w}^{\dot{\alpha}}_{\ u} \ ,$$

satisfy an su(2) subalgebra:  $[t_c, t_d] = i\epsilon_{cde} t_e$ .



## The classical instanton profile

• The gauge vector profile can be written as

$$A^{I}_{\mu}(x) = 4\rho^{2} \text{Tr} \left(T^{I} t_{c}\right) \bar{\eta}^{c}_{\mu\nu} \frac{(x - x_{0})^{\nu}}{(x - x_{0})^{4}}$$



## The classical instanton profile

• The gauge vector profile can be written as

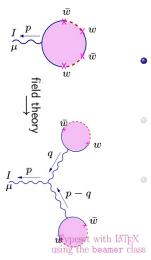
$$A^{I}_{\mu}(x) = 4\rho^{2} \text{Tr} \left(T^{I} t_{c}\right) \bar{\eta}^{c}_{\mu\nu} \frac{(x-x_{0})^{\nu}}{(x-x_{0})^{4}}$$

- This is a moduli-dependent (through  $t_c$ ) embedding in  $\mathrm{su}(N)$  of the  $\mathrm{su}(2)$  instanton connection in
  - large-distance leading approx.  $(|x-x_0| \gg \rho)$
  - singular gauge

▶ Recall the singular gauge



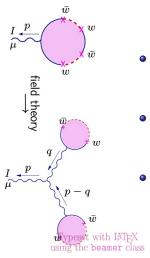
### Additional remarks



- The mixed disks emit also a gaugino  $\Lambda^{\alpha,I} \leadsto$  account for its leading profile in the super-instanton solution.
- Subleading terms in the long-distance expansion of the solution arise from emission diagrams with more moduli insertions.
- At the field theory level, they correspond to having more source terms.



### Additional remarks



- The mixed disks emit also a gaugino  $\Lambda^{\alpha,I} \leadsto$  account for its leading profile in the super-instanton solution.
- Subleading terms in the long-distance expansion of the solution arise from emission diagrams with more moduli insertions.
- At the field theory level, they correspond to having more source terms.



The set-up The  $\mathcal{N}=1$  gauge theory from open strings The ADHM moduli space of the  $\mathcal{N}=1$  theory The instanton profile

#### Additional remarks

**Question**: Why singular gauge?

- Instanton produced by a point-like source, the D(-1), inside the D3 → singular at the location of the source
- In the singular gauge, rapid fall-off of the fields → eq.s of motion reduce to free eq.s at large distance → "perturbative" solution in terms of the source term
- non-trivial properties of the instanton profile from the region near the singularity through the embedding

$$S_3^{x_0} \hookrightarrow \mathrm{SU}(2) \subset \mathrm{SU}(N)$$



The  $\mathcal{N}=1/2$  gauge theory The deformed ADHM moduli space The deformed instanton solution

#### Deformations of gauge theories from closed strings



#### $C_{\mu\nu}$ RR background: new geometry

- A class of "deformed" field theories, recently attracting attention, is that of gauge (and matter) fields in the background of a "graviphoton" field strength  $C_{\mu\nu}$  from the Ramond-Ramond sector of closed strings.
- These turn out to be defined on a non-anticommutative superspace, where the, say, anti-chiral fermionic coordinates satisfy

$$\left\{\theta^{\dot{\alpha}},\theta^{\dot{\beta}}\right\} \propto C^{\dot{\alpha}\dot{\beta}} \propto (\sigma^{\mu\nu})^{\dot{\alpha}\dot{\beta}} C_{\mu\nu}$$



#### $C_{\mu\nu}$ RR background: new geometry

- A class of "deformed" field theories, recently attracting attention, is that of gauge (and matter) fields in the background of a "graviphoton" field strength  $C_{\mu\nu}$  from the Ramond-Ramond sector of closed strings.
- These turn out to be defined on a non-anticommutative superspace, where the, say, anti-chiral fermionic coordinates satisfy

$$\left\{\theta^{\dot{\alpha}},\theta^{\dot{\beta}}\right\} \propto C^{\dot{\alpha}\dot{\beta}} \propto (\sigma^{\mu\nu})^{\dot{\alpha}\dot{\beta}} C_{\mu\nu}.$$



#### $C_{\mu\nu}$ RR background: new structure

 The superspace deformation can be rephrased as a modification of the product among functions, which now becomes

$$f(\theta) \star g(\theta) = f(\theta) \exp\left(-\frac{1}{2} \frac{\overleftarrow{\partial}}{\partial \theta^{\dot{\alpha}}} C^{\dot{\alpha}\dot{\beta}} \frac{\overrightarrow{\partial}}{\partial \theta^{\dot{\beta}}}\right) g(\theta) .$$

 There are also new interactions between the gauge and matter fields: see later in the talk.





#### Plan

• We shall analyze the deformation of  $\mathcal{N}=1$  pure gauge theory induced by a RR "graviphoton"  $C_{\mu\nu}$ , the so-called  $\mathcal{N}=1/2$  gauge theory.

[Seiberg, 2003], ...

- We shall discuss how to derive explicitly the  $\mathcal{N}=1/2$  theory from string diagrams (in the traditional RNS formulation).
- Moreover we will derive from string diagrams the instantonic solutions of this theory and their ADHM moduli space.



# The graviphoton background

• RR vertex in 10D, in the symmetric superghost picture:

$$\mathcal{F}_{\dot{A}\dot{B}}\,S^{\dot{A}}\mathrm{e}^{-\phi/2}(z)\,\tilde{S}^{\dot{B}}\mathrm{e}^{-\tilde{\phi}/2}(\bar{z})\ .$$

Bispinor  $\mathcal{F}_{\dot{A}\dot{B}} \leadsto$  1-, 3- and a.s.d. 5-form field strengths.

• On  $\mathbb{R}^4 imes \frac{\mathbb{R}^6}{\mathbb{Z}_2 imes \mathbb{Z}_2}$ , a surviving 4D bispinor vertex is

$$\mathcal{F}_{\dot{\alpha}\dot{\beta}} S^{\dot{\alpha}} S^{(+)} e^{-\phi/2}(z) \, \tilde{S}^{\dot{\beta}} \tilde{S}^{(+)} e^{-\tilde{\phi}/2}(\bar{z}) .$$

with  $\mathcal{F}_{\dot{\alpha}\dot{\beta}}=\mathcal{F}_{\dot{\beta}\dot{\alpha}}$ .

Decomposing the 5-form along the holom. 3-form of the CY
 → an a.s.d. 2-form in 4D

$$C_{\mu\nu} \propto \mathcal{F}_{\dot{\alpha}\dot{\beta}}(\bar{\sigma}^{\mu\nu})^{\dot{\alpha}\dot{\beta}}$$

Typeset with IATEX using the beamer class f.s. of  $\mathcal{N}=1/2$  theories.



# The graviphoton background

• RR vertex in 10D, in the symmetric superghost picture:

$$\mathcal{F}_{\dot{A}\dot{B}} S^{\dot{A}} e^{-\phi/2}(z) \tilde{S}^{\dot{B}} e^{-\tilde{\phi}/2}(\bar{z}) .$$

Bispinor  $\mathcal{F}_{\dot{A}\dot{B}} \leadsto$  1-, 3- and a.s.d. 5-form field strengths.

 $\bullet$  On  $\mathbb{R}^4 \times \frac{\mathbb{R}^6}{\mathbb{Z}_2 \times \mathbb{Z}_2}$  , a surviving 4D bispinor vertex is

$$\mathcal{F}_{\dot{\alpha}\dot{\beta}} S^{\dot{\alpha}} S^{(+)} \mathrm{e}^{-\phi/2}(z) \, \tilde{S}^{\dot{\beta}} \tilde{S}^{(+)} \mathrm{e}^{-\tilde{\phi}/2}(\bar{z}) \ .$$

with 
$$\mathcal{F}_{\dot{lpha}\dot{eta}}=\mathcal{F}_{\dot{eta}\dot{lpha}}$$
 .

Decomposing the 5-form along the holom. 3-form of the CY
 → an a.s.d. 2-form in 4D

$$C_{\mu\nu} \propto \mathcal{F}_{\dot{lpha}\dot{eta}}(ar{\sigma}^{\mu
u})^{\dot{lpha}\dot{eta}}$$

Typeset with LATEX using the beam-relass f.s. of  $\mathcal{N}=1/2$  theories.



#### The graviphoton background

• RR vertex in 10D, in the symmetric superghost picture:

$$\mathcal{F}_{\dot{A}\dot{B}}\,S^{\dot{A}}\mathrm{e}^{-\phi/2}(z)\,\tilde{S}^{\dot{B}}\mathrm{e}^{-\tilde{\phi}/2}(\bar{z})\ .$$

Bispinor  $\mathcal{F}_{\dot{A}\dot{B}} \leadsto$  1-, 3- and a.s.d. 5-form field strengths.

 $\bullet$  On  $\mathbb{R}^4 \times \frac{\mathbb{R}^6}{\mathbb{Z}_2 \times \mathbb{Z}_2}$ , a surviving 4D bispinor vertex is

$$\mathcal{F}_{\dot{\alpha}\dot{\beta}} S^{\dot{\alpha}} S^{(+)} e^{-\phi/2}(z) \tilde{S}^{\dot{\beta}} \tilde{S}^{(+)} e^{-\tilde{\phi}/2}(\bar{z}) .$$

with  $\mathcal{F}_{\dot{lpha}\dot{eta}}=\mathcal{F}_{\dot{eta}\dot{lpha}}$  .

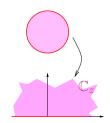
Decomposing the 5-form along the holom. 3-form of the CY
 → an a.s.d. 2-form in 4D

$$C_{\mu\nu} \propto \mathcal{F}_{\dot{\alpha}\dot{\beta}}(\bar{\sigma}^{\mu\nu})^{\dot{\alpha}\dot{\beta}} \ ,$$

Typeset with IATEX the graviphoton f.s. of  $\mathcal{N}=1/2$  theories.



# Inserting graviphotons in disk amplitudes



 Conformally mapping the disk to the upper half z-plane, the D3 boundary conditions on spin fields read

$$S^{\dot{\alpha}}S^{(+)}(z) = \tilde{S}^{\dot{\alpha}}\tilde{S}^{(+)}(\bar{z})\Big|_{z=\bar{z}}$$
.

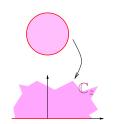
(opposite sign for  $\tilde{S}^{\alpha}\tilde{S}^{(-)}(\bar{z})$ ).

 When closed string vertices are inserted in a D3 disk,

$$\tilde{S}^{\dot{\alpha}}\tilde{S}^{(+)}(\bar{z}) \longrightarrow S^{\dot{\alpha}}S^{(+)}(\bar{z})$$
.



# Inserting graviphotons in disk amplitudes



 Conformally mapping the disk to the upper half z-plane, the D3 boundary conditions on spin fields read

$$S^{\dot{\alpha}}S^{(+)}(z) = \tilde{S}^{\dot{\alpha}}\tilde{S}^{(+)}(\bar{z})\Big|_{z=\bar{z}}$$
.

(opposite sign for  $\tilde{S}^{\alpha}\tilde{S}^{(-)}(\bar{z})$ ).

 When closed string vertices are inserted in a D3 disk,

$$\tilde{S}^{\dot{\alpha}}\tilde{S}^{(+)}(\bar{z}) \longrightarrow S^{\dot{\alpha}}S^{(+)}(\bar{z})$$
.



#### Start inserting a graviphoton vertex:

$$\langle\!\langle V_{\Lambda} V_{\Lambda} V_{\Lambda} V_{\mathcal{F}} \rangle\!\rangle$$

where



$$V_{\mathcal{F}}(z,\bar{z}) = \mathcal{F}_{\dot{\alpha}\dot{\beta}} S^{\dot{\alpha}} S^{(+)} e^{-\phi/2}(z) S^{\dot{\beta}} S^{(+)} e^{-\phi/2}(\bar{z}) .$$

ightharpoonup we need two  $S^{(-)}$  operators to "saturate the charge"



Start inserting a graviphoton vertex:

$$\langle\!\langle V_{\Lambda} V_{\Lambda} V_{A} V_{\mathcal{F}} \rangle\!\rangle$$

where



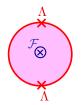
$$V_{\mathcal{F}}(z,\bar{z}) = \mathcal{F}_{\dot{\alpha}\dot{\beta}} S^{\dot{\alpha}} S^{(+)} e^{-\phi/2}(z) S^{\dot{\beta}} S^{(+)} e^{-\phi/2}(\bar{z}) .$$

 $\leadsto$  we need two  $S^{(-)}$  operators to "saturate the charge"



We insert therefore two chiral gauginos:

$$\langle\!\langle V_{\Lambda} V_{\Lambda} V_{A} V_{\mathcal{F}} \rangle\!\rangle$$



with vertices

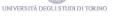
$$V_{\Lambda}(y;p) = (2\pi\alpha')^{\frac{3}{4}} \Lambda^{\alpha}(p) S_{\alpha} S^{(-)} e^{-\frac{1}{2}\phi(y)}$$
$$e^{i\sqrt{2\pi\alpha'}p \cdot X(y)}.$$

Without other insertions, however,

$$\langle S^{\dot{\alpha}} S^{\dot{\beta}} S_{\alpha} S_{\beta} \rangle \propto \epsilon^{\dot{\alpha}\dot{\beta}} \epsilon_{\alpha\beta}$$

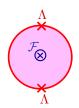
Typeset with LATEX vanishes when contracted with  $\mathcal{F}_{\dot{\alpha}\dot{\beta}}$ .





We insert therefore two chiral gauginos:

$$\langle\!\langle V_{\Lambda} V_{\Lambda} V_{A} V_{\mathcal{F}} \rangle\!\rangle$$



with vertices

$$V_{\Lambda}(y;p) = (2\pi\alpha')^{\frac{3}{4}} \Lambda^{\alpha}(p) S_{\alpha} S^{(-)} e^{-\frac{1}{2}\phi(y)}$$
$$e^{i\sqrt{2\pi\alpha'}p \cdot X(y)}.$$

Without other insertions, however,

$$\langle S^{\dot{\alpha}} S^{\dot{\beta}} S_{\alpha} S_{\beta} \rangle \propto \epsilon^{\dot{\alpha}\dot{\beta}} \epsilon_{\alpha\beta}$$

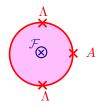
Typeset with IATEX vanishes when contracted with  $\mathcal{F}_{\dot{\alpha}\dot{\beta}}$ . using the beamer class





To cure this problem, insert a gauge field vertex:

$$\langle\!\langle V_{\Lambda} V_{\Lambda} V_{A} V_{\mathcal{F}} \rangle\!\rangle$$



that must be in the 0 picture:

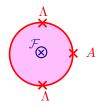
$$V_{A}(y;p) = 2i (2\pi\alpha')^{\frac{1}{2}} \frac{A_{\mu}(p)}{A_{\mu}(p)}$$
$$\left(\partial X^{\mu}(y) + i (2\pi\alpha')^{\frac{1}{2}} p \cdot \psi \psi^{\mu}(y)\right)$$
$$e^{i\sqrt{2\pi\alpha'}p \cdot X(y)}$$

→ finally, we may get a non-zero result!



To cure this problem, insert a gauge field vertex:

$$\langle\!\langle V_{\Lambda} V_{\Lambda} V_{A} V_{\mathcal{F}} \rangle\!\rangle$$



that must be in the 0 picture:

$$V_{A}(y;p) = 2i (2\pi\alpha')^{\frac{1}{2}} \frac{A_{\mu}(p)}{A_{\mu}(p)}$$

$$\left(\partial X^{\mu}(y) + i (2\pi\alpha')^{\frac{1}{2}} p \cdot \psi \psi^{\mu}(y)\right)$$

$$e^{i\sqrt{2\pi\alpha'}p \cdot X(y)}$$

→ finally, we may get a non-zero result!



# Evaluation of the amplitude

We have

$$\langle\!\langle V_{\Lambda} V_{\Lambda} V_{A} V_{\mathcal{F}} \rangle\!\rangle \equiv \frac{C_{4}}{\int} \frac{\prod_{i} dy_{i} dz d\bar{z}}{dV_{\text{CKG}}}$$
$$\langle V_{\Lambda}(y_{1}; p_{1}) V_{\Lambda}(y_{2}; p_{2}) V_{A}(y_{3}; p_{3}) V_{\mathcal{F}}(z, \bar{z}) \rangle$$

where the normalization for a D3 disk is

$$C_4 = \frac{1}{\pi^2 \alpha'^2} \frac{1}{g_{YM}^2}$$

and the  $SL(2,\mathbb{R})$ -invariant volume is

$$\frac{dV_{\rm CGK}}{dy_a\,dy_b\,dy_c} = \frac{dy_a\,dy_b\,dy_c}{(y_a-y_b)(y_b-y_c)(y_c-y_a)} \ .$$
 Typeset with LATEX

using the beamer class



using the beamer class

# Explicit expression of the amplitude

Altogether, the explicit expression is

Skip details

• The relevant correlators are:



- The relevant correlators are:
  - 1. Superghosts

$$\langle e^{-\frac{1}{2}\phi(y_1)} e^{-\frac{1}{2}\phi(y_2)} e^{-\frac{1}{2}\phi(z)} e^{-\frac{1}{2}\phi(\bar{z})} \rangle$$

$$= \left[ (y_1 - y_2) (y_1 - z) (y_1 - \bar{z}) (y_2 - z) (y_2 - \bar{z}) (z - \bar{z}) \right]^{-\frac{1}{4}} .$$



- The relevant correlators are:
  - 2. Internal spin fields

$$\langle S^{(-)}(y_1)S^{(-)}(y_2)S^{(+)}(z)S^{(+)}(\bar{z})\rangle$$

$$= (y_1 - y_2)^{\frac{3}{4}} (y_1 - z)^{-\frac{3}{4}} (y_1 - \bar{z})^{-\frac{3}{4}} (y_2 - z)^{-\frac{3}{4}} (y_2 - \bar{z})^{-\frac{3}{4}}$$

$$\times (z - \bar{z})^{\frac{3}{4}} .$$





- The relevant correlators are:
  - 3. 4D spin fields

$$\begin{split} \left\langle S_{\gamma}(y_1) S_{\delta}(y_2) : & \psi^{\mu} \psi^{\nu} : (y_3) \, S^{\dot{\alpha}}(z) S^{\dot{\beta}}(\bar{z}) \right\rangle \\ &= \frac{1}{2} \left( y_1 - y_2 \right)^{-\frac{1}{2}} (z - \bar{z})^{-\frac{1}{2}} \\ & \times \left( (\sigma^{\mu\nu})_{\gamma\delta} \, \varepsilon^{\dot{\alpha}\dot{\beta}} \, \frac{(y_1 - y_2)}{(y_1 - y_3)(y_2 - y_3)} \right. \\ & \left. + \varepsilon_{\gamma\delta} \, (\bar{\sigma}^{\mu\nu})^{\dot{\alpha}\dot{\beta}} \, \frac{(z - \bar{z})}{(y_3 - z)(y_3 - \bar{z})} \right) \; . \end{split}$$



- The relevant correlators are:
  - 4. Momentum factors

$$\left\langle \mathrm{e}^{\mathrm{i}\sqrt{2\pi\alpha'}p_1\cdot X(y_1)}\mathrm{e}^{\mathrm{i}\sqrt{2\pi\alpha'}p_2\cdot X(y_2)}\mathrm{e}^{\mathrm{i}\sqrt{2\pi\alpha'}p_3\cdot X(y_3)}\right\rangle \stackrel{\mathsf{on shell}}{\longrightarrow} 1$$
.



# Evaluation of the amplitude: $SL(2,\mathbb{R})$ fixing

• We may, for instance, choose

$$y_1 \to \infty$$
,  $z \to i$ ,  $\bar{z} \to -i$ .

The remaining integrations turn out to be

$$\int_{-\infty}^{+\infty} dy_2 \int_{-\infty}^{y_2} dy_3 \, \frac{1}{\left(y_2^2 + 1\right) \left(y_3^2 + 1\right)} = \frac{\pi^2}{2} \ .$$

Symmetry factor 1/2 and other ordering compensate each



# Evaluation of the amplitude: $SL(2,\mathbb{R})$ fixing

• We may, for instance, choose

$$y_1 \to \infty$$
,  $z \to i$ ,  $\bar{z} \to -i$ .

The remaining integrations turn out to be

$$\int_{-\infty}^{+\infty} dy_2 \int_{-\infty}^{y_2} dy_3 \, \frac{1}{\left(y_2^2 + 1\right)\left(y_3^2 + 1\right)} = \frac{\pi^2}{2} \ .$$

Symmetry factor 1/2 and other ordering compensate each other.



# Final result for the amplitude

• We finally obtain for  $\langle V_{\Lambda} V_{\Lambda} V_{A} V_{F} \rangle$  the result

$$\frac{8\pi^2}{g_{YM}^2} (2\pi\alpha')^{\frac{1}{2}} \operatorname{Tr}\left(\Lambda(p_1) \cdot \Lambda(p_2) p_3^{\nu} A^{\mu}(p_3)\right) \mathcal{F}_{\dot{\alpha}\dot{\beta}} (\bar{\sigma}_{\nu\mu})^{\dot{\alpha}\dot{\beta}} .$$

• This result is finite for  $\alpha' \to 0$  if we keep constant

$$C_{\mu\nu} \equiv 4\pi^2 \left(2\pi\alpha'\right)^{\frac{1}{2}} \mathcal{F}_{\dot{\alpha}\dot{\beta}} \left(\bar{\sigma}_{\mu\nu}\right)^{\dot{\alpha}\dot{\beta}}$$

- $C_{\mu\nu}$ , of dimension (length) will be exactly the one of  ${\cal N}=1/2$  theory.
- We get an extra term in the gauge theory action:

Typeset with The 
$$\int d^4x \, {\rm Tr} \left( \Lambda \cdot \Lambda \, \left( \partial^\mu A^\nu - \partial^\nu A^\mu \right) \right) C_{\mu\nu}$$
 . Using the beamer class

# Final result for the amplitude

• We finally obtain for  $\langle V_{\Lambda} V_{\Lambda} V_{A} V_{F} \rangle$  the result

$$\frac{8\pi^2}{g_{\rm YM}^2} \left(2\pi\alpha'\right)^{\frac{1}{2}} \operatorname{Tr}\left(\Lambda(p_1) \cdot \Lambda(p_2) \, p_3^{\nu} A^{\mu}(p_3)\right) \mathcal{F}_{\dot{\alpha}\dot{\beta}} \left(\bar{\sigma}_{\nu\mu}\right)^{\dot{\alpha}\dot{\beta}} \ .$$

• This result is finite for  $\alpha' \to 0$  if we keep constant

$$C_{\mu\nu} \equiv 4\pi^2 (2\pi\alpha')^{\frac{1}{2}} \mathcal{F}_{\dot{\alpha}\dot{\beta}} (\bar{\sigma}_{\mu\nu})^{\dot{\alpha}\dot{\beta}}$$

- $C_{\mu\nu}$ , of dimension (length) will be exactly the one of  $\mathcal{N}=1/2$  theory.
- We get an extra term in the gauge theory action:

Typeset with This class 
$$\frac{\mathrm{i}}{2\pi} \int d^4x \, \mathrm{Tr} \left( \Lambda \cdot \Lambda \, \left( \partial^\mu A^\nu - \partial^\nu A^\mu \right) \right) C_{\mu\nu} \; .$$



# Final result for the amplitude

• We finally obtain for  $\langle V_{\Lambda} V_{\Lambda} V_{A} V_{F} \rangle$  the result

$$\frac{8\pi^2}{g_{\rm YM}^2} (2\pi\alpha')^{\frac{1}{2}} \operatorname{Tr}\left(\Lambda(p_1) \cdot \Lambda(p_2) p_3^{\nu} A^{\mu}(p_3)\right) \mathcal{F}_{\dot{\alpha}\dot{\beta}} (\bar{\sigma}_{\nu\mu})^{\dot{\alpha}\dot{\beta}} .$$

• This result is finite for  $\alpha' \to 0$  if we keep constant

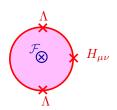
$$C_{\mu\nu} \equiv 4\pi^2 (2\pi\alpha')^{\frac{1}{2}} \mathcal{F}_{\dot{\alpha}\dot{\beta}} (\bar{\sigma}_{\mu\nu})^{\dot{\alpha}\dot{\beta}}$$

- $C_{\mu\nu}$ , of dimension (length) will be exactly the one of  ${\cal N}=1/2$  theory.
- We get an extra term in the gauge theory action:

$$\frac{\mathrm{i}}{\mathrm{Typeset\ with}} \int d^4x\ \mathrm{Tr}\left(\Lambda \!\cdot\! \Lambda\ \left(\partial^\mu A^\nu - \partial^\nu A^\mu\right)\right) C_{\mu\nu}\ .$$



Another possible diagram with a graviphoton insertion is



$$\langle \langle V_{\Lambda} V_{\Lambda} V_{H} V_{\mathcal{F}} \rangle \rangle$$
.



Another possible diagram with a graviphoton insertion is

$$\langle \langle V_{\Lambda} V_{\Lambda} V_{H} V_{\mathcal{F}} \rangle \rangle$$
.

Recall that the auxiliary field vertex in the 0 picture is

$$\begin{aligned} & V_{H}(y;p) = \\ & (2\pi\alpha') \frac{H_{\mu\nu}(p)}{2} \psi^{\nu} \psi^{\mu}(y) e^{i\sqrt{2\pi\alpha'}p \cdot X(y)} \end{aligned}$$



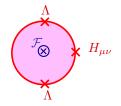
Another possible diagram with a graviphoton insertion is

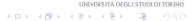
$$\langle \langle V_{\Lambda} V_{\Lambda} V_{H} V_{\mathcal{F}} \rangle \rangle$$
.

 The evaluation of this amplitude paralles exactly the previous one and contributes to the field theory action the term:

$$\frac{1}{2g_{\rm YM}^2} \int d^4x \, {\rm Tr} \left( {\bf \Lambda} \cdot {\bf \Lambda} \, {\bf H}^{\mu\nu} \right) C_{\mu\nu} \; ,$$

having introduced  $C_{\mu\nu}$  as above.



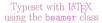


Another possible diagram with a graviphoton insertion is

$$\mathcal{F}_{\otimes}$$
 $H_{\mu\nu}$ 

$$\langle \langle V_{\Lambda} V_{\Lambda} V_{H} V_{\mathcal{F}} \rangle \rangle$$
.

- ullet All other amplitudes involving  ${\mathcal F}$  vertices either
  - vanish because of their tensor structure;
  - vanish in the  $\alpha' \to 0$  limit, with  $C_{\mu\nu}$  fixed.





# The deformed gauge theory action

 From disk diagrams with RR insertions we obtain, in the field theory limit

$$\alpha' \to 0$$
 with  $C_{\mu\nu} \equiv 4\pi^2 (2\pi\alpha')^{\frac{1}{2}} \mathcal{F}_{\dot{\alpha}\dot{\beta}} (\bar{\sigma}_{\mu\nu})^{\dot{\alpha}\dot{\beta}}$  fixed

the action

$$\tilde{S}' = \frac{1}{g_{YM}^2} \int d^4x \operatorname{Tr} \left\{ \left( \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \right) \partial^{\mu} A^{\nu} + 2i \, \partial_{\mu} A_{\nu} \left[ A^{\mu}, A^{\nu} \right] \right. \\
\left. - 2 \bar{\Lambda}_{\dot{\alpha}} \bar{\mathcal{D}}^{\dot{\alpha}\beta} \Lambda_{\beta} + i \left( \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} \right) \Lambda \cdot \Lambda \, C_{\mu\nu} \right. \\
\left. + \left. H_c H^c + H_c \, \bar{\eta}_{\mu\nu}^c \left( \left[ A^{\mu}, A^{\nu} \right] + \frac{1}{2} \, \Lambda \cdot \Lambda \, C^{\mu\nu} \right) \right\} .$$



#### The deformed gauge theory action

• Integrating on the auxiliary field  $H_c$ , we get

$$\begin{split} \tilde{S} &= \frac{1}{g_{\rm YM}^2} \int d^4x \ {\rm Tr} \Big\{ \frac{1}{2} F_{\mu\nu}^2 - 2\bar{\Lambda}_{\dot{\alpha}} \bar{\mathcal{D}}^{\dot{\alpha}\beta} \Lambda_{\beta} \\ &+ {\rm i} \, F^{\mu\nu} \, \Lambda \cdot \Lambda \, C_{\mu\nu} - \frac{1}{4} \left( \Lambda \cdot \Lambda \, C_{\mu\nu} \right)^2 \Big\} \\ &= \frac{1}{g_{\rm YM}^2} \int d^4x \ {\rm Tr} \, \Big\{ \quad \left( F_{\mu\nu}^{(-)} + \frac{{\rm i}}{2} \, \Lambda \cdot \Lambda \, C_{\mu\nu} \right)^2 \, + \frac{1}{2} F_{\mu\nu} \tilde{F}^{\mu\nu} \\ &- 2\bar{\Lambda}_{\dot{\alpha}} \bar{\mathcal{D}}^{\dot{\alpha}\beta} \Lambda_{\beta} \Big\} \;, \end{split}$$

i.e. exactly the action of Seiberg's  ${\cal N}=1/2$  gauge theory.

using the beamer class

## The deformed gauge theory action

• Integrating on the auxiliary field  $H_c$ , we get

$$\tilde{S} = \frac{1}{g_{\rm YM}^2} \int d^4x \, \text{Tr} \left\{ \frac{1}{2} F_{\mu\nu}^2 - 2\bar{\Lambda}_{\dot{\alpha}} \bar{\mathcal{D}}^{\dot{\alpha}\beta} \Lambda_{\beta} \right.$$

$$\left. + i F^{\mu\nu} \, \Lambda \cdot \Lambda \, C_{\mu\nu} - \frac{1}{4} \left( \Lambda \cdot \Lambda \, C_{\mu\nu} \right)^2 \right\}$$

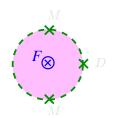
$$= \frac{1}{g_{\rm YM}^2} \int d^4x \, \text{Tr} \left\{ \left[ \left( F_{\mu\nu}^{(-)} + \frac{i}{2} \, \Lambda \cdot \Lambda \, C_{\mu\nu} \right)^2 \right] + \frac{1}{2} F_{\mu\nu} \tilde{F}^{\mu\nu} - 2\bar{\Lambda}_{\dot{\alpha}} \bar{\mathcal{D}}^{\dot{\alpha}\beta} \Lambda_{\beta} \right\}.$$

How its the instantonic sector affected? using the beamer class



# The graviphoton in D(-1) disks

- Inserting  $V_{\mathcal{F}}$  in a disk with all boundary on D(-1)'s is perfectely analogous to the D3 case (but we have non momenta).
  - The only possible diagram is



Typeset with IATEX using the beamer class

$$\langle\!\langle V_M V_M V_D V_{\mathcal{F}} \rangle\!\rangle$$

$$= \frac{\pi^2}{2} 2\pi \alpha')^{\frac{1}{2}} \operatorname{tr} \left( M' \cdot M' D_c \right) \bar{\eta}^c_{\mu\nu} \mathcal{F}_{\dot{\alpha}\dot{\beta}} \left( \bar{\sigma}_{\nu\mu} \right)^{\dot{\alpha}\dot{\beta}}$$

$$= -\frac{1}{2} \operatorname{tr} \left( M' \cdot M' D_c \right) C^c ,$$

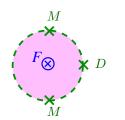
where

$$C^c = \frac{1}{4} \bar{\eta}^c_{\mu\nu} C^{\mu\nu}$$



# The graviphoton in D(-1) disks

- Inserting  $V_{\mathcal{F}}$  in a disk with all boundary on D(-1)'s is perfectly analogous to the D3 case (but we have non momenta).
  - The only possible diagram is



Typeset with IATEX using the beamer class

$$\langle\!\langle V_M V_M V_D V_{\mathcal{F}} \rangle\!\rangle$$

$$= \frac{\pi^2}{2} 2\pi \alpha')^{\frac{1}{2}} \operatorname{tr} \left( M' \cdot M' D_c \right) \bar{\eta}^c_{\mu\nu} \mathcal{F}_{\dot{\alpha}\dot{\beta}} \left( \bar{\sigma}_{\nu\mu} \right)^{\dot{\alpha}\dot{\beta}}$$

$$= -\frac{1}{2} \operatorname{tr} \left( M' \cdot M' D_c \right) C^c ,$$

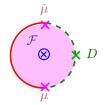
where

$$C^c = \frac{1}{4} \bar{\eta}^c_{\mu\nu} C^{\mu\nu} \ .$$



- We can also insert  $V_{\mathcal{F}}$  in a disk with mixed b.c.'s.
  - There is a possible diagram

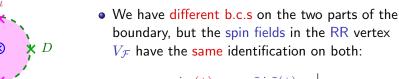
$$\langle \langle V_{\bar{\mu}} V_{\mu} V_D V_{\mathcal{F}} \rangle \rangle$$





- We can also insert  $V_{\mathcal{F}}$  in a disk with mixed b.c.'s.
  - There is a possible diagram

$$\langle \langle V_{\bar{\mu}} V_{\mu} V_D V_{\mathcal{F}} \rangle \rangle$$

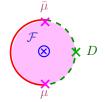


$$S^{\dot{\alpha}}S^{(+)}(z) = \tilde{S}^{\dot{\alpha}}\tilde{S}^{(+)}(\bar{z})\Big|_{z=\bar{z}}$$
.



- We can also insert  $V_{\mathcal{F}}$  in a disk with mixed b.c.'s.
  - There is a possible diagram

$$\langle \langle V_{\bar{\mu}} V_{\mu} V_D V_{\mathcal{F}} \rangle \rangle$$

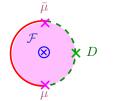


• This is because we chose D(-1)'s to represent instantons with self-dual f.s. and  $\mathcal{F}_{\mu\nu}$  to be antiself-dual.



- We can also insert  $V_{\mathcal{F}}$  in a disk with mixed b.c.'s.
  - There is a possible diagram

$$\langle \langle V_{\bar{\mu}} V_{\mu} V_D V_{\mathcal{F}} \rangle \rangle$$



• The  $\mu, \bar{\mu}$  vertices contain bosonic twist fields with correlator

$$\Delta(y_1) \, \bar{\Delta}(y_2) \sim (y_1 - y_2)^{-\frac{1}{2}} .$$



- We can also insert  $V_{\mathcal{F}}$  in a disk with mixed b.c.'s.
  - There is a possible diagram

$$\langle \langle V_{\bar{\mu}} V_{\mu} V_D V_{\mathcal{F}} \rangle \rangle$$

• Taking into account all correlators, the  $\mathrm{SL}(2,\mathbb{R})$  gauge fixing, the integrations and the normalizations, we find the result

$$-\frac{\pi^2}{2} (2\pi\alpha')^{\frac{1}{2}} \operatorname{tr}\left(\bar{\mu}_u \mu^u D_c\right) \bar{\eta}^c_{\mu\nu} \mathcal{F}_{\dot{\alpha}\dot{\beta}} \left(\bar{\sigma}^{\nu\mu}\right)^{\dot{\alpha}\dot{\beta}}$$
$$= \frac{1}{2} \operatorname{tr}\left(\bar{\mu}_u \mu^u D_c\right) C^c .$$

- No other disk diagrams contribute in our  $\alpha' \to 0$  limit.
- The two terms above are linear in the auxiliary field D<sub>c</sub>

   → deform the bosonic ADHM constraints to

$$W^{c} + i\bar{\eta}_{\mu\nu}^{c} \left[ a'^{\mu}, a'^{\nu} \right] + \left| \frac{i}{2} \left( M' \cdot M' + \mu^{u} \bar{\mu}_{u} \right) C^{c} \right| = \mathbf{0}$$

- This is the only effect of the chosen anti-self-dual. graviphoton bckg.
- Had we chosen a self-dual graviphoton, we would have no effect.



- No other disk diagrams contribute in our  $\alpha' \to 0$  limit.
- The two terms above are linear in the auxiliary field D<sub>c</sub>

   → deform the bosonic ADHM constraints to

$$W^c + i\bar{\eta}^c_{\mu\nu} \left[ a'^{\mu}, a'^{\nu} \right] + \left| \frac{i}{2} \left( M' \cdot M' + \mu^u \bar{\mu}_u \right) C^c \right| = \mathbf{0} .$$

- This is the only effect of the chosen anti-self-dual. graviphoton bckg.
- Had we chosen a self-dual graviphoton, we would have no effect.



- No other disk diagrams contribute in our  $\alpha' \to 0$  limit.
- The two terms above are linear in the auxiliary field D<sub>c</sub>

   → deform the bosonic ADHM constraints to

$$W^c + i\bar{\eta}^c_{\mu\nu} \left[ a'^{\mu}, a'^{\nu} \right] + \left| \frac{i}{2} \left( M' \cdot M' + \mu^u \bar{\mu}_u \right) C^c \right| = \mathbf{0} .$$

- This is the only effect of the chosen anti-self-dual. graviphoton bckg.
- Had we chosen a self-dual graviphoton, we would have no effect.



- No other disk diagrams contribute in our  $\alpha' \to 0$  limit.
- The two terms above are linear in the auxiliary field D<sub>c</sub>

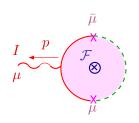
   → deform the bosonic ADHM constraints to

$$W^c + i\bar{\eta}^c_{\mu\nu} \left[ a'^{\mu}, a'^{\nu} \right] + \left| \frac{i}{2} \left( M' \cdot M' + \mu^u \bar{\mu}_u \right) C^c \right| = \mathbf{0} .$$

- This is the only effect of the chosen anti-self-dual. graviphoton bckg.
- Had we chosen a self-dual graviphoton, we would have no effect.



# The emitted gauge field in presence of $C_{\mu\nu}$



 In the graviphoton background, we have the extra emission diagram

$$\langle\!\langle V_{\bar{\mu}} V_{A_{\mu}^{I}}(-p) V_{\mu} V_{\mathcal{F}} \rangle\!\rangle$$

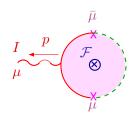
$$= 2\pi^{2} (2\pi\alpha')^{\frac{1}{2}} (T^{I})^{v}_{u} p^{\nu} (\bar{\sigma}_{\nu\mu})^{\dot{\alpha}\dot{\beta}} \mathcal{F}_{\dot{\alpha}\dot{\beta}} \mu^{u} \bar{\mu}_{v} e^{-ip \cdot x_{0}}$$

$$= \frac{1}{2} (T^{I})^{v}_{u} p^{\nu} \bar{\eta}^{c}_{\nu\mu} \mu^{u} \bar{\mu}_{v} C^{c} e^{-ip \cdot x_{0}} ,$$

 No other diagrams with only two moduli contribute to the emission of a gauge field



# The emitted gauge field in presence of $C_{\mu\nu}$



 In the graviphoton background, we have the extra emission diagram

$$\langle\!\langle V_{\bar{\mu}} V_{A_{\mu}^{I}}(-p) V_{\mu} V_{\mathcal{F}} \rangle\!\rangle$$

$$= 2\pi^{2} (2\pi\alpha')^{\frac{1}{2}} (T^{I})^{v}_{u} p^{\nu} (\bar{\sigma}_{\nu\mu})^{\dot{\alpha}\dot{\beta}} \mathcal{F}_{\dot{\alpha}\dot{\beta}} \mu^{u} \bar{\mu}_{v} e^{-ip \cdot x_{0}}$$

$$= \frac{1}{2} (T^{I})^{v}_{u} p^{\nu} \bar{\eta}^{c}_{\nu\mu} \mu^{u} \bar{\mu}_{v} C^{c} e^{-ip \cdot x_{0}} ,$$

 No other diagrams with only two moduli contribute to the emission of a gauge field.



 Taking into account also "undeformed" emission diagram discussed before, the emission amplitude is

$$A^{I}_{\mu}(p) = i (T^{I})^{v}_{u} p^{\nu} \bar{\eta}^{c}_{\nu\mu} \Big[ (T^{c})^{u}_{v} + (S^{c})^{u}_{v} \Big] e^{-ip \cdot x_{0}}$$

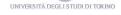
where  $(T^I)^v_{\ \ n}$  are the  $\mathrm{U}(N)$  generators and

$$(T^c)^u_{\ v} = w^u_{\ \dot{\alpha}} (\tau^c)^{\dot{\alpha}}_{\ \dot{\beta}} \, \bar{w}^{\dot{\beta}}_{\ v} \quad , \quad (S^c)^u_{\ v} = -\frac{1}{2} \, \mu^u \bar{\mu}_v \, C^c \ .$$
• From this we obtain the profile of the classical solution

$$A^{I}_{\mu}(x) = \int \frac{d^4p}{(2\pi)^2} A^{I}_{\mu}(p) \frac{1}{p^2} e^{ip \cdot x}$$

$$= 2 \left(T^I\right)^v_{\ u} \left[ \left(T^c\right)^u_{\ v} + \left(S^c\right)^u_{\ v} \right] \bar{\eta}^c_{\mu\nu} \frac{(x-x_0)^\nu}{(x-x_0)^4}$$
 Typeset with LATEX

using the beamer class



 Taking into account also "undeformed" emission diagram discussed before, the emission amplitude is

$$A^I_{\mu}(p) = \mathrm{i} \, (T^I)^v_{\ u} \, p^\nu \, \bar{\eta}^c_{\nu\mu} \Big[ (T^c)^u_{\ v} + (S^c)^u_{\ v} \Big] \, \mathrm{e}^{-\mathrm{i} p \cdot x_0} \quad , \label{eq:AII}$$

where  $(T^I)^v_{\ u}$  are the U(N) generators and

$$(T^c)^u_{\ v}=w^u_{\ \dot{\alpha}}\,(\tau^c)^{\dot{\alpha}}_{\ \dot{\beta}}\,\bar{w}^{\dot{\beta}}_{\ v}\quad,\quad (S^c)^u_{\ v}=-\frac{\mathrm{i}}{2}\,\mu^u\bar{\mu}_v\,C^c\ .$$
 • From this we obtain the profile of the classical solution

$$A^{I}_{\mu}(x) = \int \frac{d^4p}{(2\pi)^2} A^{I}_{\mu}(p) \frac{1}{p^2} e^{ip \cdot x}$$

$$= 2 \left(T^I\right)^v_u \left[ \left(T^c\right)^u_v + \left(S^c\right)^u_v \right] \bar{\eta}^c_{\mu\nu} \frac{(x-x_0)^\nu}{(x-x_0)^4} .$$
 Typeset with LATEX

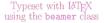
using the beamer class



- The above solution represents the leading term at long distance of the deformed instanton solution in the singular gauge.
- However, above appeared the unconstrained moduli  $\mu, \bar{\mu}, w, \bar{w}$ .

$$\frac{1}{2} \left( M^* \cdot M' + \mu^u \mu_u \right) C^u = 0$$

$$w^u_{\lambda}, \bar{\mu}_u + \mu^u \bar{w}_{\delta u} = 0$$





- The above solution represents the leading term at long distance of the deformed instanton solution in the singular gauge.
- However, above appeared the unconstrained moduli  $\mu, \bar{\mu}, w, \bar{w}$ .
  - We need to enforce the deformed ADHM contraints, for k = 1:

$$W^{c} + \left[ \frac{\mathrm{i}}{2} \left( M' \cdot M' + \mu^{u} \bar{\mu}_{u} \right) C^{c} \right] = \mathbf{0} ,$$

$$w^{u}_{\dot{\alpha}}, \bar{\mu}_{u} + \mu^{u} \bar{w}_{\dot{\alpha}u} = \mathbf{0} .$$



• Using the ADHM constraints, the solution can be written as

$$A^{I}_{\mu}(x) = 2\left(\mathcal{M}^{cb}\operatorname{Tr}(T^{I}t^{b}) + W^{c}\operatorname{Tr}(T^{I}t^{0}) + \operatorname{Tr}(T^{I}S^{c})\right) \times \bar{\eta}^{c}_{\mu\nu}\frac{(x-x_{0})^{\nu}}{(x-x_{0})^{4}}.$$



Using the ADHM constraints, the solution can be written as

$$A^{I}_{\mu}(x) = 2\left(\mathcal{M}^{cb}\operatorname{Tr}(T^{I}t^{b}) + W^{c}\operatorname{Tr}(T^{I}t^{0}) + \operatorname{Tr}(T^{I}S^{c})\right) \times \bar{\eta}^{c}_{\mu\nu}\frac{(x-x_{0})^{\nu}}{(x-x_{0})^{4}}.$$

On the bosonic ADHM constraints,

$$W^{c} = -\frac{\mathrm{i}}{2} \left( M' \cdot M' + \mu^{u} \bar{\mu}_{u} \right) C^{c} \equiv \hat{W}^{c}.$$

Without the RR deformation,  $W^c$  would vanish.



Using the ADHM constraints, the solution can be written as

$$A^{I}_{\mu}(x) = 2\left(\mathcal{M}^{cb}\operatorname{Tr}(T^{I}t^{b}) + W^{c}\operatorname{Tr}(T^{I}t^{0}) + \operatorname{Tr}(T^{I}S^{c})\right) \times \bar{\eta}^{c}_{\mu\nu}\frac{(x-x_{0})^{\nu}}{(x-x_{0})^{4}}.$$

• The matrix  $\mathcal{M}$  is  $\mathcal{M}^{ab}=W^0\sqrt{W_0^2-|\vec{W}|^2}\left(\mathcal{R}^{-\frac{1}{2}}\right)^{ab}$ , with  $\left(\mathcal{R}\right)^{ab}=W_0^2\,\delta^{ab}-W^aW^b$ , where

$$W^0 = w^u_{\ \dot{\alpha}} \, \bar{w}^{\dot{\alpha}}_{\ u} \ .$$

At  $C_{
m e}$  the latter  $\rho=2
ho^2$ , where  $\rho=$  size of the instanton and the contraction  $\rho=0$  the instanton  $\rho=0$ 

Using the ADHM constraints, the solution can be written as

$$A^{I}_{\mu}(x) = 2\left(\mathcal{M}^{cb}\operatorname{Tr}(T^{I}t^{b}) + W^{c}\operatorname{Tr}(T^{I}t^{0}) + \operatorname{Tr}(T^{I}S^{c})\right) \times \bar{\eta}^{c}_{\mu\nu}\frac{(x-x_{0})^{\nu}}{(x-x_{0})^{4}}.$$

- The  $N \times N$  matrices  $t^a$  and  $t^0$ , depending on the moduli  $w, \bar{w}$ , generate a  $\mathbf{u}(2)$  subalgebra  $\rightarrow$  the instanton field contains an abelian factor, beside  $\mathbf{su}(2)$ .
- Moreover, the matrix  $(S^c)^u_v = -\frac{\mathrm{i}}{2} \, \mu^u \bar{\mu}_v \, C^c$  commutes Typeset with IATEX using the beamer class other abelian factor.

Using the ADHM constraints, the solution can be written as

$$A^{I}_{\mu}(x) = 2\left(\mathcal{M}^{cb}\operatorname{Tr}(T^{I}t^{b}) + W^{c}\operatorname{Tr}(T^{I}t^{0}) + \operatorname{Tr}(T^{I}S^{c})\right) \times \bar{\eta}^{c}_{\mu\nu}\frac{(x-x_{0})^{\nu}}{(x-x_{0})^{4}}.$$

- The  $N \times N$  matrices  $t^a$  and  $t^0$ , depending on the moduli  $w, \bar{w}$ , generate a  $\mathbf{u}(2)$  subalgebra  $\rightarrow$  the instanton field contains an abelian factor, beside  $\mathbf{su}(2)$ .
- Moreover, the matrix  $(S^c)^u_{\ v} = -\frac{\mathrm{i}}{2}\,\mu^u\bar\mu_v\,C^c$  commutes with this 12 map another abelian factor.

## An explicit case of the solution

- We can write the above general expression choosing a particular solution to the ADHM constraints, to make contact with the literature [Grassi et al, 2003, Britto et al, 2003].
- Decomposing  $u=(\dot{\alpha},i)$  with  $\dot{\alpha}=1,2$  and  $i=3,\ldots,N$ , the bosonic ADHM constraints are solved by

$$\begin{cases} w^{\dot{\beta}}_{\dot{\alpha}} = \rho \, \delta^{\dot{\beta}}_{\dot{\alpha}} + \frac{1}{4\rho} \, \hat{W}_c \left(\tau^c\right)^{\dot{\beta}}_{\dot{\alpha}}, \\ w^i_{\dot{\alpha}} = 0. \end{cases}$$

ullet Having fixed  $w, \bar{w}$ , the fermionic constraints are solved by

$$\mu^{\dot{\alpha}} = \bar{\mu}_{\dot{\alpha}} = 0 \ .$$

Moreover, up to a U(N-2) rotation, we can choose a second using the beamer dass  $\neq 0$ .



## An explicit case of the solution

- We can write the above general expression choosing a particular solution to the ADHM constraints, to make contact with the literature [Grassi et al, 2003, Britto et al, 2003].
- Decomposing  $u=(\dot{\alpha},i)$  with  $\dot{\alpha}=1,2$  and  $i=3,\ldots,N$ , the bosonic ADHM constraints are solved by

$$\begin{cases} w^{\dot{\beta}}_{\dot{\alpha}} = \rho \, \delta^{\dot{\beta}}_{\dot{\alpha}} + \frac{1}{4\rho} \, \hat{W}_c \left(\tau^c\right)^{\dot{\beta}}_{\dot{\alpha}}, \\ w^i_{\dot{\alpha}} = 0. \end{cases}$$

ullet Having fixed  $w, \bar{w}$ , the fermionic constraints are solved by

$$\mu^{\dot{\alpha}} = \bar{\mu}_{\dot{\alpha}} = 0 \ .$$

Moreover, up to a  $\mathrm{U}(N-2)$  rotation, we can choose a single typeset with label being  $\neq 0$ .

## An explicit case of the solution

• The instanton gauge field  $(A_{\mu})^u_{\ v}$  reduces then to

$$(A_{\mu})^{\dot{\alpha}}_{\ \dot{\beta}} = \left\{ \rho^{2}(\tau_{c})^{\dot{\alpha}}_{\ \dot{\beta}} - \frac{\mathrm{i}}{4} \left( M' \cdot M' + \mu^{3} \bar{\mu}_{3} \right) C_{c} \, \delta^{\dot{\alpha}}_{\ \dot{\beta}} \right.$$

$$\left. + \frac{1}{32\rho^{2}} \left( |\vec{C}|^{2} (\tau_{c})^{\dot{\alpha}}_{\ \dot{\beta}} - 2C_{c}C^{b}(\tau_{b})^{\dot{\alpha}}_{\ \dot{\beta}} \right) M' \cdot M' \, \mu^{3} \bar{\mu}_{3} \right\} \bar{\eta}^{c}_{\mu\nu} \, \frac{(x - x_{0})^{\nu}}{(x - x_{0})^{4}}$$

and

$$(A_{\mu})^{3}_{3} = -\frac{\mathrm{i}}{2} \,\mu^{3} \bar{\mu}_{3} \,C_{c} \,\bar{\eta}^{c}_{\mu\nu} \,\frac{(x-x_{0})^{\nu}}{(x-x_{0})^{4}} .$$

This agrees with [Britto et al, 2003].



#### Additional remarks

- The gaugino emission is not modified at the leading order by the RR background.
- Subleading terms in the long-distance expansion of the solution arise from emission diagrams with more moduli insertions.
- At the field theory level, they correspond to having more source terms.
- This, is exactly the field-theoretical procedure utilized in [Grassi et al, 2003, Britto et al, 2003] to determine the (deformed) super-instanton profile,



#### **Conclusions and perspectives**





- The instantonic sectors of (supersymmetric) YM theories is really described by D3/D(-1) systems.
- Disks (partly) attached to the D(-1)'s account, in the  $\alpha' \to 0$  field theory limit for
  - the ADHM construction of instanton moduli space:
  - the classical profile of the instanton solution: the mixed disks are the source for it;
  - the "instanton calculus" of correlators.





- The instantonic sectors of (supersymmetric) YM theories is really described by D3/D(-1) systems.
- Disks (partly) attached to the D(-1)'s account, in the  $\alpha' \to 0$  field theory limit for
  - the ADHM construction of instanton moduli space;
  - the classical profile of the instanton solution: the mixed disks are the source for it;
  - the "instanton calculus" of correlators.





- The open string realization of gauge theories is a very powerful tool, also in discussing possible deformations (induced by closed string backgrounds).
- In particular, the deformation of  $\mathcal{N}=1$  gauge theory to  $\mathcal{N}=1/2$  gauge theory is exactly described in the open string set-up by the inclusion of a particular Ramond-Ramond background.
- The stringy description of gauge instantons and of their moduli space by means of D3/D(-1) systems extends to the deformed case



- The open string realization of gauge theories is a very powerful tool, also in discussing possible deformations (induced by closed string backgrounds).
- In particular, the deformation of  $\mathcal{N}=1$  gauge theory to  $\mathcal{N}=1/2$  gauge theory is exactly described in the open string set-up by the inclusion of a particular Ramond-Ramond background.
- The stringy description of gauge instantons and of their moduli space by means of D3/D(-1) systems extends to the deformed case.



- The open string realization of gauge theories is a very powerful tool, also in discussing possible deformations (induced by closed string backgrounds).
- In particular, the deformation of  $\mathcal{N}=1$  gauge theory to  $\mathcal{N}=1/2$  gauge theory is exactly described in the open string set-up by the inclusion of a particular Ramond-Ramond background.
- The stringy description of gauge instantons and of their moduli space by means of D3/D(-1) systems extends to the deformed case.



## Perspectives

- Deformations of  $\mathcal{N}=2$  theories:
  - deformations of  $\mathcal{N}=2$  superspace by RR backgrounds (work in progress);
  - stringy interpretation of the deformations leading to the localization á la Nekrasov of the integrals on instanton moduli space (under investigation, in collab. also with Tor Vergata).
- Derivation of the effects of constant Ramond-Ramond field strengths (gauge theory action, instantons, etc) using Berkovits' formalism instead of RNS (work in progress).
- Derivation of the instantonic sector of non-commutative gauge theory from the string realization with constant  $B_{\mu\nu}$  background.



#### Basic references about D-instantons

- J. Polchinski, Phys. Rev. D **50** (1994) 6041 [arXiv:hep-th/9407031].
- M. B. Green and M. Gutperle, Nucl. Phys. B **498** (1997) 195 [arXiv:hep-th/9701093].



#### Stringy realization of ADHM construction

- **E.** Witten, Nucl. Phys. B **460** (1996) 335 [arXiv:hep-th/9510135].
- M. R. Douglas, arXiv:hep-th/9512077.
- N. Dorey, T. J. Hollowood, V. V. Khoze, M. P. Mattis and S. Vandoren, Nucl. Phys. B 552 (1999) 88
   [arXiv:hep-th/9901128] + ...



#### D-brane and gauge theory solutions from string theory

- P. Di Vecchia, M. Frau, I. Pesando, S. Sciuto, A. Lerda and R. Russo, Nucl. Phys. B 507 (1997) 259 [arXiv:hep-th/9707068].
- P. Di Vecchia, M. Frau, A. Lerda and A. Liccardo, Nucl. Phys. B 565 (2000) 397 [arXiv:hep-th/9906214] + ...





#### C-deformations

- H. Ooguri and C. Vafa, Adv. Theor. Math. Phys. **7** (2003) 53 [arXiv:hep-th/0302109]; Adv. Theor. Math. Phys. **7** (2004) 405 [arXiv:hep-th/0303063].
- J. de Boer, P. A. Grassi and P. van Nieuwenhuizen, Phys. Lett. B **574** (2003) 98 [arXiv:hep-th/0302078].
- N. Seiberg, JHEP 0306 (2003) 010 [arXiv:hep-th/0305248];
   N. Berkovits and N. Seiberg, JHEP 0307 (2003) 010 [arXiv:hep-th/0306226].
- D. Klemm, S. Penati and L. Tamassia, Class. Quant. Grav. 20 (2003), 2905T[arXiv:hep-th/0104190].

  using the beamer class

#### Instantons in C-deformed theories

- P. A. Grassi, R. Ricci and D. Robles-Llana, [arXiv:hep-th/0311155].
- R. Britto, B. Feng, O. Lunin and S. J. Rey, [arXiv:hep-th/0311275].

