(D)-instanton effects in magnetized brane worlds

Marco Billò

Dip. di Fisica Teorica, Università di Torino and I.N.FN., sez. di Torino

CONSTITUENTS, FUNDAMENTAL FORCES AND SYMMETRIES ... RTN Workshop 2007, Valencia

Disclaimer

This talk is mostly based on
(R- M. Billo, M. Frau, I. Pesando, P. Di Vecchia, A. Lerda and R. Marotta, "Instanton effects in $\mathrm{N}=1$ brane models and the Kahler metric of twisted matter," arXiv:0709.0245 [hep-th].

It also uses a bit
(M. Billo, M. Frau, I. Pesando, P. Di Vecchia, A. Lerda and R. Marotta, "Instantons in N=2 magnetized D-brane worlds," arXiv:0708.3806 [hep-th].
and, of course, builds over a vast literature. The few references scattered on the slides are by no means intended to be exhaustive. I apologize for the many relevant ones which will be missing.

Plan of the talk

(1) Introduction
(2) The set-up
(3) The stringy instanton calculus
(4) Instanton annuli and threshold corrections

5 Holomorphicity properties

Introduction

Wrapped brane scenarios

- Type IIB: magnetized D9 branes
- Type IIA (T-dual): intersecting D6 (easier to visualize)

Supersymmetric gauge theories on $\mathbf{R}^{1,3}$ with chiral matter and interesting phenomenology

- families from multiple intersections, tuning different coupling constants, ...

Wrapped brane scenarios

- Type IIB: magnetized D9 branes
- Type IIA (T-dual): intersecting D6 (easier to visualize)

- low energy described by SUGRA with vector and matter multiplets
- can be derived directly from string amplitudes (with different field normaliz.s)
- novel stringy effects (pert. and non-pert.) in the eff. action?

Euclidean branes and instantons

Ordinary instantons
E3 branes wrapped on the same cycle as some D6 branes are point-like in $\mathbf{R}^{1,3}$ and correspond to instantonic config.s of the gauge theory on the D6

Analogous to the D3/D(-1) system:

- ADHM from strings attached to the instantonic branes

Witten, 1995; Douglas, 1995-1996;

- non-trivial instanton profile of the gauge field
N.B. In type IIB, use D9/E5 branes

Euclidean branes and instantons

E3 branes wrapped differently from the D6 branes are still point-like in $\mathbf{R}^{1,3}$ but do not correspond to ordinary instantons config.s.

Still they can,in certain cases, give important non-pert, stringy contributions to the effective action, .e.g. Majorana masses for neutrinos, moduli stabilizing terms, ...

Blumenhagen et al, 2006; Ibanez and Uranga, 2006;

- Potentially crucial for string phenomenology

Perspective of this work

Clarify some aspects of the "stringy instanton calculus", i.e., of computing the contributions of Euclidean branes

- Focus on ordinary instantons, but should be useful for exotic instantons as well
- Choose a toroidal compactification where string theory is calculable.
- Realize (locally) $\mathcal{N}=1$ gauge SQCD on a system of D9-branes and discuss contributions of E5 branes to the superpotential
- Analyze the rôle of annuli bounded by E5 and D9 branes in giving these terms suitable holomorphicity properties

The set-up

The background geometry

Internal space:

$$
\frac{\mathcal{T}_{2}^{(1)} \times \mathcal{T}_{2}^{(2)} \times \mathcal{T}_{2}^{(3)}}{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}
$$

The Kähler param.s and complex structures determine the string frame metric and the B field.

- String fields: $X^{M} \rightarrow\left(X^{\mu}, Z^{i}\right)$ and $\psi^{M} \rightarrow\left(\psi^{\mu}, \Psi^{i}\right)$, with

$$
Z^{i}=\sqrt{\frac{T_{2}^{(i)}}{2 U_{2}^{(i)}}}\left(X^{2 i+2}+U^{(i)} X^{2 i+3}\right)
$$

- Spin fields: $S^{\dot{\mathcal{A}}} \rightarrow\left(S_{\alpha} S_{---}, S_{\alpha} S_{-++}, \ldots, S^{\dot{\alpha}} S^{+++}, \ldots\right)$

The background geometry

Internal space:

$$
\frac{\mathcal{T}_{2}^{(1)} \times \mathcal{T}_{2}^{(2)} \times \mathcal{T}_{2}^{(3)}}{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}
$$

- Action of the orbifold group elements:

$$
\begin{aligned}
& h_{1}:\left(Z^{1}, Z^{2}, Z^{3}\right) \rightarrow\left(Z^{1},-Z^{2},-Z^{3}\right) \\
& h_{2}:\left(Z^{1}, Z^{2}, Z^{3}\right) \rightarrow\left(-Z^{1}, Z^{2},-Z^{3}\right) \\
& h_{3}:\left(Z^{1}, Z^{2}, Z^{3}\right) \rightarrow\left(-Z^{1},-Z^{2}, Z^{3}\right)
\end{aligned}
$$

The background geometry

Internal space:

$$
\frac{\mathcal{T}_{2}^{(1)} \times \mathcal{T}_{2}^{(2)} \times \mathcal{T}_{2}^{(3)}}{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}
$$

- Supergravity basis: $s, t^{(i)}, u^{(i)}$, with

$$
\begin{aligned}
& \operatorname{Im}(s) \equiv s_{2}=\frac{1}{4 \pi} \mathrm{e}^{-\phi_{10}} T_{2}^{(1)} T_{2}^{(2)} T_{2}^{(3)}, \\
& \operatorname{Im}\left(t^{(i)}\right) \equiv t_{2}^{(i)}=\mathrm{e}^{-\phi_{10}} T_{2}^{(i)}, \quad u^{(i)}=u_{1}^{(i)}+\mathrm{i} u_{2}^{(i)}=U^{(i)},
\end{aligned}
$$

- $\mathcal{N}=1$ bulk Kähler potential:

$$
K=-\log \left(s_{2}\right)-\sum_{i=1} \log \left(t_{2}^{(i)}\right)-\sum_{i=1} \log \left(u_{2}^{(i)}\right)
$$

$\mathcal{N}=1$ from magnetized branes

The gauge sector

Place a stack of N_{a} fractional D9 branes ("color branes" 9a).

- Massless spectrum of 9a/9a strings gives rise, in $\mathbf{R}^{1,3}$, to the $\mathcal{N}=1$ vector multiplets for the gauge group $\mathrm{U}\left(N_{a}\right)$
- The gauge coupling constant is given by

$$
\frac{1}{g_{a}^{2}}=\frac{1}{4 \pi} \mathrm{e}^{-\phi_{10}} T_{2}^{(1)} T_{2}^{(2)} T_{2}^{(3)}=s_{2}
$$

$\mathcal{N}=1$ from magnetized branes

Adding flavors
Add D9-branes ("flavor branes" 9b) with quantized magnetic fluxes

$$
f_{b}^{(i)}=\frac{m_{b}^{(i)}}{n_{b}^{(i)}}
$$

and in a different orbifold rep.

- (Bulk) susy requires $\nu_{b}^{(1)}-\nu_{b}^{(2)}-\nu_{b}^{(3)}=0$, where

$$
f_{b}^{(i)} / T_{2}^{(i)}=\tan \pi \nu_{b}^{(i)} \quad \text { with } \quad 0 \leq \nu_{b}^{(i)}<1
$$

$\mathcal{N}=1$ from magnetized branes

Adding flavors
Add D9-branes ("flavor branes" 9b) with quantized magnetic fluxes

$$
f_{b}^{(i)}=\frac{m_{b}^{(i)}}{n_{b}^{(i)}}
$$

and in a different orbifold rep.

- $9 a / 9 b$ strings are twisted by the relative angles

$$
\nu_{b a}^{(i)}=\nu_{b}^{(i)}-\nu_{a}^{(i)}
$$

- If $\nu_{b a}^{(1)}-\nu_{b a}^{(2)}-\nu_{b a}^{(3)}=0$, this sector is supersymmetric: massless modes fill up a chiral multiplet $q_{b a}$ in the anti-fundamental rep \bar{N}_{a} of the color group

$\mathcal{N}=1$ from magnetized branes

Adding flavors
Add D9-branes ("flavor branes" 9b) with quantized magnetic fluxes

$$
f_{b}^{(i)}=\frac{m_{b}^{(i)}}{n_{b}^{(i)}}
$$

and in a different orbifold rep.

- The degeneracy of this chiral multiplet is $N_{b}\left|I_{a b}\right|$, where $I_{a b}$ is the \# of Landau levels for the (a, b) "intersection"

$$
I_{a b}=\prod_{i=1}\left(m_{a}^{(i)} n_{b}^{(i)}-m_{b}^{(i)} n_{a}^{(i)}\right)
$$

$\mathcal{N}=1$ from magnetized branes

Engineering $\mathcal{N}=1$ SQCD

Introduce a third stack of $9 c$ branes such that we get a chiral mult. $q_{a c}$ in the fundamental rep N_{a} and that

$$
N_{b}\left|I_{a b}\right|=N_{c}\left|I_{a c}\right| \equiv N_{F}
$$

- This gives a (local) realization of $\mathcal{N}=1$ SQCD: same number N_{F} of fundamental and anti-fundamental chiral multiplets, resp. denoted by q_{f} and \tilde{q}^{f}

$\mathcal{N}=1$ from magnetized branes

Engineering $\mathcal{N}=1$ SQCD

Introduce a third stack of $9 c$ branes such that we get a chiral mult. $q_{a c}$ in the fundamental rep N_{a} and that

$$
N_{b}\left|I_{a b}\right|=N_{c}\left|I_{a c}\right| \equiv N_{F}
$$

Kinetic terms of chiral mult. scalars from disk amplitudes

$$
\sum_{f=1}^{N_{F}}\left\{D_{\mu} q^{\dagger f} D^{\mu} q_{f}+D_{\mu} \tilde{q}^{f} D^{\mu} \tilde{q}_{f}^{\dagger}\right\} \quad \sum_{f=1}^{N_{F}}\left\{K_{Q} D_{\mu} Q^{\dagger f} D^{\mu} Q_{f}+K_{\tilde{Q}} D_{\mu} \tilde{Q}^{f} D^{\mu} \tilde{Q}_{f}^{\dagger}\right\}
$$

Sugra Lagrangian: different field normaliz. s

- Related via the Kähler metrics: $q=\sqrt{K_{Q}} Q, \tilde{q}=\sqrt{K_{\tilde{Q}}} \tilde{Q}$

Non-perturbative sectors from E5

Adding "ordinary" instantons
Add a stack of k E5 branes whose internal part coincides with the D9a:

- ordinary instantons for the D9a gauge theory
- would be exotic for the D9b, c gauge theories

- New types of open strings: $E 5_{a} / E 5_{a}$ (neutral sector), D9 ${ }_{a} / E 5_{a}$ (charged sector), D9 ${ }_{b} / E 5_{a}$ or E5 ${ }_{a} / D 9_{c}$ (flavored sectors, twisted)
- These states carry no momentum in space-time: moduli, not fields. [Collective name: \mathcal{M}_{k}]
- charged or neutral moduli can have KK momentum

Non-perturbative sectors from E5

The spectrum of moduli

Sector		ADHM	Meaning	Chan-Paton	Dimension
$5 a / 5 a$	NS	a_{μ}	centers	adj. $\mathrm{U}(\mathrm{k})$	(length)
		D_{c}	Lagrange mult.	:	(length) ${ }^{-2}$
	R	M^{α}	partners	:	(length) ${ }^{\frac{1}{2}}$
		$\lambda_{\dot{\alpha}}$	Lagrange mult.	\vdots	(length) ${ }^{-\frac{3}{2}}$
$9 a / 5 a$	NS	$w_{\dot{\alpha}}$	sizes	$N_{a} \times \bar{k}$	(length)
$5 a / 9 a$		$\bar{W}_{\dot{\alpha}}$:	$k \times \bar{N}_{\text {a }}$	
$9{ }_{a} / 5{ }_{a}$	R	μ	partners	$N_{a} \times \bar{k}$	$\left(\right.$ length) ${ }^{\frac{1}{2}}$
$5 a / 9 a$		$\bar{\mu}$:	$k \times \bar{N}_{a}$:
$9{ }_{6} / 5{ }_{\text {a }}$	R	μ^{\prime}	flavored	$N_{F} \times \bar{k}$	$\left(\right.$ length) ${ }^{\frac{1}{2}}$
$5 a / 9{ }_{c}$		$\tilde{\mu}^{\prime}$		$k \times \bar{N}_{F}$	

Non-perturbative sectors from E5

Some observations

- Among the neutral moduli we have the center of mass position x_{0}^{μ} and its fermionic partner θ^{α} (related to susy broken by the E5a): ©Back

$$
a^{\mu}=x_{0}^{\mu} \mathbb{1}_{k \times k}+y_{c}^{\mu} T^{c} \quad, \quad M^{\alpha}=\theta^{\alpha} \mathbb{1}_{k \times k}+\zeta_{c}^{\alpha} T^{c},
$$

- In the flavored sectors only fermionic zero-modes:
- μ_{f}^{\prime} (D9 $9_{b} / E 5_{a}$ sector)
- $\tilde{\mu}^{\prime f}$ (E5a/D9 ${ }_{c}$ sector)

The stringy instanton calculus

Instantonic correlators

The stringy way
In presence of Euclidean branes, dominant contribution to correlators of gauge/matter fields from one-point functions.

Polchinski, 1994; Green and Gutperle, 1997-2000; Billo et al, 2002; Blumenhagen et al, 2006
E.g., a correlator of chiral fields $\langle q \tilde{q} \ldots\rangle$ is given by

Disks:

The effective action

in an instantonic sector

The various instantonic correlators can be obtained by "shifting" the moduli action by terms dependent on the gauge/matter fields. In the case at hand,

$$
\begin{aligned}
& S_{\bmod }\left(q, \tilde{q}_{;}, \mathcal{M}_{k}\right)=\ldots+\ldots \\
& \quad=\operatorname{tr}_{k}\left\{i D_{c}\left(\bar{w}_{\dot{\alpha}}\left(\tau^{c}\right)_{\dot{\beta}}^{\dot{\alpha}} w^{\dot{\beta}}+\bar{\eta}_{\mu \nu}^{c}\left[a^{\mu}, a^{\nu}\right]\right)\right. \\
& - \\
& \left.\quad-i \lambda^{\dot{\alpha}}\left(\bar{\mu} w_{\dot{\alpha}}+\bar{w}_{\dot{\alpha}} \mu+\left[a_{\mu}, M^{\alpha}\right] \sigma_{\alpha \dot{\alpha}}^{\mu}\right)\right\} \\
& \quad+\operatorname{tr}_{k} \sum_{t}\left\{\bar{w}_{\dot{\alpha}}\left[q^{\dagger f} q_{f}+\tilde{q}^{f} \tilde{q}_{f}^{\dagger}\right] w^{\dot{\alpha}}-\frac{i}{2} \bar{\mu} \overline{q^{\dagger}} \mu_{f}^{\prime}+\frac{i}{2} \tilde{\mu}^{\prime f} \tilde{q}_{f}^{\dagger} \mu\right\} .
\end{aligned}
$$

The effective action

in an instantonic sector

- There are other relevant diagrams involving the superpartners of q and \tilde{q}, related to the above by susy Ward identities. Complete result:

$$
q\left(x_{0}\right), \tilde{q}\left(x_{0}\right) \rightarrow q\left(x_{0}, \theta\right), \tilde{q}\left(x_{0}, \theta\right)
$$

in $S_{\bmod }\left(q, \tilde{q} ; \mathcal{M}_{k}\right)$.

- The moduli have to be integrated over

The instanton partition function

as an integral over moduli space

Summarizing, the effective action has the form (Higgs branch)

$$
S_{k}=\mathcal{C}_{k} \mathrm{e}^{-\frac{8 \pi^{2}}{g_{a}^{2}} k} \mathrm{e}^{\mathcal{A}_{5_{a}}^{\prime}} \int d \mathcal{M}_{k} \mathrm{e}^{-S_{\bmod }\left(q, \tilde{q} ; \mathcal{M}_{k}\right)}
$$

The instanton partition function

as an integral over moduli space

Summarizing, the effective action has the form (Higgs branch)

$$
S_{k}=\mathcal{C}_{k} \mathrm{e}^{-\frac{8 \pi^{2}}{g_{a}^{2}} k} \mathrm{e}^{\mathcal{A}_{5 a}^{\prime}} \int d \mathcal{M}_{k} \mathrm{e}^{-S_{\bmod }\left(q, \tilde{q} ; \mathcal{M}_{k}\right)}
$$

- $\operatorname{In} \mathcal{A}_{5_{a}}^{\prime}$ the contribution of zero-modes running in the loop is suppressed because they're already explicitly integrated over

The instanton partition function

as an integral over moduli space

Summarizing, the effective action has the form (Higgs branch)

$$
S_{k}=\mathcal{C}_{k} \mathrm{e}^{-\frac{8 \pi^{2}}{g_{a}^{2}} k} \mathrm{e}^{\mathcal{A}_{5_{a}}^{\prime}} \int d \mathcal{M}_{k} \mathrm{e}^{-S_{\text {mod }}\left(q, \tilde{q} ; \mathcal{M}_{k}\right)}
$$

- \mathcal{C}_{k} is a normalization factor, determined (up to numerical constants) counting the dimensions of the moduli \mathcal{M}_{k} :

$$
\mathcal{C}_{k}=\left(\sqrt{\alpha^{\prime}}\right)^{-\left(3 N_{a}-N_{F}\right) k}\left(g_{a}\right)^{-2 N_{a} k}
$$

The β-function coeff. b_{1} appears, and one can write

$$
\mathcal{C}_{k} \mathrm{e}^{-\frac{8 \pi^{2}}{g_{a}^{2}} k}=\left(\Lambda_{\mathrm{PV}}^{b_{1}} \prod_{f} Z_{f}\right)^{k}
$$

Instanton induced superpotential

In $S_{\text {mod }}\left(q, \tilde{q} ; \mathcal{M}_{k}\right)$, the superspace coordinates x_{0}^{μ} and θ^{α} appear only through superfields $q\left(x_{0}, \theta\right), \tilde{q}\left(x_{0}, \theta\right), \ldots$ Recall

- We can separate x, θ from the other moduli $\widehat{\mathcal{M}}_{k}$ writing

$$
S_{k}=\int d^{4} x_{0} d^{2} \theta W_{k}(q, \tilde{q})
$$

with the effective superpotential

$$
W_{k}(q, \tilde{q})=\left(\Lambda_{\mathrm{PV}}^{b_{1}} \prod_{f=1}^{N_{F}} Z_{f}\right)^{k} \mathrm{e}^{\mathcal{A}_{5_{a}}^{\prime}} \int d \widehat{\mathcal{M}}_{k} \mathrm{e}^{-S_{\bmod }\left(q, \tilde{q} ; \widehat{\mathcal{M}}_{k}\right)}
$$

Issues of holomorphicity

A superpotential is expected to be holomorphic. We found

$$
W_{k}(q, \tilde{q})=\left(\Lambda_{P V}^{b_{1}} \prod_{f=1}^{N_{F}} Z_{f}\right)^{k} \mathrm{e}^{\mathcal{A}_{5_{a}}^{\prime}} \int d \widehat{\mathcal{M}}_{k} \mathrm{e}^{-S_{\bmod }\left(q, \tilde{q} ; \widehat{\mathcal{M}}_{k}\right)}
$$

Issues of holomorphicity

A superpotential is expected to be holomorphic. We found

$$
W_{k}(q, \tilde{q})=\left(\Lambda_{p v}^{b_{p}} \prod_{f=1}^{N_{F}} z_{f}\right)^{k} \mathrm{e}^{\mathcal{A}_{5 a}^{\prime}} \int d \widehat{\mathcal{M}}_{k} \mathrm{e}^{-S_{\bmod }\left(q, \tilde{q} ; \widehat{\mathcal{M}}_{k}\right)}
$$

- $S_{\text {mod }}\left(q, \tilde{q} ; \widehat{\mathcal{M}}_{k}\right)$ explicitly depends on q^{\dagger} and \tilde{q}^{\dagger}. This dependence disappears upon integrating over $\widehat{\mathcal{M}}_{k}$ as a consequence of the cohomology properties of the integration measure.
- However, we have to re-express the result in terms of the SUGRA fields Q and \tilde{Q} creall

Issues of holomorphicity

A superpotential is expected to be holomorphic. We found

$$
W_{k}(q, \tilde{q})=\left(\Lambda_{p v}^{b_{1}} \prod_{f=1}^{N_{F}} Z_{f}\right)^{k} \mathrm{e}^{\mathcal{A}_{5 a}^{\prime}} \int d \widehat{\mathcal{M}}_{k} \mathrm{e}^{-S_{\bmod }\left(q, \tilde{q} ; \widehat{\mathcal{M}}_{k}\right)}
$$

- The Pauli-Villars scale Λ_{pv} has to be replaced by the holomorphic scale $\Lambda_{\text {hol }}$, obtained by integrating the Wilsonian β-function of the $\mathcal{N}=1$ SQCD, with

Novikov et al, 1983; Dorey et al, 2002;

$$
\Lambda_{\mathrm{hol}}^{b_{1}}=g_{a}^{2 N_{a}} \Lambda_{\mathrm{PV}}^{b_{1}} \prod_{f} Z_{f}
$$

Issues of holomorphicity

A superpotential is expected to be holomorphic. We found

$$
W_{k}(q, \tilde{q})=\left(\Lambda_{p v}^{b_{1}} \prod_{f=1}^{N_{F}} Z_{f}\right)^{k} \mathrm{e}^{\mathcal{A}_{5 \alpha}^{\prime}} \int d \widehat{\mathcal{M}}_{k} \mathrm{e}^{-S_{\bmod }\left(q, \tilde{q} ; \widehat{\mathcal{M}}_{k}\right)}
$$

- $\mathcal{A}_{5_{\mathrm{a}}}^{\prime}$ can introduce a non-holomorphic dependence on the complex and Kähler structure moduli of the compactification space.

```
- Back
```

- Our aim is to consider the interplay of all these observations. For this we need the explicit expression of the mixed annuli term $\mathcal{A}_{5_{\alpha}}^{\prime}$

The ADS/TVY superpotential

To be concrete, let's focus on the single instanton case, $k=1$. In this case, the integral over the moduli can be carried out explicitly.

- Balancing the fermionic zero-modes requires $N_{F}=N_{a}-1$
- The end result is

$$
W_{k=1}(q, \tilde{q})=\mathrm{e}^{\mathcal{A}_{5_{a}}^{\prime}}\left(\Lambda_{\mathrm{PV}}^{2 N_{a}+1} \prod_{f=1}^{N_{a}-1} Z_{f}\right) \frac{1}{\operatorname{det}(\tilde{q} q)}
$$

The ADS/TVY superpotential

To be concrete, let's focus on the single instanton case, $k=1$. In this case, the integral over the moduli can be carried out explicitly.

- Balancing the fermionic zero-modes requires $N_{F}=N_{a}-1$
- The end result is

$$
W_{k=1}(q, \tilde{q})=\mathrm{e}^{\mathcal{A}_{5_{a}}^{\prime}}\left(\Lambda_{\mathrm{PV}}^{2 N_{a}+1} \prod_{f=1}^{N_{a}-1} Z_{f}\right) \frac{1}{\operatorname{det}(\tilde{q} q)}
$$

- Same form as the ADS/TVY superpotential

The ADS/TVY superpotential

To be concrete, let's focus on the single instanton case, $k=1$. In this case, the integral over the moduli can be carried out explicitly.

- Balancing the fermionic zero-modes requires $N_{F}=N_{a}-1$
- The end result is

$$
W_{k=1}(q, \tilde{q})=\mathrm{e}^{\mathcal{A}_{5 a}^{\prime}}\left(\Lambda_{P V}^{2 N_{a}+1} \prod_{f=1}^{N_{a}-1} Z_{f}\right) \frac{1}{\operatorname{det}((\tilde{q} q)}
$$

- We'll see how these factors conspire to give an holomorphic expression in the sugra variables Q and \tilde{Q}

Instanton annuli and threshold corrections

The mixed annuli

The amplitude $\mathcal{A}_{5_{a}}$ is a sum of cylinder amplitudes with a boundary on the E5a (both orientations)

The mixed annuli

The amplitude $\mathcal{A}_{5_{a}}$ is a sum of cylinder amplitudes with a boundary on the E5a (both orientations)

- Both UV and IR divergent. The UV divergences (IR in the closed string channel) cancel if tadpole cancellation assumed. Regulate the IR with a scale μ

The mixed annuli

The amplitude $\mathcal{A}_{5_{a}}$ is a sum of cylinder amplitudes with a boundary on the E5a (both orientations)

- There is a relation between these instantonic annuli and the running gauge coupling constant

Abel and Goodsell, 2006; Akerblom et al, 2006

$$
\mathcal{A}_{5_{a}}=-\left.\frac{8 \pi^{2} k}{g_{a}^{2}(\mu)}\right|_{1-\mathrm{loop}}
$$

- Indeed, in susy theories, mixed annuli compute the running coupling by expanding around the instanton bkg

Expression of the annuli

The explicit computation of the annuli confirms the relation of these annuli to the running coupling. Imposing the appropriate b.c.'s and GSO one starts from

$$
\int_{0}^{\infty} \frac{d \tau}{2 \tau}\left[\operatorname{Tr}_{\mathrm{NS}}\left(P_{\mathrm{GSO}} P_{\text {orb. }} . q^{L_{0}}\right)-\operatorname{Tr}_{\mathrm{R}}\left(P_{\mathrm{GSO}} P_{\text {orb. }} q^{L_{0}}\right)\right]
$$

- For $\mathcal{A}_{5_{a} ; 9_{9}}$, KK copies of zero-modes on internal tori $\mathcal{T}_{2}^{(i)}$ give a (non-holomorphic) dependence on the Kähler and complex moduli
- For $\mathcal{A}_{5_{a} ; 9_{b}}$ and $\mathcal{A}_{5_{a ;} ; 9_{c}}^{\prime}$, the modes are twisted and the result depends from the angles $\nu_{b a}^{(i)}$ and $\nu_{a c}^{(i)}$

Expression of the annuli

Explicit result

$$
\begin{aligned}
\mathcal{A}_{5_{a} ; 9_{a}} & =-8 \pi^{2} k\left[\frac{3 N_{a}}{16 \pi^{2}} \log \left(\alpha^{\prime} \mu^{2}\right)\right. \\
+ & \frac{N_{a}}{16 \pi^{2}} \sum_{i} \log \left(U_{2}^{(i)} T_{2}^{(i)}\left(\eta\left(U^{(i)}\right)^{4}\right)\right] \\
\mathcal{A}_{5_{a} ; 9_{b}}+\mathcal{A}_{5_{a} ; 9_{c}} & =8 \pi^{2} k\left(\frac{N_{F}}{16 \pi^{2}} \log \left(\alpha^{\prime} \mu^{2}\right)\right. \\
& \left.+\frac{N_{F}}{32 \pi^{2}} \log \left(\Gamma_{b a} \Gamma_{a c}\right)\right)
\end{aligned}
$$

Expression of the annuli

Explicit result

$$
\begin{aligned}
\mathcal{A}_{5_{a} ; 9_{a}} & =-8 \pi^{2} k\left[\frac{3 N_{a}}{16 \pi^{2}} \log \left(\alpha^{\prime} \mu^{2}\right)\right. \\
+ & \frac{N_{a}}{16 \pi^{2}} \sum_{i} \log \left(U_{2}^{(i)} T_{2}^{(i)}\left(\eta\left(U^{(i)}\right)^{4}\right)\right] \\
\mathcal{A}_{5_{a} ; 9_{b}}+\mathcal{A}_{5_{a} ; 9_{c}} & =8 \pi^{2} k\left(\frac{N_{F}}{16 \pi^{2}} \log \left(\alpha^{\prime} \mu^{2}\right)\right. \\
& \left.+\frac{N_{F}}{32 \pi^{2}} \log \left(\Gamma_{b a} \Gamma_{a c}\right)\right)
\end{aligned}
$$

- β-function coefficient of SQCD: $3 N_{a}-N_{F}$

Expression of the annuli

Explicit result

$$
\begin{aligned}
\mathcal{A}_{5_{a} ; 9_{a}} & =-8 \pi^{2} k\left[\frac{3 N_{a}}{16 \pi^{2}} \log \left(\alpha^{\prime} \mu^{2}\right)\right. \\
+ & \frac{N_{a}}{16 \pi^{2}} \sum_{i} \log \left(U_{2}^{(i)} T_{2}^{(i)}\left(\eta\left(U^{(i)}\right)^{4}\right)\right] \\
\mathcal{A}_{5 a ; 9_{b}}+\mathcal{A}_{5_{a} ; 9_{c}} & =8 \pi^{2} k\left(\frac{N_{F}}{16 \pi^{2}} \log \left(\alpha^{\prime} \mu^{2}\right)\right. \\
& \left.+\frac{N_{F}}{32 \pi^{2}} \log \left(\Gamma_{b a} \Gamma_{a c}\right)\right)
\end{aligned}
$$

- Non-holomorphic threshold corrections

Expression of the annuli

Explicit result

$$
\begin{aligned}
& \mathcal{A}_{5_{a} ; 9_{a}}=-8 \pi^{2} k\left[\frac{3 N_{a}}{16 \pi^{2}} \log \left(\alpha^{\prime} \mu^{2}\right)\right. \\
&+\frac{N_{a}}{16 \pi^{2}} \sum_{i} \log \left(U_{2}^{(i)} T_{2}^{(i)}\left(\eta\left(U^{(i)}\right)^{4}\right)\right], \\
& \mathcal{A}_{5_{a} ; 9_{b}}+\mathcal{A}_{5_{a} ; 9_{c}}=8 \pi^{2} k\left(\frac{N_{F}}{16 \pi^{2}} \log \left(\alpha^{\prime} \mu^{2}\right)\right. \\
&\left.+\frac{N_{F}}{32 \pi^{2}} \log \left(\Gamma_{b a} \Gamma_{a c}\right)\right),
\end{aligned}
$$

$$
-\Gamma_{b a}=\frac{\Gamma\left(1-\nu_{b a}^{(1)}\right)}{\Gamma\left(\nu_{b a}^{(1)}\right)} \frac{\Gamma\left(\nu_{b a}^{(2)}\right)}{\Gamma\left(1-\nu_{b a}^{(2)}\right)} \frac{\Gamma\left(\nu_{b a}^{(3)}\right)}{\Gamma\left(1-\nu_{b a}^{(3)}\right)}
$$

Holomorphicity properties

The "primed" annuli

The instanton-induced correlators involve the primed part $\mathcal{A}_{5 a}^{\prime}$ of the mixed annuli

- We must subtract the contrib. of the zero-modes running in the loop, which are responsible for the IR divergences
- To this aim, we use the natural UV cut-off of the low-energy theory, the Plack mass

$$
M_{P}^{2}=\frac{1}{\alpha^{\prime}} \mathrm{e}^{-\phi_{10}} s_{2}
$$

We write then

$$
\mathcal{A}_{5 a}=-k \frac{b_{1}}{2} \log \frac{\mu^{2}}{M_{P}^{2}}+\mathcal{A}_{5 a}^{\prime}
$$

The "primed" annuli

The instanton-induced correlators involve the primed part $\mathcal{A}_{5 a}^{\prime}$ of the mixed annuli Recall

- With some algebra, and recalling the definition of the sugra variables, we find Recall Back

$$
\begin{aligned}
\mathcal{A}_{5_{a}}^{\prime} & =-N_{a} \sum_{i=1}^{3} \log \left(\eta\left(u^{(i)}\right)^{2}\right)+N_{a} \log g_{a}^{2}+\frac{N_{a}-N_{F}}{2} K \\
& +\frac{N_{F}}{2} \log \left(K_{b a} K_{a c}\right)
\end{aligned}
$$

with (similarly for $K_{a c}$)

$$
K_{b a}=\left(4 \pi s_{2}\right)^{-\frac{1}{4}}\left(t_{2}^{(1)} t_{2}^{(2)} t_{2}^{(3)}\right)^{-\frac{1}{4}}\left(u_{2}^{(1)} u_{2}^{(2)} u_{2}^{(3)}\right)^{-\frac{1}{2}}\left(\Gamma_{b a}\right)^{\frac{1}{2}}
$$

Back to the ADS/VTY superpotential

Getting holomorphicity
We found (recall that $N_{F}=N_{a}-1$ in this case)

$$
W_{k=1}(q, \tilde{q})=\mathrm{e}^{\mathcal{A}_{5 a}^{\prime}}\left(\Lambda_{\mathrm{PV}}^{2 N_{a}+1} \prod_{f=1}^{N_{a}-1} Z_{f}\right) \frac{1}{\operatorname{det}(\tilde{q} q)}
$$

- Insert the expression of the annuli

Back to the ADS/VTY superpotential

Getting holomorphicity
We found (recall that $N_{F}=N_{a}-1$ in this case)

$$
\begin{aligned}
W_{k=1}(q, \tilde{q}) & =\mathrm{e}^{K / 2} \prod_{i=1}^{3}\left(\eta\left(u^{(i)}\right)^{-2 N_{a}}\right)\left(g_{a}^{2 N_{a}} \Lambda_{\mathrm{pV}}^{2 N_{a}+1} \prod_{f=1}^{N_{a}-1} Z_{f}\right) \\
& \times\left(K_{b a} K_{a c}\right)^{\frac{N_{a}-1}{2}} \frac{1}{\operatorname{det}(\tilde{q} q)}
\end{aligned}
$$

Back to the ADS/VTY superpotential

Getting holomorphicity
We found (recall that $N_{F}=N_{a}-1$ in this case)

$$
\begin{aligned}
W_{k=1}(q, \tilde{q}) & =\mathrm{e}^{K / 2} \prod_{i=1}^{3}\left(\eta\left(u^{(i)}\right)^{-2 N_{a}}\right)\left(g_{a}^{2 N_{a}} \Lambda_{\mathrm{PV}}^{2 N_{a}+1} \prod_{f=1}^{N_{a}-1} Z_{f}\right) \\
& \times\left(K_{b a} K_{a c}\right)^{\frac{N_{a}-1}{2}} \frac{1}{\operatorname{det}(\tilde{q} q)}
\end{aligned}
$$

- Rewrite in terms of the holomorphic scale $\Lambda_{\text {hol }}$

Back to the ADS/VTY superpotential

Getting holomorphicity
We found (recall that $N_{F}=N_{a}-1$ in this case)

$$
\begin{aligned}
W_{k=1}(q, \tilde{q}) & =\mathrm{e}^{K / 2} \prod_{i=1}^{3}\left(\eta\left(u^{(i)}\right)^{-2 N_{a}}\right) \Lambda_{\text {hol }}^{2 N_{a}+1} \\
& \times\left(K_{b a} K_{a c}\right)^{\frac{N_{a}-1}{2}} \frac{1}{\operatorname{det}(\tilde{q} q)}
\end{aligned}
$$

Back to the ADS/VTY superpotential

Getting holomorphicity
We found (recall that $N_{F}=N_{a}-1$ in this case)

$$
\begin{aligned}
W_{k=1}(q, \tilde{q}) & =\mathrm{e}^{K / 2} \prod_{i=1}^{3}\left(\eta\left(u^{(i)}\right)^{-2 N_{a}}\right) \Lambda_{\text {hol }}^{2 N_{a}+1} \\
& \times\left(K_{b a} K_{a c}\right)^{\frac{N_{a}-1}{2}} \frac{1}{\operatorname{det}(\tilde{q} q)}
\end{aligned}
$$

- Make an holomorphic redefinition of the scale $\Lambda_{\text {hol }}$ into $\widehat{\Lambda}_{\text {hol }}$

Back to the ADS/VTY superpotential

Getting holomorphicity
We found (recall that $N_{F}=N_{a}-1$ in this case)

$$
\begin{aligned}
W_{k=1}(q, \tilde{q}) & =\mathrm{e}^{K / 2} \widehat{\Lambda}_{\mathrm{hol}}^{2 N_{a}+1} \\
& \times\left(K_{b a} K_{a c}\right)^{\frac{N_{a}-1}{2}} \frac{1}{\operatorname{det}(\tilde{q} q)}
\end{aligned}
$$

Back to the ADS/VTY superpotential

Getting holomorphicity
We found (recall that $N_{F}=N_{a}-1$ in this case)

$$
\begin{aligned}
W_{k=1}(q, \tilde{q}) & =\mathrm{e}^{K / 2} \widehat{\Lambda}_{\mathrm{hol}}^{2 N_{a}+1} \\
& \times\left(K_{b a} K_{a c}\right)^{\frac{N_{a}-1}{2}} \frac{1}{\operatorname{det}(\tilde{q} q)}
\end{aligned}
$$

- Rescale the chiral multiplet to their sugra counterparts

Back to the ADS/VTY superpotential

Getting holomorphicity
We found (recall that $N_{F}=N_{a}-1$ in this case)

$$
\begin{aligned}
W_{k=1}(Q, \tilde{Q}) & =\mathrm{e}^{K / 2} \widehat{\Lambda}_{\mathrm{hol}}^{2 N_{a}+1} \\
& \times\left(\frac{K_{b a} K_{\mathrm{ac}}}{K_{Q} K_{\tilde{Q}}}\right)^{\frac{N_{a}-1}{2}} \frac{1}{\operatorname{det}(\tilde{Q} Q)}
\end{aligned}
$$

Back to the ADS/VTY superpotential

Getting holomorphicity
We found (recall that $N_{F}=N_{a}-1$ in this case)

$$
\begin{aligned}
W_{k=1}(Q, \tilde{Q}) & =\mathrm{e}^{K / 2} \widehat{\Lambda}_{\mathrm{hol}}^{2 N_{a}+1} \\
& \times\left(\frac{K_{b a} K_{\mathrm{ac}}}{K_{Q} K_{\tilde{Q}}}\right)^{\frac{N_{a}-1}{2}} \frac{1}{\operatorname{det}(\tilde{Q} Q)}
\end{aligned}
$$

- If we assume that the Kähler metrics for the chiral multiplets are given by

$$
K_{Q}=K_{b a}, \quad K_{\tilde{Q}}=K_{a c}
$$

we finally obtain an expression which fits perfectly in the low energy lagrangian

Back to the ADS/VTY superpotential

Getting holomorphicity

$$
W_{k=1}(Q, \tilde{Q})=\mathrm{e}^{K / 2} \widehat{\Lambda}_{\mathrm{hol}}^{2 N_{a}+1} \frac{1}{\operatorname{det}(\tilde{Q} Q)}
$$

Back to the ADS/VTY superpotential

Getting holomorphicity

$$
W_{k=1}(Q, \tilde{Q})=\mathrm{e}^{K / 2} \widehat{\Lambda}_{\mathrm{hol}}^{2 N_{a}+1} \frac{1}{\operatorname{det}(\tilde{Q} Q)}
$$

- A part from the prefactor $\mathrm{e}^{\frac{K}{2}}$, the rest is a holomorphic expression in the variables of the Wilsonian scheme.

The Kähler metric for twisted matter

The holomorphicity properties of the instanton-induced superpotential suggest that the Kähler metric of chiral multiplets Q arising from twisted $D 9_{a} / D 9_{b}$ strings is given by

$$
K_{Q}=\left(4 \pi s_{2}\right)^{-\frac{1}{4}}\left(t_{2}^{(1)} t_{2}^{(2)} t_{2}^{(3)}\right)^{-\frac{1}{4}}\left(u_{2}^{(1)} u_{2}^{(2)} u_{2}^{(3)}\right)^{-\frac{1}{2}}\left(\Gamma_{b a}\right)^{\frac{1}{2}}
$$

with

$$
\Gamma_{b a}=\frac{\Gamma\left(1-\nu_{b a}^{(1)}\right)}{\Gamma\left(\nu_{b a}^{(1)}\right)} \frac{\Gamma\left(\nu_{b a}^{(2)}\right)}{\Gamma\left(1-\nu_{b a}^{(2)}\right)} \frac{\Gamma\left(\nu_{b a}^{(3)}\right)}{\Gamma\left(1-\nu_{b a}^{(3)}\right)}
$$

This is very interesting because:

- for twisted fields, the Kähler metric cannot be derived from compactification of DBI

The Kähler metric for twisted matter

The holomorphicity properties of the instanton-induced superpotential suggest that the Kähler metric of chiral multiplets Q arising from twisted $\mathrm{D} 9_{a} / \mathrm{D} 9_{b}$ strings is given by Back

$$
K_{Q}=\left(4 \pi s_{2}\right)^{-\frac{1}{4}}\left(t_{2}^{(1)} t_{2}^{(2)} t_{2}^{(3)}\right)^{-\frac{1}{4}}\left(u_{2}^{(1)} u_{2}^{(2)} u_{2}^{(3)}\right)^{-\frac{1}{2}}\left(\Gamma_{b a}\right)^{\frac{1}{2}}
$$

with

$$
\Gamma_{b a}=\frac{\Gamma\left(1-\nu_{b a}^{(1)}\right)}{\Gamma\left(\nu_{b a}^{(1)}\right)} \frac{\Gamma\left(\nu_{b a}^{(2)}\right)}{\Gamma\left(1-\nu_{b a}^{(2)}\right)} \frac{\Gamma\left(\nu_{b a}^{(3)}\right)}{\Gamma\left(1-\nu_{b a}^{(3)}\right)}
$$

This is very interesting because:

- the part dependent on the twists, namely $\Gamma_{b a}$, is reproduced by a direct string computation
- the prefactors, depending on the geometric moduli, are more difficult to get directly: the present suggestion is welcome!

The Kähler metric for twisted matter

The holomorphicity properties of the instanton-induced superpotential suggest that the Kähler metric of chiral multiplets Q arising from twisted $\mathrm{D} 9_{a} / \mathrm{D} 9_{b}$ strings is given by
with

$$
\Gamma_{b a}=\frac{\Gamma\left(1-\nu_{b a}^{(1)}\right)}{\Gamma\left(\nu_{b a}^{(1)}\right)} \frac{\Gamma\left(\nu_{b a}^{(2)}\right)}{\Gamma\left(1-\nu_{b a}^{(2)}\right)} \frac{\Gamma\left(\nu_{b a}^{(3)}\right)}{\Gamma\left(1-\nu_{b a}^{(3)}\right)}
$$

This is very interesting because:

- We have checked this expression against the known results for Yukawa couplings of magnetized branes: perfect consistency!

More on holomorphicity

The perturbative side

We have seen the relation between the instanton annuli and the running gauge coupling

```
- Recall
```

- There is a general relation of the 1 -loop corrections to the gauge coupling to the Wilsonian gauge coupling f

Dixon et al, 1991; Kaplunovsky and Louis, 1994-95;

$$
\frac{1}{g^{2}(\mu)}=\frac{1}{8 \pi^{2}}\left[\frac{b}{2} \log \frac{\mu^{2}}{M_{P}^{2}}-f-\frac{c}{2} K+T(G) \log \frac{1}{g^{2}}-\sum_{r} n_{r} T(r) \log K_{r}\right]
$$

where ($T_{A}=$ generators of the gauge group, $n_{r}=$ \# chiral mult. in rep. r)

$$
\begin{aligned}
& T(r) \delta_{A B}=\operatorname{Tr}_{r}\left(T_{A} T_{B}\right) \quad, \quad T(G)=T(\operatorname{adj}) \\
& b=3 T(G)-\sum_{r} n_{r} T(r) \quad, \quad c=T(G)-\sum_{r} n_{r} T(r)
\end{aligned}
$$

More on holomorphicity

The perturbative side

We have seen the relation between the instanton annuli and the running gauge coupling

```
- Recall
```

- There is a general relation of the 1-loop coupling, given by ordinary annuli, to the 1-loop corrections to the Wilsonian gauge coupling f

Dixon et al, 1991; Kaplunovski and Louis,

$$
\frac{1}{g^{2}(\mu)}=\frac{1}{8 \pi^{2}}\left[\frac{b}{2} \log \frac{\mu^{2}}{M_{P}^{2}}-f-\frac{c}{2} K+T(G) \log \frac{1}{g^{2}}-\sum_{r} n_{r} T(r) \log K_{r}\right]
$$

- This gives an interpretation for the non-holomorphic terms appearing in the running coupling based on perturbative considerations.

More on holomorphicity

Consistency

In the case of SQCD, one has N_{F} chiral multiplets in the N_{a} and in the \bar{N}_{a} rep. Matching the DKL formula with the 1-loop result for $1 / g_{A}^{2}(\mu)$ Reeall one identifies the Kähler metrics K_{Q} and $K_{\tilde{Q}}$ of the chiral multiplets.

- This determination, based on the holomorphicity of perturbative contributions to the eff. action, is in full agreement with the expression given before - Recall derived from the holomorphicity of instanton contributions .

Remarks and conclusions

- Also in $\mathcal{N}=2$ toroidal models the instanton-induced superpotential is in fact holomorphic in the appropriate sugra variables if one includes the mixed annuli in the stringy instanton calculus
- W.r.t. to the "color" D9 a branes, the E5a branes are ordinary instantons. For the gauge theories on the $\mathrm{D} 9_{b}$ or the $\mathrm{D} 9_{c}$, they would be exotic (less clear from the field theory viewpoint)
- The study of the mixed annuli and their relatio to holomorphicity can be
 relevant for exotic, new stringy effects as well.

