Bosonic string theory for LGT observables

Marco Billò
D.F.T., Univ. Torino
Turin, November 15, 2005

Foreword

－This talk is based on
圊 M．Billó and M．Caselle，＂Polyakov loop correlators from D0－brane interactions in bosonic string JHEP 0507 （2005） 038 ［arXiv：hep－th／0505201］．
also outlined in the LATTICE 2005 talk of M．Caselle：
圊 M．Billo，M．Caselle，M．Hasenbusch and M．Panero，＂QCD string from D0 branes，＂PoS（LAT2005） 309 ［arXiv：hep－lat／0511008］．
－and on a paper in preparation：
围 M．Billó，L．Ferro and M．Caselle，＂The partition function for the effective string theory of interfaces＂，to appear（soon！）．

Plan of the talk

1 The main ideas

2 Polyakov loop correlators

3 Interface partition function

Plan of the talk

1 The main ideas
2. Polyakov loop correlators

3 Interface partition function

Plan of the talk

1 The main ideas

2 Polyakov loop correlators

3 Interface partition function

The main ideas

String theory and (lattice) gauge theories

- A description of strongly coupled gauge theories in terms of strings has long been suspected
- These strings should describe the fluctuations of the color flux tube in the confining regime
- Potential $V(R)$ between two external, massive quark and anti-quark sources from Wilson loops

$$
\langle W(L, R)\rangle \sim \mathrm{e}^{-L V(R)} \quad(\text { large } R)
$$

■ Area law \leftrightarrow linear potential

$$
V(R)=\sigma R+\ldots
$$

σ is the string tension

Quantum corrections and effective models

- Leading correction for large R

$$
V(R)=\sigma R-\frac{\pi}{24} \frac{d-2}{R}+O\left(\frac{1}{R^{2}}\right) .
$$

from quantum fluctuations of $d-2$ massless modes: transverse fluctuations of the string

Lüscher, Symanzik and Weisz
■ Simplest effective description via the $c=d-2$ two-dimensional conformal field theory of free bosons

- Higher order interactions among these fields distinguish the various effective theories
- The underlying string model should determine a specific form of the effective theory, and an expression of the potential $V(R)$ that extends to finite values of R.

Various models of effective strings

■ "Free" theory: the $d-2$ bosonic fields living on the surface spanned by the string, describing its transverse fluctuations
■ Standard bosonic string theory. Nambu-Goto action \propto area of the world-sheet surface

- Possible first-order formulation á la Polyakov (we'll use this)
- In $d \neq 26$, bosonic string is ill-defined (conformal invariance broken by quantum effects). This is manifest at short distances in the description of LGT observables.
- Attempts to a consistent string theory description:

Polchinski-Strominger, Polyakov, AdS/CFT

The Nambu-Goto approach

■ Action \sim area of the surface spanned by the string in its motion:

$$
S=-\sigma \int d \sigma_{0} d \sigma_{1} \sqrt{\operatorname{det} g_{\alpha \beta}}
$$

where $g_{\alpha \beta}$ is the metric "induced" on the w.s. by the embedding:

$$
g_{\alpha \beta}=\frac{\partial X^{M}}{\partial \sigma_{\alpha}} \frac{\partial X^{N}}{\partial \sigma_{\beta}} G_{M N}
$$

$\sigma_{\alpha}=$ world-sheet coords. ($\sigma_{0}=$ proper time, $\sigma=1$ spans the extension of the string)

The nambu-Goto approach (cont.ed)

■ One can use the world-sheet re-parametrization invariance of the NG action to choose a "physical gauge":

- The w.s. coordinates σ^{0}, σ^{1} are identified with two target space coordinates x^{0}, x^{1}
■ One can study the 2d QFT for the $d-2$ transverse bosonic fields with the gauge-fixed NG action

$$
\begin{aligned}
Z & =\int D X^{i} \mathrm{e}^{-\sigma \int d x^{0} d x^{1} \sqrt{1+\left(\partial_{0} \vec{X}\right)^{2}+\left(\partial_{1} \vec{X}\right)^{2}+\left(\partial_{0} \vec{X} \wedge \partial_{1} \vec{X}\right)^{2}}} \\
& =\int D X^{i} \mathrm{e}^{-\sigma \int d x^{0} d x^{1}\left\{1+\left(\partial_{0} \vec{X}\right)^{2}+\left(\partial_{1} \vec{X}\right)^{2}+\text { int.s }\right\}}
\end{aligned}
$$

perturbatively, the loop expansion parameter being $1 /(\sigma A)_{\text {[e.g, }}$
Dietz-Filk, 1982]

The first order approach

- The NG goto action can be given a 1st order formulation (no awkward square roots)

$$
S=-\sigma \int d \sigma_{0} d \sigma_{1} \sqrt{h} h^{\alpha \beta} \partial_{\alpha} X^{M} \partial_{\beta} X^{M}
$$

with $h_{\alpha \beta}=$ independent w.s metric
■ Use re-parametrization and Weyl invariance to set $h_{\alpha \beta} \rightarrow \eta_{\alpha \beta}$

- Actually, Weyl invariance is broken by quantum effects in $d \neq 26$

■ Remain with a free action but

- Virasoro constraints $T_{\alpha \beta}=0$ from $h^{\alpha \beta}$ e.o.m.
- residual conformal invariance

Physical gauge vs. covariant quantization

■ The residual conformal invariance can be used to fix a light-cone (physical) type of gauge: w.s. coordinates identified with two target space ones (non-covariant choice)

- One explicitly solves the Virasoro constraints and remains with the $d-2$ transverse directions as the only independent d.o.f.
- The quantum anomaly for $d \neq 26$ manifests as a failure in Lorentz algebra
- In a covariant quantization, the Virasoro constraints are imposed on physical states á la BRST
- All d directions are treated on the same footing
- Introduction of ghosts
- For $d \neq 26$, anomaly in the conformal algebra
- This is the framework we will use

Physical gauge vs. covariant quantization

■ The residual conformal invariance can be used to fix a light-cone (physical) type of gauge: w.s. coordinates identified with two target space ones (non-covariant choice)

- One explicitly solves the Virasoro constraints and remains with the $d-2$ transverse directions as the only independent d.o.f.
- The quantum anomaly for $d \neq 26$ manifests as a failure in Lorentz algebra
■ In a covariant quantization, the Virasoro constraints are imposed on physical states á la BRST
- All d directions are treated on the same footing
- Introduction of ghosts
- For $d \neq 26$, anomaly in the conformal algebra
- This is the framework we will use

Polyakov loop correlators

The set-up

■ Finite temperature geometry + static external sources (quarks)
■ Polyakov loop = trace of the temporal Wilson line

$$
\langle P(\vec{R})\rangle=\mathrm{e}^{-F} \neq 0 \rightarrow \text { de-confinement }
$$

■ On the lattice, the correlator

$$
\langle P(\overrightarrow{0}) P(\vec{R})\rangle_{c} .
$$

can be measured with great accuracy.
■ In the string picture, the correlation is due
 to the strings connecting the two external sources: cylindric world-sheet

Nambu-Goto description of the correlator (1)

■ P.L. correlator = partition function of an open string with

- Nambu-Goto action
- Dirichlet boundary conditions (end-points attached to the Polyakov loops)
■ Operatorial formulation:
- Spectrum obtained via formal quantization by Arvis:

$$
E_{n}(R)=\sigma R \sqrt{1+\frac{2 \pi}{\sigma R^{2}}\left(n-\frac{d-2}{24}\right)} .
$$

- Partition function: Back

$$
Z=\sum_{n} w_{n} e^{-L E_{n}(R)}
$$

$w_{n}=$ multiplicities of the bosonic string: $\eta(q)=\sum_{n} w_{n} q^{n-\frac{1}{24}}$

Nambu-Goto description of the correlator (1)

■ P.L. correlator = partition function of an open string with

- Nambu-Goto action
- Dirichlet boundary conditions (end-points attached to the Polyakov loops)
■ Operatorial formulation:
- Expansion of the energy levels:

$$
E_{n}=\sigma R+\frac{\pi}{R}\left(n-\frac{d-2}{24}\right)+\ldots
$$

- Expansion of the partition function

$$
Z=\mathrm{e}^{-\sigma L R} \sum_{n} w_{n} \mathrm{e}^{-\pi \frac{L}{R}\left(n-\frac{d-2}{24}\right)+\ldots}=\mathrm{e}^{-\sigma L R} \eta\left(\mathrm{i} \frac{L}{2 R}\right)(1+\ldots)
$$

Nambu-Goto description of the correlator (2)

■ Functional integral result (Dietz and Filk):

- Loop expansion. Expansion parameter 1/($\sigma L R)$
- Two-loop result [set $\hat{\tau}=\mathrm{i} / /(2 R), d=3$]:

$$
Z=\mathrm{e}^{-\sigma L R} \frac{1}{\eta(\hat{\tau})}\left(1-\frac{\pi^{2} L}{1152 \sigma R^{3}}\left[2 E_{4}(\hat{\tau})-E_{2}^{2}(\hat{\tau})\right]+\ldots\right)
$$

■ This is reproduced by the partition function of the operatorial formulation, upon expanding the energy levels E_{n}

First order formulation

- Action (in conformal gauge)

$$
S=\frac{1}{4 \pi \alpha^{\prime}} \int d \sigma_{0} \int_{0}^{\pi} d \sigma_{1}\left[\left(\partial_{\tau} X^{M}\right)^{2}+\left(\partial_{\sigma} X^{M}\right)^{2}\right]+S_{\mathrm{gh} .}
$$

■ World-sheet parametrized by

First order formulation

- Action (in conformal gauge)

$$
S=\frac{1}{4 \pi \alpha^{\prime}} \int d \sigma_{0} \int_{0}^{\pi} d \sigma_{1}\left[\left(\partial_{\tau} X^{M}\right)^{2}+\left(\partial_{\sigma} X^{M}\right)^{2}\right]+S_{\mathrm{gh} .}
$$

■ World-sheet parametrized by

First order formulation

- Action (in conformal gauge)

$$
S=\frac{1}{4 \pi \alpha^{\prime}} \int d \sigma_{0} \int_{0}^{\pi} d \sigma_{1}\left[\left(\partial_{\tau} X^{M}\right)^{2}+\left(\partial_{\sigma} X^{M}\right)^{2}\right]+S_{\mathrm{gh} .}
$$

■ World-sheet parametrized by

First order formulation

- Action (in conformal gauge)

$$
S=\frac{1}{4 \pi \alpha^{\prime}} \int d \sigma_{0} \int_{0}^{\pi} d \sigma_{1}\left[\left(\partial_{\tau} X^{M}\right)^{2}+\left(\partial_{\sigma} X^{M}\right)^{2}\right]+S_{\mathrm{gh} .}
$$

■ The field $X^{M}(M=0, \ldots, d-1)$ describe the embedding of the world-sheet in the target space

First order formulation

- Action (in conformal gauge)

$$
S=\frac{1}{4 \pi \alpha^{\prime}} \int d \sigma_{0} \int_{0}^{\pi} d \sigma_{1}\left[\left(\partial_{\tau} X^{M}\right)^{2}+\left(\partial_{\sigma} X^{M}\right)^{2}\right]+S_{\mathrm{gh} .}
$$

■ Boundary conditions:

- Neumann in "time" direction:

$$
\left.\partial_{\sigma} X^{0}(\tau, \sigma)\right|_{\sigma=0, \pi}=0
$$

- Dirichlet in spatial directions:

$$
\vec{X}(\tau, 0)=0, \quad \vec{X}(\tau, \pi)=\vec{R}
$$

"open string suspended between two D0-branes"

First order formulation

- Action (in conformal gauge)

$$
S=\frac{1}{4 \pi \alpha^{\prime}} \int d \sigma_{0} \int_{0}^{\pi} d \sigma_{1}\left[\left(\partial_{\tau} X^{M}\right)^{2}+\left(\partial_{\sigma} X^{M}\right)^{2}\right]+S_{\mathrm{gh}} .
$$

■ The string fields have thus the expansion

$$
\left[\alpha_{m}^{M}, \alpha_{n}^{N}\right]=m \delta_{m+n, 0} \delta^{M N}
$$

First order formulation

- Action (in conformal gauge)

$$
S=\frac{1}{4 \pi \alpha^{\prime}} \int d \sigma_{0} \int_{0}^{\pi} d \sigma_{1}\left[\left(\partial_{\tau} X^{M}\right)^{2}+\left(\partial_{\sigma} X^{M}\right)^{2}\right]+S_{\mathrm{gh}} .
$$

■ The target space has finite temperature:

$$
x^{0} \sim x^{0}+L
$$

- The 0-th component of the momentum is therefore discrete:

$$
p^{0} \rightarrow \frac{2 \pi n}{L}
$$

The free energy

■ Interaction between the two Polyakov loops (the D0-branes) \leftrightarrow free energy of the open string

$$
\mathcal{F}=L \int_{0}^{\infty} \frac{d t}{2 t} \operatorname{Tr} q^{L_{0}}
$$

■ $q=\mathrm{e}^{-2 \pi t}$, and t is the only parameter of the world-sheet cylinder (one loop of the open string)

The free energy

■ Interaction between the two Polyakov loops (the D0-branes) \leftrightarrow free energy of the open string

$$
\mathcal{F}=L \int_{0}^{\infty} \frac{d t}{2 t} \operatorname{Tr} q^{L_{0}}
$$

■ L is the "world-volume" of the D0-brane, i.e. the volume of the only direction along which the excitations propagate, the Euclidean time

The free energy

■ Interaction between the two Polyakov loops (the D0-branes) \leftrightarrow free energy of the open string

$$
\mathcal{F}=L \int_{0}^{\infty} \frac{d t}{2 t} \operatorname{Tr} q^{L_{0}}
$$

■ Virasoro generator L_{0} (Hamiltonian)

$$
L_{0}=\frac{\left(\hat{p}^{0}\right)^{2}}{2 \pi \sigma}+\frac{\sigma R^{2}}{2 \pi}+\sum_{n=1}^{\infty} N_{n}^{(d-2)}-\frac{d-2}{24}
$$

- $N_{n}^{(d-2)}$ is the total occupation number for the oscillators appearing in $d-2$ bosonic fields (the -2 is due to the ghosts)

The free energy

■ Interaction between the two Polyakov loops (the D0-branes) \leftrightarrow free energy of the open string

$$
\mathcal{F}=L \int_{0}^{\infty} \frac{d t}{2 t} \operatorname{Tr} q^{L_{0}}
$$

■ The trace over the oscillators yields, for each bosonic direction,

$$
q^{-\frac{1}{24}} \prod_{r=1}^{\infty} \frac{1}{1-q^{r}}=\frac{1}{\eta(\mathrm{i} t)}
$$

The free energy

■ Interaction between the two Polyakov loops (the D0-branes) \leftrightarrow free energy of the open string

$$
\mathcal{F}=L \int_{0}^{\infty} \frac{d t}{2 t} \operatorname{Tr} q^{L_{0}}
$$

■ We must trace also over the discrete zero-mode eigenvalues $p^{0}=2 \pi n / L$. Altogether,

$$
\mathcal{F}=\int_{0}^{\infty} \frac{d t}{2 t} \sum_{n=-\infty}^{\infty} \mathrm{e}^{-2 \pi t\left(\frac{2 \pi n^{2}}{\sigma L^{2}}+\frac{\sigma R^{2}}{2 \pi}\right)}\left(\frac{1}{\eta(\mathrm{i} t)}\right)^{d-2}
$$

Topological sectors

- Poisson resum over the integer n getting

$$
\mathcal{F}=\mathcal{F}^{(0)}+2 \sum_{m=1}^{\infty} \mathcal{F}^{(m)}
$$

with Back

$$
\mathcal{F}^{(m)}=\sqrt{\frac{\sigma L^{2}}{4 \pi}} \int_{0}^{\infty} \frac{d t}{2 t^{\frac{3}{2}}} \mathrm{e}^{-\frac{\sigma L^{2} m^{2}}{4 t}-\sigma R^{2} t}\left(\frac{1}{\eta(\mathrm{i} t)}\right)^{d-2}
$$

■ The integer m is the \# of times the open string wraps the compact time in its one loop evolution.
■ Each topological sector $\mathcal{F}^{(m)}$ describes the fluctuations around an "open world-wheet instanton"

$$
X^{0}\left(\sigma_{0}+t, \sigma_{1}\right)=X^{0}\left(\sigma_{0}, \sigma_{1}\right)+m L
$$

Topological sectors

- Poisson resum over the integer n getting

$$
\mathcal{F}=\mathcal{F}^{(0)}+2 \sum_{m=1}^{\infty} \mathcal{F}^{(m)}
$$

with Back

$$
\mathcal{F}^{(m)}=\sqrt{\frac{\sigma L^{2}}{4 \pi}} \int_{0}^{\infty} \frac{d t}{2 t^{\frac{3}{2}}} \mathrm{e}^{-\frac{\sigma L^{2} m^{2}}{4 t}-\sigma R^{2} t}\left(\frac{1}{\eta(\mathrm{i} t)}\right)^{d-2}
$$

■ An example with $m=0$ (N.B. The classical solution degenerates to a line)

Topological sectors

- Poisson resum over the integer n getting

$$
\mathcal{F}=\mathcal{F}^{(0)}+2 \sum_{m=1}^{\infty} \mathcal{F}^{(m)}
$$

with Back

$$
\mathcal{F}^{(m)}=\sqrt{\frac{\sigma L^{2}}{4 \pi}} \int_{0}^{\infty} \frac{d t}{2 t^{\frac{3}{2}}} \mathrm{e}^{-\frac{\sigma L^{2} m^{2}}{4 t}-\sigma R^{2} t}\left(\frac{1}{\eta(\mathrm{i} t)}\right)^{d-2}
$$

$■$ The case $m=1$. The world-sheet exactly maps to the cylinder connecting the two Polyakov loops.

The case $m=1$ and the NG result

■ The sector with $m=1$ of our free energy should correspond to the effective NG partition function

■ Expand in series the Dedekind functions:

$$
\left(\prod_{r=1}^{\infty} \frac{1}{1-q^{r}}\right)^{d-2}=\sum_{k=0}^{\infty} w_{k} q^{k}
$$

■ Plug this into $\mathcal{F}^{(m)}$ Recall and integrate over t using

$$
\int_{0}^{\infty} \frac{d t}{t^{\frac{3}{2}}} \mathrm{e}^{-\frac{\alpha^{2}}{t}-\beta^{2} t}=\frac{\sqrt{\pi}}{|\alpha|} \mathrm{e}^{-2|\alpha||\beta|}
$$

The case $m=1$ and the NG result

- The sector with $m=1$ of our free energy should correspond to the effective NG partition function

■ The result is

$$
\mathcal{F}^{(m)}=\frac{1}{2|m|} \sum_{k} w_{k} \mathrm{e}^{-|m| L E_{k}(R)}, \quad(m \neq 0)
$$

with

$$
E_{k}(R)=\frac{R}{4 \pi \alpha^{\prime}} \sqrt{1+\frac{4 \pi^{2} \alpha^{\prime}}{R^{2}}\left(k-\frac{d-2}{24}\right)}
$$

■ So, in particular,

$$
2 \mathcal{F}^{(1)}=Z(R)
$$

Transformation to the closed channel

- The modular transformation $t \rightarrow 1 / t$ maps the open string channel 1-loop free energy to a closed string channel tree level exchange between boundary states

- The result of the transformation is

$$
\mathcal{F}^{(m)}=L \frac{T_{0}^{2}}{4} \sum_{k} w_{k} G(R ; M(m, k))
$$

Transformation to the closed channel

- The modular transformation $t \rightarrow 1 / t$ maps the open string channel 1-loop free energy to a closed string channel tree level exchange between boundary states

- The result of the transformation is

$$
\mathcal{F}^{(m)}=L \frac{T_{0}^{2}}{4} \sum_{k} w_{k} G(R ; M(m, k))
$$

■ $G(R ; M)=$ propagator of a scalar field of mass M^{2} over the distance \vec{R} between the two D0-branes along the $d-1$ spatial directions:

$$
G(R ; M)=\int \frac{d^{d-1} p}{(2 \pi)^{d-1}} \frac{\mathrm{e}^{\mathrm{i} \vec{p} \cdot \vec{R}}}{p^{2}+M^{2}}=\frac{1}{2 \pi}\left(\frac{M}{2 \pi R}\right)^{\frac{d-3}{2}} K_{\frac{d-3}{2}}(M R)
$$

Transformation to the closed channel

- The modular transformation $t \rightarrow 1 / t$ maps the open string channel 1-loop free energy to a closed string channel tree level exchange between boundary states

■ The result of the transformation is

$$
\mathcal{F}^{(m)}=L \frac{T_{0}^{2}}{4} \sum_{k} w_{k} G(R ; M(m, k))
$$

■ The mass $M(m, k)$ is that of a closed string state with k representing the total oscillator number, and m the wrapping number of the string around the compact time direction

$$
M^{2}(m, k)=(m \sigma L)^{2}\left[1+\frac{8 \pi}{\sigma L^{2} m^{2}}\left(k-\frac{d-2}{24}\right)\right]
$$

Transformation to the closed channel

- The modular transformation $t \rightarrow 1 / t$ maps the open string channel 1-loop free energy to a closed string channel tree level exchange between boundary states

- The result of the transformation is

$$
\mathcal{F}^{(m)}=L \frac{T_{0}^{2}}{4} \sum_{k} w_{k} G(R ; M(m, k))
$$

■ $T_{0}=$ usual D0-brane tension in bosonic string theory:

$$
T_{0}^{2}=8 \pi\left(\frac{\pi}{\sigma}\right)^{\frac{d}{2}-2}
$$

Closed string interpretation

- Our first-order formulation is well-suited to give the direct closed string channel description of the correlator:

$$
\mathcal{F}=\langle B ; \overrightarrow{0}| \mathcal{D}|B ; \vec{R}\rangle=\frac{1}{4 \sigma} \int_{0}^{\infty} d s\langle B ; \overrightarrow{0}| \mathrm{e}^{-2 \pi s\left(L_{0}+L_{0}^{\text {gh. }}\right)}|B ; \vec{R}\rangle
$$

- \mathcal{D} is the closed string propagator
- The boundary states enforce on the closed string fields the b.c.'s corresponding to the D-branes (the Polyakov loops)

$$
\left.\partial_{\tau} X^{0}(\sigma, \tau)\right|_{\tau=0}|B ; \vec{R}\rangle=0,\left.\quad\left(X^{i}(\sigma, \tau)-R^{i}\right)\right|_{\tau=0}|B ; \vec{R}\rangle=0
$$

- The b.s. has a component in each closed string Hilbert space sector corresponding to winding number m
■ The modular transformed form of the free energy in indeed exactly retrieved

Recapitulating

■ The NG partition function describes the lattice data about Polyakov loop correlators for various gauge theories and dimensions:

- very well for rather large R, L
- with deviations stronger and stronger as R, L decrease
- These deviations should be related to the breaking of conformal invariance in $d \neq 26$
■ In our first-order approach, we derive this NG partition function with standard bosonic string theory techniques: interaction between two DO-branes á la Polchinski

Recapitulating

■ The NG partition function describes the lattice data about Polyakov loop correlators for various gauge theories and dimensions:

- very well for rather large R, L
- with deviations stronger and stronger as R, L decrease

■ These deviations should be related to the breaking of conformal invariance in $d \neq 26$
In our first-order approach, we derive this NG partition function with standard bosonic string theory techniques: interaction between two D0-branes á la Polchinski

Recapitulating

■ The NG partition function describes the lattice data about Polyakov loop correlators for various gauge theories and dimensions:

- very well for rather large R, L
- with deviations stronger and stronger as R, L decrease

■ These deviations should be related to the breaking of conformal invariance in $d \neq 26$
■ In our first-order approach, we derive this NG partition function with standard bosonic string theory techniques: interaction between two D0-branes á la Polchinski

We neglect the effects of the Polyakov mode which arises for
$\quad d \neq 26$

- The deviations at short distances could be attributed to this extra mode (eventually to be taken into account)

Recapitulating

■ The NG partition function describes the lattice data about Polyakov loop correlators for various gauge theories and dimensions:

- very well for rather large R, L
- with deviations stronger and stronger as R, L decrease

■ These deviations should be related to the breaking of conformal invariance in $d \neq 26$
■ In our first-order approach, we derive this NG partition function with standard bosonic string theory techniques: interaction between two D0-branes á la Polchinski

- We neglect the effects of the Polyakov mode which arises for $d \neq 26$
- The deviations at short distances could be attributed to this extra mode (eventually to be taken into account)

Recapitulating

■ The NG partition function describes the lattice data about Polyakov loop correlators for various gauge theories and dimensions:

- very well for rather large R, L
- with deviations stronger and stronger as R, L decrease

■ These deviations should be related to the breaking of conformal invariance in $d \neq 26$
■ In our first-order approach, we derive this NG partition function with standard bosonic string theory techniques: interaction between two D0-branes á la Polchinski

- We neglect the effects of the Polyakov mode which arises for $d \neq 26$
- The deviations at short distances could be attributed to this extra mode (eventually to be taken into account)

Interface partition function

Interfaces

■ An interface separating regions with different magnetization is observed in simulations of spin models (Ising, etc.), and its fluctuations are measured

- A similar situation can be engineered and studied in LGT, by considering the so-called 't Hooft loops

■ It is rather natural to try to describe the fluctuating interface by means of some effective string theory

- Some string predictions (in particular, the universale effect of the quantum fluctuations of the $d-2$ transverse free fields) have already been considered

The Nambu Goto model for interfaces

■ In the "physical gauge" approach, we consider a string whose world-sheet is identified with the minimal interface, which has the topology of a torus $T 2$, of sides L_{1} and L_{2}, i.e., area $A=L_{1} L_{2}$ and modulus $u=L_{2} / L_{1}$ © Recall

■ We are thus dealing with the one-loop partition function \mathcal{Z} of a closed string.
■ The functional integral approach $[$ Dietz-Filk, 1982]gives the result up to two loops:

$$
\begin{aligned}
\mathcal{Z} \propto \mathrm{e}^{-\sigma A} \frac{1}{[\eta(\mathrm{i} u)]^{2 d-4}}\{1 & +\frac{(d-2)^{2}}{2 \sigma A}\left[\frac{\pi^{2}}{36} u^{2} E_{2}^{2}(\mathrm{i} u)\right. \\
& \left.\left.-\frac{\pi}{6} u E_{2}(\mathrm{i} u)+c_{d}\right]\right\}
\end{aligned}
$$

The NG partition function?

■ The partition function for the NG interface string in the operatorial formulation is not avaliable (to our knowledge) in the literature

- This would be the analogue of the partition function for the Polyakov loop correlators based on Arvis' spectrum Recall and would resum the loop expansion.

The NG partition function?

■ The partition function for the NG interface string in the operatorial formulation is not avaliable (to our knowledge) in the literature

- This would be the analogue of the partition function for the Polyakov loop correlators based on Arvis' spectrum Recall and would resum the loop expansion.
- It is not too difficult to propose the analogue of Arvis formula for the spectrum, based on canonical quantization [Drummond, Kuti,...]

$$
\left.E_{n, N+\tilde{N}}^{2}=\sigma^{2} L_{1}^{2}\left\{1+\frac{4 \pi}{\sigma L_{1}^{2}}\left(N+\tilde{N}-\frac{d-2}{12}\right)+\frac{4 \pi^{2}}{\sigma^{2} L_{1}^{4}} n^{2}+\vec{p}_{T}^{2}\right)\right\}
$$

where $N, \tilde{N}=$ occupation \#'s of left (right)-moving oscillators, n the discretized momentum in the direction x^{1}, \vec{p}_{T} the transverse momentum

The NG partition function?

■ The partition function for the NG interface string in the operatorial formulation is not avaliable (to our knowledge) in the literature

- This would be the analogue of the partition function for the Polyakov loop correlators based on Arvis' spectrum Recall and would resum the loop expansion.
- However, the "naive" form of a partition function based on this spectrum:

$$
\sum_{N, \tilde{N}, n} \delta(N-\tilde{N}+n) c_{N} c_{\tilde{N}} \mathrm{e}^{-L_{2} E_{N+\tilde{N}, n}}
$$

(where $c_{N}, c_{\tilde{N}}=$ multiplicities of left- and right-moving oscillator states) does not reproduce the functional integral 2-loop result

The first order approach

■ We start from the Polyakov action in the conformal gauge, and do not impose any physical gauge identifying world-sheet and target space coordinates
■ We consider the closed string one loop partition function, and we have thus a toroidal world-sheet
ways on the target space torus T_{d}

The first order approach

■ We start from the Polyakov action in the conformal gauge, and do not impose any physical gauge identifying world-sheet and target space coordinates
■ We consider the closed string one loop partition function, and we have thus a toroidal world-sheet
■ This world-sheet can be mapped in many topologically distinct ways on the target space torus T_{d}

The first order approach

■ We start from the Polyakov action in the conformal gauge, and do not impose any physical gauge identifying world-sheet and target space coordinates
■ We consider the closed string one loop partition function, and we have thus a toroidal world-sheet
■ This world-sheet can be mapped in many topologically distinct ways on the target space torus T_{d}

The first order approach

■ We start from the Polyakov action in the conformal gauge, and do not impose any physical gauge identifying world-sheet and target space coordinates
■ We consider the closed string one loop partition function, and we have thus a toroidal world-sheet
■ This world-sheet can be mapped in many topologically distinct ways on the target space torus T_{d}

The first order approach

■ We start from the Polyakov action in the conformal gauge, and do not impose any physical gauge identifying world-sheet and target space coordinates
■ We consider the closed string one loop partition function, and we have thus a toroidal world-sheet
■ This world-sheet can be mapped in many topologically distinct ways on the target space torus T_{d}

String partition function

- In the Polyakov formulation, the partition function includes an integration over the modular parameter $\tau=\tau_{1}+\mathrm{i} \tau_{2}$:

$$
\mathcal{Z}=\int \frac{d^{2} \tau}{\tau_{2}} Z^{(d)}(q, \bar{q}) Z^{\mathrm{gh}}(q, \bar{q})
$$

- $Z^{(d)}(q, \bar{q})$ CFT partition function of d compact bosons:

$$
Z^{(d)}(q, \bar{q})=\operatorname{Tr} q^{L_{0}-\frac{d}{24}} \bar{q}^{\tilde{L}_{0}-\frac{d}{24}}
$$

where $q=\exp 2 \pi \mathrm{i} \tau, \bar{q}=\exp -2 \pi \mathrm{i} \bar{\tau}$.

- The CFT partition function of the ghost system, $Z^{\text {gh }}(q, \bar{q})$ will cancel the (non-zero modes of) two bosons

CFT partition function of a compact boson

■ Consider a compact boson field

$$
X\left(\sigma^{0}, \sigma^{1}\right) \sim X\left(\sigma^{0}, \sigma^{1}\right)+L
$$

■ In the operatorial formulation, we find

$$
Z(q, \bar{q})=\sum_{n, w \in \mathbb{Z}} q^{\frac{1}{8 \pi \sigma}\left(\frac{2 \pi n}{L}+\sigma w L\right)^{2}} \bar{q}^{\frac{1}{8 \pi \sigma}\left(\frac{2 \pi n}{L}-\sigma w L\right)^{2}} \frac{1}{\eta(q)} \frac{1}{\eta(\bar{q})}
$$

- The Dedekind functions encode the non-zero mode contributions
- The 0 -mode n denotes the discretized momentum $p=2 \pi n / L$
- The integer w is the winding around the compact target space:: X must be periodic in σ^{1}, but we can have

$$
X\left(\sigma^{0}, \sigma^{1}+2 \pi\right)=X\left(\sigma^{0}, \sigma^{1}\right)+w L
$$

CFT partition function of a compact boson

■ Consider a compact boson field

$$
X\left(\sigma^{0}, \sigma^{1}\right) \sim X\left(\sigma^{0}, \sigma^{1}\right)+L
$$

■ Upon Poisson resummation over the momentum n,

$$
Z(q, \bar{q})=\sigma L \sum_{m, w \in \mathbb{Z}} \mathrm{e}^{-\frac{\sigma L^{2}}{2 \tau_{2}}|m-\tau w|^{2}} \frac{1}{\sqrt{\tau_{2}} \eta(q) \eta(\bar{q})}
$$

- This is natural expression from the path-integral formulation
- Sum over "world-sheet instantons": classical solutions of the field X with wrappings w (along σ_{1}) and m (along σ_{0}, loop geometry):

$$
\begin{aligned}
X\left(\sigma^{0}, \sigma^{1}+2 \pi\right) & =X\left(\sigma^{0}, \sigma^{1}\right)+w L \\
X\left(\sigma^{0}+2 \pi \tau_{2}, \sigma^{1}+2 \pi \tau_{1}\right) & =X\left(\sigma^{0}, \sigma^{1}\right)+m L .
\end{aligned}
$$

The interface sector

- The partition function includes $Z^{(d)}(q, \bar{q})$, the product of partition functions for the d compact bosons $X^{M} \rightarrow$ contains the sum over windings w^{M} and discrete momenta n^{M}

■ We can select the topological sector corresponding to an interface in the x^{1}, x^{2} plane

- considering a string winding once in the x^{1} direction:

$$
w_{1}=1, \quad w_{2}=w_{3}=\ldots=w_{d}=0
$$

- Poisson resumming over n^{2}, \ldots, n^{d} and then choosing

$$
m_{2}=1, \quad m_{3}=m_{4}=\ldots=m_{d}=0
$$

The interface partition function

- The expression for the partition function of the interface in the first-order, covariant, bosonic string theory, is thus

$$
\begin{aligned}
\mathcal{Z} & =\prod_{i=2}^{d}\left(\sigma L_{i}\right) \sum_{N, \tilde{N}=0}^{\infty} \sum_{n_{1} \in \mathbb{Z}} c_{N} c_{\tilde{N}} \int_{-\infty}^{\infty} d \tau_{1} \mathrm{e}^{2 \pi \mathrm{i}\left(N-\tilde{N}+n_{1}\right)} \int_{0}^{\infty} \frac{d \tau_{2}}{\left(\tau_{2}\right)^{\frac{d+1}{2}}} \\
& \times \exp \left\{-\tau_{2}\left[\frac{\sigma L_{1}^{2}}{2}+\frac{2 \pi^{2} n_{1}^{2}}{\sigma L_{1}^{2}}+2 \pi\left(k+k^{\prime}-\frac{d-2}{12}\right)\right]-\frac{1}{\tau_{2}}\left[\frac{\sigma L_{2}^{2}}{2}\right]\right\}
\end{aligned}
$$

The result

■ The integration over the parameters τ_{1}, τ_{2} of the world-sheet torus can be performed.

- The final result depends only on the geometry of the target space, in particular on the area $A=L_{1} L_{2}$ and the modulus $u=L_{2} / L_{1}$ of the interface plane:

$$
\mathcal{Z}=2 \prod_{i=2}^{d}\left(\sigma L_{i}\right) \sum_{m=0}^{\infty} \sum_{k=0}^{m} c_{k} c_{m-k}\left(\frac{X}{u}\right)^{\frac{d-1}{2}} K_{\frac{d-1}{2}}(\sigma A X)
$$

with

$$
X=\sqrt{1+\frac{4 \pi u}{\sigma A}\left(m-\frac{d-2}{12}\right)+\frac{4 \pi u^{2}(2 k-m)^{2}}{\sigma^{2} A^{2}}}
$$

■ This is the expression that should resum the loop expansion of the functional integral

Check of the result (and new findings)

■ Expanding in powers of $1 /(\sigma A)$ we get

$$
\begin{aligned}
Z & \propto \frac{\mathrm{e}^{-\sigma A}}{\eta^{2 d-4}(\mathrm{i} u)} \\
& \cdot\left\{1+\frac{(d-2)^{2}}{2 \sigma A}\left[\frac{\pi^{2}}{36} u^{2} E_{2}^{2}(\mathrm{i} u)-\frac{\pi}{6} u E_{2}(\mathrm{i} u)+c_{d}\right]+\ldots\right\}
\end{aligned}
$$

■ Not too difficult to go to higher loops. In particular, we have worked out the 3-rd loop

- New numerical simulations (Hasembush et al. to appear) are precise enough to be sensible to the 3-rd order corrections and seem to match our prediction.
- If confirmed, this means that NG would still be a good model for the sizes considered in such simulations
- We're working on a check of the simulations with full NG prediction

Check of the result (and new findings)

■ Expanding in powers of $1 /(\sigma A)$ we get

$$
\begin{aligned}
Z & \propto \frac{\mathrm{e}^{-\sigma A}}{\eta^{2 d-4}(\mathrm{i} u)} \\
& \cdot\left\{1+\frac{(d-2)^{2}}{2 \sigma A}\left[\frac{\pi^{2}}{36} u^{2} E_{2}^{2}(\mathrm{i} u)-\frac{\pi}{6} u E_{2}(\mathrm{i} u)+c_{d}\right]+\ldots\right\}
\end{aligned}
$$

- Classical term
- Not too difficult to go to higher loops. In particular, we have worked out the 3-rd loop
- New numerical simulations [Hasembush et al., to appear) are precise enough to be sensible to the 3 -rd order corrections and seem to match our prediction.
- If confirmed, this means that NG would still be a good model for the sizes considered in such simulations
- We're working on a check of the simulations with full NG prediction

Check of the result (and new findings)

■ Expanding in powers of $1 /(\sigma A)$ we get

$$
\begin{aligned}
Z & \propto \frac{\mathrm{e}^{-\sigma A}}{\eta^{2 d-4}(\mathrm{i} u)} \\
& \cdot\left\{1+\frac{(d-2)^{2}}{2 \sigma A}\left[\frac{\pi^{2}}{36} u^{2} E_{2}^{2}(\mathrm{i} u)-\frac{\pi}{6} u E_{2}(\mathrm{i} u)+c_{d}\right]+\ldots\right\}
\end{aligned}
$$

- One-loop, universal quantum fluctuations of the $d-2$ transverse directions
Not too difficult to go to higher loops. In particular, we have
worked out the 3 -rd loop
$>$
\quad New numerical simulations [Hasembush etal. to appearj are precise enough to

be sensible to the $3-$ rd order corrections and seem to match our

\quad prediction.
\quad If confirmed, this means that NG would still be a good model for the

\quad sizes considered in such simulations
\quad We're working on a check of the simulations with full NG prediction

Check of the result (and new findings)

■ Expanding in powers of $1 /(\sigma A)$ we get

$$
\begin{aligned}
Z & \propto \frac{\mathrm{e}^{-\sigma A}}{\eta^{2 d-4}(\mathrm{i} u)} \\
& \cdot\left\{1+\frac{(d-2)^{2}}{2 \sigma A}\left[\frac{\pi^{2}}{36} u^{2} E_{2}^{2}(\mathrm{i} u)-\frac{\pi}{6} u E_{2}(\mathrm{i} u)+c_{d}\right]+\ldots\right\}
\end{aligned}
$$

- Two-loop correction: agrees with Dietz-Filk!
- Not too difficult to go to higher loops. In particular, we have worked out the 3-rd loop
- New numerical simulations [Hasembush et al., to appear) are precise enough to be sensible to the 3 -rd order corrections and seem to match our prediction.
- If confirmed, this means that NG would still be a good model for the sizes considered in such simulations
- We're working on a check of the simulations with full NG prediction

Check of the result (and new findings)

■ Expanding in powers of $1 /(\sigma A)$ we get

$$
\begin{aligned}
Z & \propto \frac{\mathrm{e}^{-\sigma A}}{\eta^{2 d-4}(\mathrm{i} u)} \\
& \cdot\left\{1+\frac{(d-2)^{2}}{2 \sigma A}\left[\frac{\pi^{2}}{36} u^{2} E_{2}^{2}(\mathrm{i} u)-\frac{\pi}{6} u E_{2}(\mathrm{i} u)+c_{d}\right]+\ldots\right\}
\end{aligned}
$$

■ Not too difficult to go to higher loops. In particular, we have worked out the 3-rd loop

- New numerical simulations [Hasembush et al., to appear] are precise enough to be sensible to the 3-rd order corrections and seem to match our prediction.
- If confirmed, this means that NG would still be a good model for the sizes considered in such simulations
- We're working on a check of the simulations with full NG prediction

Some remarks

- Any "naive" treatment of bosonic string in $d \neq 26$ suffers from the breaking of conformal invariance (heavily used to solve the model) at the quantum level. This applies to the 1st order treatment we used as well.
- This should manifest itself more and more as the area A decreases
- Our explicit expression of the NG partition function should allow to study the amount and the onset of the discrepancy of the NG model with the "real" (= simulated) interfaces
There has been some recent attempts in the literature [see Kuti, Latice ${ }^{2005 J}$ to the inferface partition function using the Polchinski-Strominger string
- No problems with quantum conformal invariance
- But non-local terms in the action
- Apparently (computations are not so detailed) up to the 2nd loop it should agree with NG. Discrepancies should inset from then on. Further study of such model is required.

Some remarks

- Any "naive" treatment of bosonic string in $d \neq 26$ suffers from the breaking of conformal invariance (heavily used to solve the model) at the quantum level. This applies to the 1st order treatment we used as well.
- This should manifest itself more and more as the area A decreases
- Our explicit expression of the NG partition function should allow to study the amount and the onset of the discrepancy of the NG model with the "real" (= simulated) interfaces
■ There has been some recent attempts in the literature [see Kuti, Latice ${ }^{2005]}$ to the inferface partition function using the Polchinski-Strominger string
- No problems with quantum conformal invariance
- But non-local terms in the action
- Apparently (computations are not so detailed) up to the 2nd loop it should agree with NG. Discrepancies should inset from then on. Further study of such model is required.

Conclusions and outlook

- The covariant quantization in 1st order formalism of the NG action is a convenient way to derive partition functions of the string with different b.c.s, related to different LGT observables
- It reproduces the partition function based on Arvis spectrum for the Polyakov loop correlator case ~ D0-brane interaction with compact time
- It yields the partition function for the interfaces ~ appropriate sector of one loop closed strings
- Various developments are possible
- The most pressing task
\star Finish the paper about the interface spectrum!
- Work on the comparison with numerical simulations of interfaces, try to connect to works on 't Hooft loops - Consider the Wilson loop geometry

Conclusions and outlook

- The covariant quantization in 1st order formalism of the NG action is a convenient way to derive partition functions of the string with different b.c.s, related to different LGT observables
- It reproduces the partition function based on Arvis spectrum for the Polyakov loop correlator case ~ D0-brane interaction with compact time
- It yields the partition function for the interfaces ~ appropriate sector of one loop closed strings
■ Various developments are possible

Conclusions and outlook

- The covariant quantization in 1st order formalism of the NG action is a convenient way to derive partition functions of the string with different b.c.s, related to different LGT observables
- It reproduces the partition function based on Arvis spectrum for the Polyakov loop correlator case ~ D0-brane interaction with compact time
- It yields the partition function for the interfaces ~ appropriate sector of one loop closed strings
- Various developments are possible
- The most pressing task:
* Finish the paper about the interface spectrum!
- Work on the comparison with numerical simulations of interfaces, try to connect to works on 't Hooft loops - Consider the Wilson loop geometry

Conclusions and outlook

- The covariant quantization in 1st order formalism of the NG action is a convenient way to derive partition functions of the string with different b.c.s, related to different LGT observables
- It reproduces the partition function based on Arvis spectrum for the Polyakov loop correlator case ~ D0-brane interaction with compact time
- It yields the partition function for the interfaces ~ appropriate sector of one loop closed strings
- Various developments are possible
- The most pressing task:
\star Finish the paper about the interface spectrum!
- Work on the comparison with numerical simulations of interfaces, try to connect to works on 't Hooft loops
- Consider the Wilson loop geometry

Conclusions and outlook

- The covariant quantization in 1st order formalism of the NG action is a convenient way to derive partition functions of the string with different b.c.s, related to different LGT observables
- It reproduces the partition function based on Arvis spectrum for the Polyakov loop correlator case ~ D0-brane interaction with compact time
- It yields the partition function for the interfaces \sim appropriate sector of one loop closed strings
- Various developments are possible
- The most pressing task:
\star Finish the paper about the interface spectrum!
- Work on the comparison with numerical simulations of interfaces, try to connect to works on 't Hooft loops
- Consider the Wilson loop geometry

