## Bosonic string theory for LGT observables

Marco Billò

D.F.T., Univ. Torino

Turin, November 15, 2005

Marco Billò (D.F.T., Univ. Torino)

Bosonic strings for LGT

Turin, November 15, 2005 1 / 35

3

#### Foreword

#### This talk is based on

- M. Billó and M. Caselle, "Polyakov loop correlators from D0-brane interactions in bosonic string JHEP 0507 (2005) 038 [arXiv:hep-th/0505201].
- also outlined in the LATTICE 2005 talk of M. Caselle:
- M. Billo, M. Caselle, M. Hasenbusch and M. Panero, "QCD string from D0 branes," PoS (LAT2005) 309 [arXiv:hep-lat/0511008].
- and on a paper in preparation:
  - M. Billó, L. Ferro and M. Caselle, "The partition function for the effective string theory of interfaces", to appear (soon!).

### Plan of the talk

#### 1 The main ideas

2 Polyakov loop correlators

Interface partition function

Marco Billò (D.F.T., Univ. Torino)

Bosonic strings for LGT

Turin, November 15, 2005 3 / 35

э

### Plan of the talk

1 The main ideas

2 Polyakov loop correlators

Interface partition function

Marco Billò (D.F.T., Univ. Torino)

Bosonic strings for LGT

Turin, November 15, 2005 3 / 35

э

### Plan of the talk

1 The main ideas

2 Polyakov loop correlators

3 Interface partition function

Marco Billò (D.F.T., Univ. Torino)

Bosonic strings for LGT

Turin, November 15, 2005 3 / 35

э

#### The main ideas

Marco Billò (D.F.T., Univ. Torino)

Bosonic strings for LGT

Turin, November 15, 2005 4 / 35

-2

## String theory and (lattice) gauge theories

- A description of strongly coupled gauge theories in terms of strings has long been suspected
- These strings should describe the fluctuations of the color flux tube in the confining regime
- Potential V(R) between two external, massive quark and anti-quark sources from Wilson loops

$$\langle \textit{W}(\textit{L},\textit{R}) 
angle \sim \mathrm{e}^{-\textit{LV}(\textit{R})}$$
 (large  $\textit{R}$ )

 $\blacksquare Area law \leftrightarrow linear potential$ 

$$V(R) = \sigma R + \dots$$

#### $\sigma$ is the string tension

Marco Billò (D.F.T., Univ. Torino)



## Quantum corrections and effective models

■ Leading correction for large *R* 

$$V(R) = \sigma R - \frac{\pi}{24} \frac{d-2}{R} + O\left(\frac{1}{R^2}\right)$$

from quantum fluctuations of d - 2 massless modes: transverse fluctuations of the string

Lüscher, Symanzik and Weisz

- Simplest effective description via the c = d 2 two-dimensional conformal field theory of free bosons
  - Higher order interactions among these fields distinguish the various effective theories
  - ► The underlying string model should determine a specific form of the effective theory, and an expression of the potential *V*(*R*) that extends to finite values of *R*.

## Various models of effective strings

- "Free" theory: the d 2 bosonic fields living on the surface spanned by the string, describing its transverse fluctuations
- Standard bosonic string theory. Nambu-Goto action  $\propto$  area of the world-sheet surface
  - Possible first-order formulation á la Polyakov (we'll use this)
  - In *d* ≠ 26, bosonic string is ill-defined (conformal invariance broken by quantum effects). This is manifest at short distances in the description of LGT observables.
- Attempts to a consistent string theory description: Polchinski-Strominger, Polyakov, AdS/CFT

## The Nambu-Goto approach

Action  $\sim$  area of the surface spanned by the string in its motion:

$${m S}=-\sigma\int {m d} \sigma_0 {m d} \sigma_1 \sqrt{\det g_{lphaeta}}$$

where  $g_{\alpha\beta}$  is the metric "induced" on the w.s. by the embedding:

$$g_{\alpha\beta} = \frac{\partial X^{M}}{\partial \sigma_{\alpha}} \frac{\partial X^{N}}{\partial \sigma_{\beta}} G_{MN}$$

 $\sigma_{\alpha}$  = world-sheet coords. ( $\sigma_{0}$  = proper time,  $\sigma = 1$  spans the extension of the string)



## The nambu-Goto approach (cont.ed)

- One can use the world-sheet re-parametrization invariance of the NG action to choose a "physical gauge":
  - The w.s. coordinates σ<sup>0</sup>, σ<sup>1</sup> are identified with two target space coordinates x<sup>0</sup>, x<sup>1</sup>
- One can study the 2d QFT for the d 2 transverse bosonic fields with the gauge-fixed NG action

$$Z = \int DX^{i} e^{-\sigma \int dx^{0} dx^{1} \sqrt{1 + (\partial_{0} \vec{X})^{2} + (\partial_{1} \vec{X})^{2} + (\partial_{0} \vec{X} \wedge \partial_{1} \vec{X})^{2}}}$$
$$= \int DX^{i} e^{-\sigma \int dx^{0} dx^{1} \left\{ 1 + (\partial_{0} \vec{X})^{2} + (\partial_{1} \vec{X})^{2} + \text{int.s} \right\}}$$

perturbatively, the loop expansion parameter being 1/( $\sigma$ A) [e.g., Dietz-Filk, 1982]

### The first order approach

The NG goto action can be given a 1st order formulation (no awkward square roots)

$${m S}=-\sigma\int {m d}\sigma_0{m d}\sigma_1\sqrt{h}h^{lphaeta}\partial_lpha X^M\partial_eta X^M$$

with  $h_{\alpha\beta}$  = independent w.s metric

- Use re-parametrization and Weyl invariance to set  $h_{\alpha\beta} \rightarrow \eta_{\alpha\beta}$ 
  - Actually, Weyl invariance is broken by quantum effects in  $d \neq 26$
- Remain with a free action but
  - Virasoro constraints  $T_{\alpha\beta} = 0$  from  $h^{\alpha\beta}$  e.o.m.
  - residual conformal invariance

・ 同 ト ・ ヨ ト ・ ヨ ト

## Physical gauge vs. covariant quantization

- The residual conformal invariance can be used to fix a light-cone (physical) type of gauge: w.s. coordinates identified with two target space ones (non-covariant choice)
  - ► One explicitly solves the Virasoro constraints and remains with the d - 2 transverse directions as the only independent d.o.f.
  - The quantum anomaly for  $d \neq 26$  manifests as a failure in Lorentz algebra
- In a covariant quantization, the Virasoro constraints are imposed on physical states á la BRST
  - ► All *d* directions are treated on the same footing
  - Introduction of ghosts
  - For  $d \neq 26$ , anomaly in the conformal algebra
  - This is the framework we will use

## Physical gauge vs. covariant quantization

- The residual conformal invariance can be used to fix a light-cone (physical) type of gauge: w.s. coordinates identified with two target space ones (non-covariant choice)
  - One explicitly solves the Virasoro constraints and remains with the d - 2 transverse directions as the only independent d.o.f.
  - The quantum anomaly for  $d \neq 26$  manifests as a failure in Lorentz algebra
- In a covariant quantization, the Virasoro constraints are imposed on physical states á la BRST
  - ► All *d* directions are treated on the same footing
  - Introduction of ghosts
  - For  $d \neq 26$ , anomaly in the conformal algebra
  - This is the framework we will use

#### Polyakov loop correlators

Marco Billò (D.F.T., Univ. Torino)

Bosonic strings for LGT

Turin, November 15, 2005 12 / 35

-2

#### The set-up



- Finite temperature geometry + static external sources (quarks)
- Polyakov loop = trace of the temporal Wilson line

 $\langle P(\vec{R}) \rangle = e^{-F} \neq 0 \rightarrow de\text{-confinement}$ 

On the lattice, the correlator

 $\langle P(\vec{0})P(\vec{R})
angle_{
m c}$  .

can be measured with great accuracy.

In the string picture, the correlation is due to the strings connecting the two external sources: cylindric world-sheet



Marco Billò (D.F.T., Univ. Torino)

Bosonic strings for LGT

Turin, November 15, 2005 13 / 35

## Nambu-Goto description of the correlator (1)

- P.L. correlator = partition function of an open string with
  - Nambu-Goto action
  - Dirichlet boundary conditions (end-points attached to the Polyakov loops)
- Operatorial formulation:
  - Spectrum obtained via formal guantization by Arvis:

$$E_n(R) = \sigma R \sqrt{1 + rac{2\pi}{\sigma R^2}(n - rac{d-2}{24})}$$
.

Partition function: • Back

$$Z = \sum_{n} w_{n} e^{-LE_{n}(R)}$$

 $w_n$  = multiplicities of the bosonic string:  $\eta(q) = \sum_n w_n q^{n-\frac{1}{24}}$ 

Marco Billò (D.F.T., Univ. Torino)

## Nambu-Goto description of the correlator (1)

#### ■ P.L. correlator = partition function of an open string with

- Nambu-Goto action
- Dirichlet boundary conditions (end-points attached to the Polyakov loops)
- Operatorial formulation:
  - Expansion of the energy levels:

$$E_n = \sigma R + \frac{\pi}{R} \left( n - \frac{d-2}{24} \right) + \dots$$

Expansion of the partition function

$$Z = e^{-\sigma LR} \sum_{n} w_{n} e^{-\pi \frac{L}{R} \left(n - \frac{d-2}{24}\right) + \dots} = e^{-\sigma LR} \eta(i \frac{L}{2R}) \left(1 + \dots\right)$$

Marco Billò (D.F.T., Univ. Torino)

## Nambu-Goto description of the correlator (2)

#### Functional integral result (Dietz and Filk):

- Loop expansion. Expansion parameter  $1/(\sigma LR)$
- Two-loop result [set  $\hat{\tau} = iL/(2R)$ , d = 3]:

$$Z = e^{-\sigma LR} \frac{1}{\eta(\hat{\tau})} \left( 1 - \frac{\pi^2 L}{1152\sigma R^3} \left[ 2E_4(\hat{\tau}) - E_2^2(\hat{\tau}) \right] + \dots \right)$$

This is reproduced by the partition function of the operatorial formulation, upon expanding the energy levels *E<sub>n</sub>* 

Caselle et al

Action (in conformal gauge)

$$S = \frac{1}{4\pi\alpha'} \int d\sigma_0 \int_0^{\pi} d\sigma_1 \left[ (\partial_{\tau} X^M)^2 + (\partial_{\sigma} X^M)^2 \right] + S_{\text{gh.}}$$



# World-sheet parametrized by

σ<sub>1</sub> ∈ [0, π] (open string)
 σ<sub>0</sub> (proper time)

Action (in conformal gauge)

$$S = \frac{1}{4\pi\alpha'} \int d\sigma_0 \int_0^{\pi} d\sigma_1 \left[ (\partial_{\tau} X^M)^2 + (\partial_{\sigma} X^M)^2 \right] + S_{\text{gh.}}$$



#### World-sheet parametrized by

- $\sigma_1 \in [0, \pi]$  (open string)
- $\sigma_0$  (proper time)

- L - L -

Action (in conformal gauge)

$$S = \frac{1}{4\pi\alpha'} \int d\sigma_0 \int_0^{\pi} d\sigma_1 \left[ (\partial_{\tau} X^M)^2 + (\partial_{\sigma} X^M)^2 \right] + S_{\text{gh.}}$$



#### World-sheet parametrized by

- $\sigma_1 \in [0, \pi]$  (open string)
- σ<sub>0</sub> (proper time)

- L - L -

Action (in conformal gauge)

$$S = \frac{1}{4\pi\alpha'} \int d\sigma_0 \int_0^{\pi} d\sigma_1 \left[ (\partial_{\tau} X^M)^2 + (\partial_{\sigma} X^M)^2 \right] + S_{\rm gh}$$



The field  $X^M$  (M = 0, ..., d - 1) describe the embedding of the world-sheet in the target space

Action (in conformal gauge)

$$S = \frac{1}{4\pi\alpha'} \int d\sigma_0 \int_0^{\pi} d\sigma_1 \left[ (\partial_{\tau} X^M)^2 + (\partial_{\sigma} X^M)^2 \right] + S_{\text{gh.}}$$



Boundary conditions:

Neumann in "time" direction:

$$\partial_{\sigma} X^{0}(\tau,\sigma) \big|_{\sigma=0,\pi} = 0$$

Dirichlet in spatial directions:

$$ec{X}( au,0)=0\;,\qquad ec{X}( au,\pi)=ec{R}$$

< 6 b

"open string suspended between two D0-branes"

Action (in conformal gauge)

$$S = \frac{1}{4\pi\alpha'} \int d\sigma_0 \int_0^{\pi} d\sigma_1 \left[ (\partial_{\tau} X^M)^2 + (\partial_{\sigma} X^M)^2 \right] + S_{\text{gh.}}$$

The string fields have thus the expansion



Marco Billò (D.F.T., Univ. Torino)

Bosonic strings for LGT

Turin, November 15, 2005

Action (in conformal gauge)

$$S = \frac{1}{4\pi\alpha'} \int d\sigma_0 \int_0^{\pi} d\sigma_1 \left[ (\partial_{\tau} X^M)^2 + (\partial_{\sigma} X^M)^2 \right] + S_{\text{gh}}$$

The target space has finite temperature:



$$x^0 \sim x^0 + L$$

The 0-th component of the momentum is therefore discrete:

$$p^0 
ightarrow rac{2\pi n}{L}$$

Marco Billò (D.F.T., Univ. Torino)

Bosonic strings for LGT

Turin, November 15, 2005

■ Interaction between the two Polyakov loops (the D0-branes) ↔ free energy of the open string

$$\mathcal{F} = L \int_0^\infty \frac{dt}{2t} \operatorname{Tr} q^{L_0}$$





■ Interaction between the two Polyakov loops (the D0-branes) ↔ free energy of the open string

$$\mathcal{F} = L \int_0^\infty \frac{dt}{2t} \operatorname{Tr} q^{L_0}$$

L is the "world-volume" of the D0-brane, i.e. the volume of the only direction along which the excitations propagate, the Euclidean time

・ 同 ト ・ ヨ ト ・ ヨ ト

■ Interaction between the two Polyakov loops (the D0-branes) ↔ free energy of the open string

$$\mathcal{F} = L \int_0^\infty \frac{dt}{2t} \operatorname{Tr} q^{L_0}$$

■ Virasoro generator *L*<sub>0</sub> (Hamiltonian)

$$L_0 = \frac{(\hat{p}^0)^2}{2\pi\sigma} + \frac{\sigma R^2}{2\pi} + \sum_{n=1}^{\infty} N_n^{(d-2)} - \frac{d-2}{24}$$

•  $N_n^{(d-2)}$  is the total occupation number for the oscillators appearing in d-2 bosonic fields (the -2 is due to the ghosts)

Marco Billò (D.F.T., Univ. Torino)

17/35

■ Interaction between the two Polyakov loops (the D0-branes) ↔ free energy of the open string

$$\mathcal{F} = L \int_0^\infty rac{dt}{2t} \operatorname{Tr} q^{L_0}$$

The trace over the oscillators yields, for each bosonic direction,

$$q^{-\frac{1}{24}}\prod_{r=1}^{\infty}\frac{1}{1-q^r}=\frac{1}{\eta(\mathrm{i}t)}$$

Marco Billò (D.F.T., Univ. Torino)

Turin, November 15, 2005

17/35

■ Interaction between the two Polyakov loops (the D0-branes) ↔ free energy of the open string

$$\mathcal{F} = L \int_0^\infty \frac{dt}{2t} \operatorname{Tr} q^{L_0}$$

• We must trace also over the discrete zero-mode eigenvalues  $p^0 = 2\pi n/L$ . Altogether,

$$\mathcal{F} = \int_0^\infty \frac{dt}{2t} \sum_{n = -\infty}^\infty e^{-2\pi t \left(\frac{2\pi n^2}{\sigma L^2} + \frac{\sigma R^2}{2\pi}\right)} \left(\frac{1}{\eta(it)}\right)^{d-2}$$

Marco Billò (D.F.T., Univ. Torino)

17/35

不同 トイラトイラ

### **Topological sectors**

Poisson resum over the integer n getting

$$\mathcal{F} = \mathcal{F}^{(0)} + 2\sum_{m=1}^{\infty} \mathcal{F}^{(m)}$$



$$\mathcal{F}^{(m)} = \sqrt{\frac{\sigma L^2}{4\pi}} \int_0^\infty \frac{dt}{2t^{\frac{3}{2}}} e^{-\frac{\sigma L^2 m^2}{4t} - \sigma R^2 t} \left(\frac{1}{\eta(it)}\right)^{d-2t}$$

- The integer m is the # of times the open string wraps the compact time in its one loop evolution.
- Each topological sector  $\mathcal{F}^{(m)}$  describes the fluctuations around an "open world-wheet instanton"

$$X^0(\sigma_0 + t, \sigma_1) = X^0(\sigma_0, \sigma_1) + mL$$

Marco Billò (D.F.T., Univ. Torino)

不同 トイラト イラト

#### **Topological sectors**

with

Poisson resum over the integer n getting

$$\mathcal{F} = \mathcal{F}^{(0)} + 2\sum_{m=1}^{\infty} \mathcal{F}^{(m)}$$

$$\mathcal{F}^{(m)} = \sqrt{\frac{\sigma L^2}{4\pi}} \int_0^\infty \frac{dt}{2t^{\frac{3}{2}}} e^{-\frac{\sigma L^2 m^2}{4t} - \sigma R^2 t} \left(\frac{1}{\eta(it)}\right)^{d-2}$$



Marco Billò (D.F.T., Univ. Torino)

Bosonic strings for LGT

x

Turin, November 15, 2005

#### **Topological sectors**

with

Poisson resum over the integer n getting

x

$$\mathcal{F} = \mathcal{F}^{(0)} + 2\sum_{m=1}^{\infty} \mathcal{F}^{(m)}$$

$$\mathcal{F}^{(m)} = \sqrt{\frac{\sigma L^2}{4\pi}} \int_0^\infty \frac{dt}{2t^{\frac{3}{2}}} e^{-\frac{\sigma L^2 m^2}{4t} - \sigma R^2 t} \left(\frac{1}{\eta(\mathrm{i}t)}\right)^{d-2}$$



Marco Billò (D.F.T., Univ. Torino)

The 16 and 16 Turin, November 15, 2005

18/35

4 A 1

#### The case m = 1 and the NG result

The sector with m = 1 of our free energy should correspond to the effective NG partition function

Expand in series the Dedekind functions:

$$\left(\prod_{r=1}^{\infty}\frac{1}{1-q^r}\right)^{d-2}=\sum_{k=0}^{\infty}w_kq^k$$

Plug this into  $\mathcal{F}^{(m)}$  **Precall** and integrate over *t* using

$$\int_0^\infty \frac{dt}{t^{\frac{3}{2}}} e^{-\frac{\alpha^2}{t} - \beta^2 t} = \frac{\sqrt{\pi}}{|\alpha|} e^{-2|\alpha| |\beta|}$$

Marco Billò (D.F.T., Univ. Torino)

### The case m = 1 and the NG result

- The sector with m = 1 of our free energy should correspond to the effective NG partition function
- The result is

$$\mathcal{F}^{(m)} = \frac{1}{2|m|} \sum_{k} w_k \mathrm{e}^{-|m| L E_k(R)} , \qquad (m \neq 0)$$

with

$$E_k(R) = \frac{R}{4\pi\alpha'}\sqrt{1 + \frac{4\pi^2\alpha'}{R^2}\left(k - \frac{d-2}{24}\right)}$$

So, in particular,

$$2\mathcal{F}^{(1)}=Z(R)$$

Marco Billò (D.F.T., Univ. Torino)

19/35

・ 同 ト ・ ヨ ト ・ ヨ ト
- The modular transformation t → 1/t maps the open string channel 1-loop free energy to a closed string channel tree level exchange between boundary states
- The result of the transformation is

$$\mathcal{F}^{(m)} = L \frac{T_0^2}{4} \sum_k w_k G(R; M(m, k))$$





■ The modular transformation t → 1/t maps the open string channel 1-loop free energy to a closed string channel tree level exchange between boundary states

The result of the transformation is

$$\mathcal{F}^{(m)} = L \frac{T_0^2}{4} \sum_k w_k G(R; M(m, k))$$





• G(R; M) = propagator of a scalar field of mass  $M^2$  over the distance  $\vec{R}$  between the two D0-branes along the d - 1 spatial directions:

$$G(R; M) = \int \frac{d^{d-1}p}{(2\pi)^{d-1}} \frac{e^{i\vec{p}\cdot\vec{R}}}{p^2 + M^2} = \frac{1}{2\pi} \left(\frac{M}{2\pi R}\right)^{\frac{d-3}{2}} K_{\frac{d-3}{2}}(MR)$$

■ The modular transformation t → 1/t maps the open string channel 1-loop free energy to a closed string channel tree level exchange between boundary states

The result of the transformation is

$$\mathcal{F}^{(m)} = L \frac{T_0^2}{4} \sum_k w_k G(R; M(m, k))$$





The mass M(m, k) is that of a closed string state with k representing the total oscillator number, and m the wrapping number of the string around the compact time direction

$$M^{2}(m,k) = (m\sigma L)^{2} \left[1 + \frac{8\pi}{\sigma L^{2}m^{2}} \left(k - \frac{d-2}{24}\right)\right]$$

Marco Billò (D.F.T., Univ. Torino)

■ The modular transformation t → 1/t maps the open string channel 1-loop free energy to a closed string channel tree level exchange between boundary states

The result of the transformation is

$$\mathcal{F}^{(m)} = L \frac{T_0^2}{4} \sum_k w_k G(R; M(m, k))$$





•  $T_0$  = usual D0-brane tension in bosonic string theory:

$$T_0^2 = 8\pi \left(\frac{\pi}{\sigma}\right)^{\frac{d}{2}-2}$$

Marco Billò (D.F.T., Univ. Torino)

# Closed string interpretation

Our first-order formulation is well-suited to give the direct closed string channel description of the correlator:

$$\mathcal{F} = \langle B; \vec{0} | \mathcal{D} | B; \vec{R} \rangle = \frac{1}{4\sigma} \int_0^\infty ds \langle B; \vec{0} | e^{-2\pi s (L_0 + L_0^{\text{gh}})} | B; \vec{R} \rangle$$

- $\mathcal{D}$  is the closed string propagator
- The boundary states enforce on the closed string fields the b.c.'s corresponding to the D-branes (the Polyakov loops)

$$\partial_{ au}X^0(\sigma, au)ig|_{ au=0}\ket{B;ec{R}}=0\ ,\qquad ig(X^i(\sigma, au)-R^i)ig|_{ au=0}\ket{B;ec{R}}=0$$

- The b.s. has a component in each closed string Hilbert space sector corresponding to winding number m
- The modular transformed form of the free energy in indeed exactly retrieved

Marco Billò (D.F.T., Univ. Torino)

Bosonic strings for LGT

- The NG partition function describes the lattice data about Polyakov loop correlators for various gauge theories and dimensions:
  - very well for rather large R, L
  - ▶ with deviations stronger and stronger as *R*, *L* decrease
- These deviations should be related to the breaking of conformal invariance in  $d \neq 26$
- In our first-order approach, we derive this NG partition function with standard bosonic string theory techniques: interaction between two D0-branes á la Polchinski
  - We neglect the effects of the Polyakov mode which arises for d ≠ 26
  - The deviations at short distances could be attributed to this extra mode (eventually to be taken into account)

- The NG partition function describes the lattice data about Polyakov loop correlators for various gauge theories and dimensions:
  - very well for rather large R, L
  - with deviations stronger and stronger as R, L decrease
- These deviations should be related to the breaking of conformal invariance in  $d \neq 26$
- In our first-order approach, we derive this NG partition function with standard bosonic string theory techniques: interaction between two D0-branes á la Polchinski
  - We neglect the effects of the Polyakov mode which arises for d ≠ 26
  - The deviations at short distances could be attributed to this extra mode (eventually to be taken into account)

- The NG partition function describes the lattice data about Polyakov loop correlators for various gauge theories and dimensions:
  - very well for rather large R, L
  - ▶ with deviations stronger and stronger as *R*, *L* decrease
- These deviations should be related to the breaking of conformal invariance in  $d \neq 26$
- In our first-order approach, we derive this NG partition function with standard bosonic string theory techniques: interaction between two D0-branes á la Polchinski
  - We neglect the effects of the Polyakov mode which arises for  $d \neq 26$
  - The deviations at short distances could be attributed to this extra mode (eventually to be taken into account)

- The NG partition function describes the lattice data about Polyakov loop correlators for various gauge theories and dimensions:
  - very well for rather large R, L
  - ▶ with deviations stronger and stronger as *R*, *L* decrease
- These deviations should be related to the breaking of conformal invariance in  $d \neq 26$
- In our first-order approach, we derive this NG partition function with standard bosonic string theory techniques: interaction between two D0-branes á la Polchinski
  - We neglect the effects of the Polyakov mode which arises for  $d \neq 26$
  - The deviations at short distances could be attributed to this extra mode (eventually to be taken into account)

- The NG partition function describes the lattice data about Polyakov loop correlators for various gauge theories and dimensions:
  - very well for rather large R, L
  - ▶ with deviations stronger and stronger as *R*, *L* decrease
- These deviations should be related to the breaking of conformal invariance in  $d \neq 26$
- In our first-order approach, we derive this NG partition function with standard bosonic string theory techniques: interaction between two D0-branes á la Polchinski
  - We neglect the effects of the Polyakov mode which arises for  $d \neq 26$
  - The deviations at short distances could be attributed to this extra mode (eventually to be taken into account)

#### Interface partition function

Marco Billò (D.F.T., Univ. Torino)

23/35 Turin, November 15, 2005

イロト イロト イヨト イヨト

-2

## Interfaces



- An interface separating regions with different magnetization is observed in simulations of spin models (Ising, etc.), and its fluctuations are measured
- A similar situation can be engineered and studied in LGT, by considering the so-called 't Hooft loops
- It is rather natural to try to describe the fluctuating interface by means of some effective string theory
  - Some string predictions (in particular, the universale effect of the quantum fluctuations of the *d* − 2 transverse free fields) have already been considered

e.g., De Forcrand, 2004

# The Nambu Goto model for interfaces

- In the "physical gauge" approach, we consider a string whose world-sheet is identified with the minimal interface, which has the topology of a torus *T*2, of sides  $L_1$  and  $L_2$ , i.e., area  $A = L_1L_2$  and modulus  $u = L_2/L_1$  (Recall)
- We are thus dealing with the one-loop partition function *Z* of a closed string.
- The functional integral approach [Dietz-Filk, 1982] gives the result up to two loops:

$$\begin{split} \mathcal{Z} \propto \mathrm{e}^{-\sigma A} \frac{1}{\left[\eta(\mathrm{i} u)\right]^{2d-4}} \Big\{ 1 + \frac{(d-2)^2}{2\sigma A} \Big[ \frac{\pi^2}{36} u^2 E_2^2(\mathrm{i} u) \\ &- \frac{\pi}{6} u E_2(\mathrm{i} u) + c_d \Big] \Big\} \end{split}$$

25/35

# The NG partition function?

- The partition function for the NG interface string in the operatorial formulation is not available (to our knowledge) in the literature
- This would be the analogue of the partition function for the Polyakov loop correlators based on Arvis' spectrum • Recall and would resum the loop expansion.

不同 トイラト イラト

# The NG partition function?

- The partition function for the NG interface string in the operatorial formulation is not available (to our knowledge) in the literature
- This would be the analogue of the partition function for the Polyakov loop correlators based on Arvis' spectrum • Recall and would resum the loop expansion.
  - It is not too difficult to propose the analogue of Arvis formula for the spectrum, based on canonical quantization [Drummond,Kuti,...]

$$E_{n,N+\tilde{N}}^{2} = \sigma^{2}L_{1}^{2}\left\{1 + \frac{4\pi}{\sigma L_{1}^{2}}\left(N + \tilde{N} - \frac{d-2}{12}\right) + \frac{4\pi^{2}}{\sigma^{2}L_{1}^{4}}n^{2} + \vec{p}_{T}^{2}\right\}$$

where  $N, \tilde{N} =$  occupation #'s of left (right)-moving oscillators, *n* the discretized momentum in the direction  $x^1, \vec{p}_T$  the transverse momentum

Marco Billò (D.F.T., Univ. Torino)

26/35

# The NG partition function?

- The partition function for the NG interface string in the operatorial formulation is not available (to our knowledge) in the literature
- This would be the analogue of the partition function for the Polyakov loop correlators based on Arvis' spectrum • Recall and would resum the loop expansion.
  - However, the "naive" form of a partition function based on this spectrum:

$$\sum_{\mathsf{N},\tilde{\mathsf{N}},n} \delta(\mathsf{N}-\tilde{\mathsf{N}}+n) c_{\mathsf{N}} c_{\tilde{\mathsf{N}}} e^{-L_2 \mathcal{E}_{\mathsf{N}+\tilde{\mathsf{N}},n}}$$

(where  $c_N$ ,  $c_{\tilde{N}}$  = multiplicities of left- and right-moving oscillator states) does not reproduce the functional integral 2-loop result

Marco Billò (D.F.T., Univ. Torino)

Bosonic strings for LGT

Turin, November 15, 2005

26/35

- We start from the Polyakov action in the conformal gauge, and do not impose any physical gauge identifying world-sheet and target space coordinates
- We consider the closed string one loop partition function, and we have thus a toroidal world-sheet
- This world-sheet can be mapped in many topologically distinct ways on the target space torus T<sub>d</sub>

・ 同 ト ・ ヨ ト ・ ヨ ト

- We start from the Polyakov action in the conformal gauge, and do not impose any physical gauge identifying world-sheet and target space coordinates
- We consider the closed string one loop partition function, and we have thus a toroidal world-sheet
- This world-sheet can be mapped in many topologically distinct ways on the target space torus T<sub>d</sub>

- We start from the Polyakov action in the conformal gauge, and do not impose any physical gauge identifying world-sheet and target space coordinates
- We consider the closed string one loop partition function, and we have thus a toroidal world-sheet
- This world-sheet can be mapped in many topologically distinct ways on the target space torus T<sub>d</sub>



- We start from the Polyakov action in the conformal gauge, and do not impose any physical gauge identifying world-sheet and target space coordinates
- We consider the closed string one loop partition function, and we have thus a toroidal world-sheet
- This world-sheet can be mapped in many topologically distinct ways on the target space torus T<sub>d</sub>



- We start from the Polyakov action in the conformal gauge, and do not impose any physical gauge identifying world-sheet and target space coordinates
- We consider the closed string one loop partition function, and we have thus a toroidal world-sheet
- This world-sheet can be mapped in many topologically distinct ways on the target space torus T<sub>d</sub>



# String partition function

In the Polyakov formulation, the partition function includes an integration over the modular parameter  $\tau = \tau_1 + i\tau_2$ :

$$\mathcal{Z} = \int rac{d^2 au}{ au_2} \, Z^{(d)}(m{q},ar{m{q}}) \, Z^{\mathrm{gh}}(m{q},ar{m{q}})$$

•  $Z^{(d)}(q, \bar{q})$  CFT partition function of *d* compact bosons:

$$Z^{(d)}(q,\bar{q}) = \operatorname{Tr} q^{L_0 - rac{d}{24}} \bar{q}^{\tilde{L}_0 - rac{d}{24}}$$

where  $q = \exp 2\pi i \tau$ ,  $\bar{q} = \exp -2\pi i \bar{\tau}$ .

The CFT partition function of the ghost system, Z<sup>gh</sup>(q, q̄) will cancel the (non-zero modes of) two bosons

Marco Billò (D.F.T., Univ. Torino)

Bosonic strings for LGT

Turin, November 15, 2005

28/35

# CFT partition function of a compact boson

Consider a compact boson field

$$X(\sigma^0,\sigma^1) \sim X(\sigma^0,\sigma^1) + L$$

In the operatorial formulation, we find

$$Z(q,\bar{q}) = \sum_{n,w\in\mathbb{Z}} q^{\frac{1}{8\pi\sigma} \left(\frac{2\pi\eta}{L} + \sigma wL\right)^2} \bar{q}^{\frac{1}{8\pi\sigma} \left(\frac{2\pi\eta}{L} - \sigma wL\right)^2} \frac{1}{\eta(q)} \frac{1}{\eta(\bar{q})}$$

- The Dedekind functions encode the non-zero mode contributions
- The 0-mode *n* denotes the discretized momentum  $p = 2\pi n/L$
- The integer w is the winding around the compact target space:: X must be periodic in σ<sup>1</sup>, but we can have

$$X(\sigma^0,\sigma^1+2\pi)=X(\sigma^0,\sigma^1)+wL$$

Marco Billò (D.F.T., Univ. Torino)

# CFT partition function of a compact boson

Consider a compact boson field

/

$$X(\sigma^0,\sigma^1) \sim X(\sigma^0,\sigma^1) + L$$

Upon Poisson resummation over the momentum *n*,

$$Z(q,\bar{q}) = \sigma L \sum_{m,w \in \mathbb{Z}} e^{-\frac{\sigma L^2}{2\tau_2} |m - \tau w|^2} \frac{1}{\sqrt{\tau_2} \eta(q) \eta(\bar{q})}$$

- This is natural expression from the path-integral formulation
- Sum over "world-sheet instantons": classical solutions of the field X with wrappings w (along σ<sub>1</sub>) and m (along σ<sub>0</sub>, loop geometry):

$$X(\sigma^0, \sigma^1 + 2\pi) = X(\sigma^0, \sigma^1) + wL$$
$$X(\sigma^0 + 2\pi\tau_2, \sigma^1 + 2\pi\tau_1) = X(\sigma^0, \sigma^1) + mL.$$

Marco Billò (D.F.T., Univ. Torino)

29/35

## The interface sector

- The partition function includes  $Z^{(d)}(q, \bar{q})$ , the product of partition functions for the *d* compact bosons  $X^M \rightarrow$  contains the sum over windings  $w^M$  and discrete momenta  $n^M$
- We can select the topological sector corresponding to an interface in the x<sup>1</sup>, x<sup>2</sup> plane
  - considering a string winding once in the x<sup>1</sup> direction:

$$w_1 = 1$$
,  $w_2 = w_3 = \ldots = w_d = 0$ 

► Poisson resumming over *n*<sup>2</sup>,..., *n*<sup>d</sup> and then choosing

$$m_2 = 1$$
,  $m_3 = m_4 = \ldots = m_d = 0$ 



# The interface partition function

The expression for the partition function of the interface in the first-order, covariant, bosonic string theory, is thus

$$\begin{aligned} \mathcal{Z} &= \prod_{i=2}^{d} \left( \sigma L_{i} \right) \sum_{N,\tilde{N}=0}^{\infty} \sum_{n_{1} \in \mathbb{Z}} c_{N} c_{\tilde{N}} \int_{-\infty}^{\infty} d\tau_{1} e^{2\pi i (N-\tilde{N}+n_{1})} \int_{0}^{\infty} \frac{d\tau_{2}}{(\tau_{2})^{\frac{d+1}{2}}} \\ &\times \exp\left\{ -\tau_{2} \left[ \frac{\sigma L_{1}^{2}}{2} + \frac{2\pi^{2} n_{1}^{2}}{\sigma L_{1}^{2}} + 2\pi (k+k'-\frac{d-2}{12}) \right] - \frac{1}{\tau_{2}} \left[ \frac{\sigma L_{2}^{2}}{2} \right] \right\} \end{aligned}$$

Marco Billò (D.F.T., Univ. Torino)

Bosonic strings for LGT

Turin, November 15, 2005

31/35

#### The result

- The integration over the parameters τ<sub>1</sub>, τ<sub>2</sub> of the world-sheet torus can be performed.
- The final result depends only on the geometry of the target space, in particular on the area  $A = L_1 L_2$  and the modulus  $u = L_2/L_1$  of the interface plane: **Back**

$$\mathcal{Z} = 2 \prod_{i=2}^{d} (\sigma L_i) \sum_{m=0}^{\infty} \sum_{k=0}^{m} c_k c_{m-k} \left(\frac{X}{u}\right)^{\frac{d-1}{2}} K_{\frac{d-1}{2}} (\sigma A X)$$

#### with

$$X = \sqrt{1 + \frac{4\pi u}{\sigma A}(m - \frac{d-2}{12}) + \frac{4\pi u^2(2k - m)^2}{\sigma^2 A^2}}$$

This is the expression that should resum the loop expansion of the functional integral

Expanding in powers of  $1/(\sigma A)$  we get

$$Z \propto \frac{\mathrm{e}^{-\sigma A}}{\eta^{2d-4}(\mathrm{i}u)} \cdot \left\{ 1 + \frac{(d-2)^2}{2\sigma A} \left[ \frac{\pi^2}{36} u^2 E_2^2(\mathrm{i}u) - \frac{\pi}{6} u E_2(\mathrm{i}u) + c_d \right] + \ldots \right\}$$

- Not too difficult to go to higher loops. In particular, we have worked out the 3-rd loop
  - New numerical simulations [Hasembush et al., to appear] are precise enough to be sensible to the 3-rd order corrections and seem to match our prediction.
  - If confirmed, this means that NG would still be a good model for the sizes considered in such simulations
  - We're working on a check of the simulations with full NG prediction
    Recall

Expanding in powers of  $1/(\sigma A)$  we get

$$Z \propto \frac{\mathrm{e}^{-\sigma A}}{\eta^{2d-4}(\mathrm{i}u)} \cdot \left\{ 1 + \frac{(d-2)^2}{2\sigma A} \left[ \frac{\pi^2}{36} u^2 E_2^2(\mathrm{i}u) - \frac{\pi}{6} u E_2(\mathrm{i}u) + c_d \right] + \ldots \right\}$$

Classical term

Not too difficult to go to higher loops. In particular, we have worked out the 3-rd loop

- New numerical simulations [Hasembush et al., to appear] are precise enough to be sensible to the 3-rd order corrections and seem to match our prediction.
- If confirmed, this means that NG would still be a good model for the sizes considered in such simulations
- We're working on a check of the simulations with full NG prediction
  Recall

Expanding in powers of  $1/(\sigma A)$  we get

$$Z \propto \frac{\mathrm{e}^{-\sigma A}}{\eta^{2d-4}(\mathrm{i}u)} \cdot \left\{ 1 + \frac{(d-2)^2}{2\sigma A} \left[ \frac{\pi^2}{36} u^2 E_2^2(\mathrm{i}u) - \frac{\pi}{6} u E_2(\mathrm{i}u) + c_d \right] + \ldots \right\}$$

- One-loop, universal quantum fluctuations of the *d* 2 transverse directions
- Not too difficult to go to higher loops. In particular, we have worked out the 3-rd loop
  - New numerical simulations [Hasembush et al., to appear] are precise enough to be sensible to the 3-rd order corrections and seem to match our prediction.
  - If confirmed, this means that NG would still be a good model for the sizes considered in such simulations
  - We're working on a check of the simulations with full NG prediction
    Recall

Expanding in powers of  $1/(\sigma A)$  we get

$$Z \propto \frac{\mathrm{e}^{-\sigma A}}{\eta^{2d-4}(\mathrm{i}u)} \cdot \left\{ 1 + \frac{(d-2)^2}{2\sigma A} \left[ \frac{\pi^2}{36} u^2 E_2^2(\mathrm{i}u) - \frac{\pi}{6} u E_2(\mathrm{i}u) + c_d \right] + \ldots \right\}$$

- Two-loop correction: agrees with Dietz-Filk!
- Not too difficult to go to higher loops. In particular, we have worked out the 3-rd loop
  - New numerical simulations [Hasembush et al., to appear] are precise enough to be sensible to the 3-rd order corrections and seem to match our prediction.
  - If confirmed, this means that NG would still be a good model for the sizes considered in such simulations
  - We're working on a check of the simulations with full NG prediction
    Recall

Expanding in powers of  $1/(\sigma A)$  we get

$$Z \propto \frac{\mathrm{e}^{-\sigma A}}{\eta^{2d-4}(\mathrm{i}u)} \cdot \left\{ 1 + \frac{(d-2)^2}{2\sigma A} \left[ \frac{\pi^2}{36} u^2 E_2^2(\mathrm{i}u) - \frac{\pi}{6} u E_2(\mathrm{i}u) + c_d \right] + \dots \right\}$$

- Not too difficult to go to higher loops. In particular, we have worked out the 3-rd loop
  - New numerical simulations [Hasembush et al., to appear] are precise enough to be sensible to the 3-rd order corrections and seem to match our prediction.
  - If confirmed, this means that NG would still be a good model for the sizes considered in such simulations
  - We're working on a check of the simulations with full NG prediction

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

#### Some remarks

- Any "naive" treatment of bosonic string in d ≠ 26 suffers from the breaking of conformal invariance (heavily used to solve the model) at the quantum level. This applies to the 1st order treatment we used as well.
  - This should manifest itself more and more as the area A decreases
  - Our explicit expression of the NG partition function should allow to study the amount and the onset of the discrepancy of the NG model with the "real" (= simulated) interfaces

There has been some recent attempts in the literature [see Kuti, Lattice 2005] to the inferface partition function using the Polchinski-Strominger string

- No problems with quantum conformal invariance
- But non-local terms in the action
- Apparently (computations are not so detailed) up to the 2nd loop it should agree with NG. Discrepancies should inset from then on. Further study of such model is required.

#### Some remarks

- Any "naive" treatment of bosonic string in d ≠ 26 suffers from the breaking of conformal invariance (heavily used to solve the model) at the quantum level. This applies to the 1st order treatment we used as well.
  - This should manifest itself more and more as the area A decreases
  - Our explicit expression of the NG partition function should allow to study the amount and the onset of the discrepancy of the NG model with the "real" (= simulated) interfaces
- There has been some recent attempts in the literature [see Kuti, Lattice 2005] to the inferface partition function using the Polchinski-Strominger string
  - No problems with quantum conformal invariance
  - But non-local terms in the action
  - Apparently (computations are not so detailed) up to the 2nd loop it should agree with NG. Discrepancies should inset from then on. Further study of such model is required.

34/35

# Conclusions and outlook

- The covariant quantization in 1st order formalism of the NG action is a convenient way to derive partition functions of the string with different b.c.s, related to different LGT observables
  - It reproduces the partition function based on Arvis spectrum for the Polyakov loop correlator case ~ D0-brane interaction with compact time
  - It yields the partition function for the interfaces ~ appropriate sector of one loop closed strings
- Various developments are possible
  - The most pressing task:
    - \* Finish the paper about the interface spectrum!
  - Work on the comparison with numerical simulations of interfaces, try to connect to works on 't Hooft loops
  - Consider the Wilson loop geometry

# Conclusions and outlook

- The covariant quantization in 1st order formalism of the NG action is a convenient way to derive partition functions of the string with different b.c.s, related to different LGT observables
  - It reproduces the partition function based on Arvis spectrum for the Polyakov loop correlator case ~ D0-brane interaction with compact time
  - It yields the partition function for the interfaces ~ appropriate sector of one loop closed strings
- Various developments are possible
  - The most pressing task:
    - \* Finish the paper about the interface spectrum!
  - Work on the comparison with numerical simulations of interfaces, try to connect to works on 't Hooft loops
  - Consider the Wilson loop geometry
## Conclusions and outlook

- The covariant quantization in 1st order formalism of the NG action is a convenient way to derive partition functions of the string with different b.c.s, related to different LGT observables
  - It reproduces the partition function based on Arvis spectrum for the Polyakov loop correlator case ~ D0-brane interaction with compact time
  - It yields the partition function for the interfaces ~ appropriate sector of one loop closed strings
- Various developments are possible
  - The most pressing task:
    - ★ Finish the paper about the interface spectrum!
  - Work on the comparison with numerical simulations of interfaces, try to connect to works on 't Hooft loops
  - Consider the Wilson loop geometry

イロト イポト イヨト イヨト

## Conclusions and outlook

- The covariant quantization in 1st order formalism of the NG action is a convenient way to derive partition functions of the string with different b.c.s, related to different LGT observables
  - It reproduces the partition function based on Arvis spectrum for the Polyakov loop correlator case ~ D0-brane interaction with compact time
  - It yields the partition function for the interfaces ~ appropriate sector of one loop closed strings
- Various developments are possible
  - The most pressing task:
    - ★ Finish the paper about the interface spectrum!
  - Work on the comparison with numerical simulations of interfaces, try to connect to works on 't Hooft loops
  - Consider the Wilson loop geometry

イロト イポト イヨト イヨト

## Conclusions and outlook

- The covariant quantization in 1st order formalism of the NG action is a convenient way to derive partition functions of the string with different b.c.s, related to different LGT observables
  - It reproduces the partition function based on Arvis spectrum for the Polyakov loop correlator case ~ D0-brane interaction with compact time
  - It yields the partition function for the interfaces ~ appropriate sector of one loop closed strings
- Various developments are possible
  - The most pressing task:
    - ★ Finish the paper about the interface spectrum!
  - Work on the comparison with numerical simulations of interfaces, try to connect to works on 't Hooft loops
  - Consider the Wilson loop geometry

イロト イポト イヨト イヨト