Aspects of the stringy instanton calculus (II)

Marco Billò

Dip. di Fisica Teorica, Università di Torino and I.N.FN., sez. di Torino

Mathematical Challenges in String Phenomenology ESI, Vienna - October 7, 2008

Plan of the talk

(1) Brane interactions with closed string fluxes
(2) An $\mathcal{N}=1$ local example example
(3) Flux effects and stringy instantons

Brane interactions with closed string fluxes

Flexibility of the string view-point

- Realizing instantonic sectors in a stringy way makes it natural to investigate modifications or extensions of non-perturbative contributions in field theory models admitting a string description.
- Take into account the interactions with closed strings, i.e. with bulk fields (loosely speaking, with the "gravitational" sector)
- In brane-world models, many different (wrapped) Euclidean branes appear as instantonic objects in the 4d gauge/matter theory. Different non-perturbative constributions may arise, some corresponding to ordinary field-theory instantons, some not

Interactions with closed strings

- Include the effect of closed strings, similarly to what A. Lerda described before for open strings
- Extra term in the moduli action from disk diagrams coupling moduli to bulk fields

$$
S_{\text {mod }}(\mathcal{M}) \rightarrow S_{\text {mod }}\left(\mathcal{M}, \phi^{c l}\right)
$$

- Integrating over the moduli yields non-perturbative corrections to effective action for the bulk fields

$$
\int d \mathcal{M} e^{-S_{m o d}\left(\mathcal{M}, \phi^{d}\right)}=S_{\text {eff }}^{\text {n.p. }}\left(\phi^{c l}\right)
$$

Among the first lines pursued to find D-instanton induced interactions in the gravitational sector (ex R^{4} term in eff. action of type IIB) Green and Gutperle $9701093, \ldots$

Closed string backgrounds

- We may also consider turning on a closed string background
- Mixed open/closed diagrams are now interpreted as describing a deformation of the of the gauge theory action and of the moduli action in the background
- We can study the non-perturbative sectors of the deformed theory integrating over the moduli with the deformed moduli action
- Well known example: non-commutative field theories from open strings in $B^{\mu \nu}$ background

Chu and Ho, 9812219 ; Seiberg and Witten, 9908142; ...

- D-instantons effects in such theories can be studied using the method outlined above

RR backgrounds

- Also RR backgrounds can be studied (despite the fact that the σ-model description is lacking), by "perturbatively" inserting RR vertices.
- In the field theory limit $\alpha^{\prime} \rightarrow 0$, only diagrams with few insertions matter
- Insert the background RR value in the corresponding amplitudes
- Examples of effects of a constant RR background where the method applies:
- Non-anti-commutative (NAC) field theories de Boer et al, 0302078; Ooguri and Vafa, 0302109; . . ; Billo et al, 0402160; ...
- Nekrasov's ϵ-deformations of the instanton moduli space in $\mathcal{N}=2$ gauge theories

Flux interactions on branes

- As a concrete example (useful for the following) let us describe the coupling of open string fermions living on some branes to closed string fluxes, from both the NSNS and RR sector
- It can be described in a general, 10d set-up.
- Here we will be interested in the effect of fluxes on the ordinary and exotic instantons in an $\mathcal{N}=1$ brane-engineered gauge theory

The disk diagrams

- Θ and Θ^{\prime} are massless fermions from the R sector of open strings

The disk diagrams

- $F(H)$ is a closed string vertex corresponding to a RR (NS-NS) field strength

The disk diagrams

- We can treat open string with generic b.c., including both the twisted and untwisted case

The disk diagrams

- We work in a flat geometry (non-compact, toroidal or orbifolded directions)

Boundary conditions

- The disk amplitude depends on the \leftrightarrow boundary conditions, imposed by the brane, e.g.

$$
\begin{aligned}
& \left.\bar{\partial} x^{M}\right|_{\sigma=0, \pi}=\left.\left(R_{\sigma}\right)_{N}^{M} \partial x^{N}\right|_{\sigma=0, \pi}, \quad R_{\sigma}=\left(1-\mathcal{F}_{\sigma}\right)^{-1}\left(1+\mathcal{F}_{\sigma}\right) \\
& \text { For a string stretching between } \\
& \text { different branes, we get twisted } \\
& \text { fields: } \\
& X^{M}\left(\mathrm{e}^{2 \pi \mathrm{i}} z\right)=R_{N}^{M} X^{N}(z), R=R_{\pi}^{-1} R_{0}
\end{aligned}
$$

- In a suitable complex basis $Z^{\prime}, I=1, \ldots 5$,

$$
\begin{aligned}
& R=\operatorname{diag}\left(\mathrm{e}^{2 \pi i \vartheta^{1}}, \mathrm{e}^{-2 \pi i \vartheta^{1}}, \ldots, \mathrm{e}^{2 \pi i \vartheta^{5}}, \mathrm{e}^{-2 \pi i \vartheta^{5}}\right) \\
& \partial Z^{\prime}\left(\mathrm{e}^{2 \pi i} z\right)=\mathrm{e}^{2 \pi i \vartheta^{\prime}} \partial Z^{\prime}(z)
\end{aligned}
$$

Specializing the result

The resulting general form of the amplitude can be applied to many different situations and generate various types of flux interactions.

- We will concentrate here on toroidal (orbifold) compactifications of IIB to 4d and consider the interactions induced by constant internal fluxes F_{3} and H on
- space-filling branes. In this case we consider untwisted strings
- instantonic branes. We consider untwisted strings (neutral moduli) but also also twisted ($\theta^{4}, 5=1 / 2$) ND strings forcharged moduli.

Untwisted case

- The general result reduces to ($m, n \ldots$ are internal indices)

$$
\mathcal{A} \equiv \mathcal{A}_{F}+\mathcal{A}_{H} \sim i \Theta \Gamma^{m n p} \Theta T_{m n p}
$$

with
$T_{m n p}=\left(F \mathcal{R}_{0}\right)_{m n p}+\frac{1}{g_{s}}\left[\left(\partial B R_{0}\right)_{m n p}+\left(\partial B R_{0}\right)_{n p m}+\left(\partial B R_{0}\right)_{p m n}\right]$

- The factor of g_{s} is due to the relative normalizazion of $R R$ and NS-NS vertices to account for their 10d kinetic terms in the Einstein frame

Untwisted case

- The general result reduces to ($m, n \ldots$ are internal indices)

$$
\mathcal{A} \equiv \mathcal{A}_{F}+\mathcal{A}_{H} \sim i \Theta \Gamma^{m n p} \Theta T_{m n p}
$$

with

$$
T_{m n p}=\left(F \mathcal{R}_{0}\right)_{m n p}+\frac{1}{g_{s}}\left[\left(\partial B R_{0}\right)_{m n p}+\left(\partial B R_{0}\right)_{n p m}+\left(\partial B R_{0}\right)_{p m n}\right]
$$

- For unmagnetized branes,the reflection matrix R_{0} is simply +1 for NN and -1 for DD directions
- The spinorial reflection is simply $\mathcal{R}_{0}=\prod_{\hat{m} \in D D} \Gamma^{\hat{m}}$

4d notation

- Decomposing the 10d spinors into 4+6-dimensional parts: $\Theta_{\mathcal{A}} \rightarrow\left(\Theta^{\alpha A}, \Theta_{\dot{\alpha} A}\right)$, the flux coupling in 4d notation reads

$$
-i \Theta^{\alpha A} \Theta_{\alpha}^{B}\left(\bar{\Sigma}^{m n p}\right)_{A B} T_{m n p}^{\mathrm{IASD}}-i \Theta_{\dot{\alpha} A} \Theta^{\dot{\alpha}}{ }_{B}\left(\Sigma^{m n p}\right)^{A B} T_{m n p}^{\mathrm{ISD}}
$$

4d notation

- Decomposing the 10d spinors into 4+6-dimensional parts: $\Theta_{\mathcal{A}} \rightarrow\left(\Theta^{\alpha A}, \Theta_{\dot{\alpha} A}\right)$, the flux coupling in $4 d$ notation reads

$$
-i \Theta^{\alpha A} \Theta_{\alpha}^{B}\left(\bar{\Sigma}^{m n p}\right)_{A B} T_{m n p}^{\mathrm{IASD}}-i \Theta_{\dot{\alpha} A} \Theta^{\dot{\alpha}}{ }_{B}\left(\Sigma^{m n p}\right)^{A B} T_{m n p}^{\mathrm{ISD}}
$$

- ISD and IASD tensors are defined as follows:

$$
T_{m n p}^{\mathrm{ISD}}=\frac{1}{2}\left(T-i *_{6} T\right)_{m n p} \quad, \quad T_{m n p}^{\mathrm{IASD}}=\frac{1}{2}\left(T+i *_{6} T\right)_{m n p}
$$

- In a complex basis,

$$
\begin{aligned}
T_{\mathrm{ISD}} & \rightarrow T_{(0,3)} \oplus T_{(2,1)_{\mathrm{P}}} \oplus T_{(1,2)_{\mathrm{NP}}} \\
T^{\mathrm{IASD}} & \rightarrow T_{(3,0)} \oplus T_{(1,2) \mathrm{p}} \oplus T_{(2,1)_{\mathrm{NP}}}
\end{aligned}
$$

where (N)P stands for (non)-primitive

Coupling on unmagnetized branes

- In this case the fermions $\Theta^{\alpha A}$ are fields (gauginos, ...)
- The coupling $T_{m n p}$ depends on the type of brane:

	0-3	4	5	6	7	8	9	$T_{\text {mnp }}$
D3	-	\times	\times	\times	\times	\times	\times	$\left(*_{6} F\right)_{m n p}-\frac{1}{g_{s}} H_{m n p}$
D5	-	-	-	\times	\times	\times	\times	$\frac{1}{g_{s}} H_{\hat{m} \hat{n p}} ;-\frac{1}{2} F_{\hat{m}}^{q r} \epsilon_{\text {qrnp }} ;-\frac{1}{g_{s}} H_{m n p}$
D7	-	-	-	-	-	\times	\times	$F_{\hat{m} \hat{n}}{ }^{q} \epsilon_{q p}+\frac{1}{g_{s}} H_{\hat{m} \hat{n} p}$
D9	-	-	-	-	-	-	-	$F_{\hat{m} \hat{n} \hat{o}}$

- We neglected the H-components that would be projected out by the appropriate orientifold projections

Coupling on unmagnetized branes

- In this case the fermions $\Theta^{\alpha A}$ are fields (gauginos, ...)
- The coupling $T_{m n p}$ depends on the type of brane:

	$0-3$	4	5	6	7	8	9	$T_{m n p}$
D3	-	\times	\times	\times	\times	\times	\times	$\left(*_{6} F\right)_{m n p}-\frac{1}{g_{s}} H_{m n p}$
D5	-	-	-	\times	\times	\times	\times	$\frac{1}{g_{s}} H_{\hat{m} \hat{n} p} ;-\frac{1}{2} F_{\hat{m}}{ }^{q r} \epsilon_{q r n p} ;-\frac{1}{g_{s}} H_{m n p}$
D7	-	-	-	-	-	\times	\times	$F_{\hat{m} \hat{n}}{ }^{q} \epsilon_{q p}+\frac{1}{g_{s}} H_{\hat{m} \hat{n} p}$
D9	-	-	-	-	-	-	-	$F_{\hat{m} \hat{n} \hat{p}}$

- Can be extended to magnetized branes, by taking general reflection matrices R_{0}, \mathcal{R}_{0}

Coupling on unmagnetized branes

- In this case the fermions $\Theta^{\alpha A}$ are fields (gauginos, ...)
- The coupling $T_{m n p}$ depends on the type of brane:

	$0-3$	4	5	6	7	8	9	$T_{m n p}$
D3	-	\times	\times	\times	\times	\times	\times	$\left(*_{6} F\right)_{m n p}-\frac{1}{g_{s}} H_{m n p}$
D5	-	-	-	\times	\times	\times	\times	$\frac{1}{g_{s}} H_{\hat{m} \hat{n} p} ;$
	$-\frac{1}{2} F_{\hat{m}}^{q r} \epsilon_{q r n p} ;-\frac{1}{g_{s}} H_{m n p}$							
D7	-	-	-	-	-	\times	\times	$F_{\hat{m} \hat{n}}^{q} \epsilon_{q p}+\frac{1}{g_{s}} H_{\hat{m} \hat{n} p}$
D9	-	-	-	-	-	-	-	$F_{\hat{m} \hat{n} \hat{p}}$

- F and H do not appear of the same footing.

Coupling on instantonic branes

- In this case the fermions $\Theta^{\alpha A}$ are neutral moduli
- The coupling $T_{m n p}$ depends on the type of brane:

	$0-3$	4	5	6	7	8	9	$T_{m n p}$
$\mathrm{D}(-1)$	\times	$-i F_{m n p}-\frac{1}{g_{s}} H_{m n p}$						
E1	\times	-	-	\times	\times	\times	\times	$\frac{1}{g_{s}} H_{\hat{m} \hat{n} p} ;$
E3	\times	$-i \epsilon_{\hat{m} \hat{q}} F_{n p}^{\hat{p}} ;-\frac{1}{g_{s}} H_{m n p}$						
E5	\times	-	-	-	-	-	-	-
$\frac{i}{2} \epsilon_{\hat{m} \hat{n} \hat{s}} F_{p}^{\hat{s} \hat{s}}+\frac{1}{g_{s}} H_{\hat{m} \hat{n} p}$								
$i\left(*_{6} F\right)_{\hat{m} \hat{n} \hat{p}}$								

- We will use this result to discuss the influence of fluxes on the stringy instanton calculus

An $\mathcal{N}=1$ example

A simple laboratory: $\mathbb{C}^{3} /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$

To analyize the flux effects on the non-perturbative effective action of brane-world gauge theories, it is useful to focalize on a simple (yet non-trivial) example

- We consider a local model of an $\mathcal{N}=1$ compactification given by the orbifold $\mathbb{C}^{3} /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$, generated by

$$
\begin{aligned}
& h_{1}:\left(Z^{1}, Z^{2}, Z^{3}\right) \rightarrow\left(Z^{1},-Z^{2},-Z^{3}\right) \\
& h_{2}:\left(Z^{1}, Z^{2}, Z^{3}\right) \rightarrow\left(-Z^{1}, Z^{2},-Z^{3}\right)
\end{aligned}
$$

- The properties of the 4 irreducible representations, and the transformations of the string fields under this group are easily worked out Dealis

The quiver

We consider fractional D3 branes transverse to the orbifold

- 4 types of fD3's: the CP indices of open string endpoints attached to fD3(A) transform in the orbifold irrep R_{A}
- Given a system of $\left\{N_{A}\right\}$ fD3's, the open string massless spectrum is encoded in a quiver

- Nodes $\leftrightarrow U\left(N_{A}\right) \mathcal{N}=1$ vector multiplets
- Arrows: bifundamental chiral multiplets

Different instantonic sectors

- 4 types of $\mathrm{fD}(-1)$'s associated to the nodes of the quiver
- W.r.t. the $U\left(N_{A}\right)$ gauge theory on a given node,
- the $\mathrm{D}(-1)$'s occupying the same node A are found to correspond to ordinary gauge instantons
- $\mathrm{D}(-1$)'s on a node $B \neq A$ have a different spectrum of moduli, and correspond to "exotic" or "stringy" instantons
- Analogue in smooth compactifications (e.g. in the blown-up orbifold): for the gauge theory on a stack of branes wrapped on a cycle C_{A},
- ordinary instantons arise from Euclidean branes entirely wrapped on C_{A}
- "exotic" ones from E-branes wrapped on $C_{B} \neq C_{A}$

A realization of SQCD

A system of $N_{0}\left(N_{1}\right)$ fD3's of type $0(1)$ realizes SQCD

- $U\left(N_{0}\right) \times U\left(N_{1}\right) \mathcal{N}=1$ gauge theory
- Two chiral multiplets:

$$
Q \in N_{0} \times \bar{N}_{1}, \quad \tilde{Q} \in \bar{N}_{0} \times N_{1}
$$

- The "quark" multiplets can be grouped into

$$
\Phi=\left(\begin{array}{cc}
0 & Q_{f}^{u} \\
\widetilde{Q}_{u}^{f} & 0
\end{array}\right)
$$

A realization of SQCD

A system of $N_{0}\left(N_{1}\right)$ fD3's of type $0(1)$ realizes SQCD

- $U\left(N_{0}\right) \times U\left(N_{1}\right) \mathcal{N}=1$ gauge theory
- Two chiral multiplets:

$$
Q \in N_{0} \times \bar{N}_{1}, \quad \tilde{Q} \in \bar{N}_{0} \times N_{1}
$$

- The diagonal $U(1)$ factor is decoupled, the other $U(1)$ factor is IR free \rightarrow we in fact have an $\operatorname{SU}\left(N_{0}\right) \times S U\left(N_{1}\right)$ theory
- We focus on one the gauge factors, so we see a SQCD with

$$
N_{c}=N_{0}, \quad N_{f}=N_{1}
$$

A realization of SQCD

A system of $N_{0}\left(N_{1}\right)$ fD3's of type $0(1)$ realizes SQCD

- $U\left(N_{0}\right) \times U\left(N_{1}\right) \mathcal{N}=1$ gauge theory
- Two chiral multiplets:

$$
Q \in N_{0} \times \bar{N}_{1}, \quad \tilde{Q} \in \bar{N}_{0} \times N_{1}
$$

- The massless d.o.f. in the Higgs phase parametrize solutions to the D-flatness eq.s

$$
Q_{f}^{u} Q_{v}^{\dagger f}=\tilde{Q}_{f}^{\dagger u} \tilde{Q}_{v}^{f}
$$

"Ordinary" D-instantons

- Including k_{0} fractional $\mathrm{D}(-1)$ of type 0 corresponds to work in the instanton \# k_{0} sector of the gauge theory

$N_{1}=N_{f}$
- In SQCD, the $k_{0}=1$ sector is responsible of
- the ADS/VTY superpotential for $N_{f}=N_{c}-1$

Affleck et al, 1984; Taylor et al, 1983

- Beasley-Witten F-terms for $N_{f} \geq N_{c}$

Beasley and Witten, 0409149, 0512039

- In presence of fluxes, other effects (some of stringy nature) arise

Exotic D-instantons

$D(-1)$'s of type 2 or 3 give "exotic", a.k.a. "stringy" non-perturbative effects

- "Exotic" non-perturbative contributions have attracted much interest recently in brane-world constructions
- Could generate very interesting terms (neutrino masses ...)

Blumenhagen et al 0609191; Ibanez and Uranga, 0609213; ... ;

- However, severe restrictions from integration over fermionic 0-modes: difficult to get non-vanishing results

Argurio et al, 0704.0262; Bianchi et al, 0704.0784; .

- To this aim, fluxes might come to the rescue!

Ordinary instanton: spectrum

Let us focus on a single $D(-1)$ of type 0 in the SQCD set-up

$N_{1}=N_{f}$

Ordinary instanton: spectrum

Let us focus on a single $D(-1)$ of type 0 in the SQCD set-up

- Neutral moduli: $\left\{x^{\mu}, D_{C}, \theta^{\alpha}, \lambda_{\dot{\alpha}}\right\}$
- $x, \theta:$ position of the instanton + superpartner
- $D_{c}(c=1,2,3)$: auxiliary fields (see later)

Ordinary instanton: spectrum

Let us focus on a single $D(-1)$ of type 0 in the SQCD set-up
$N_{1}=N_{f}$

- Neutral moduli: $\left\{x^{\mu}, D_{C}, \theta^{\alpha}, \lambda_{\dot{\alpha}}\right\}$
- $x, \theta:$ position of the instanton + superpartner
- $D_{c}(c=1,2,3)$: auxiliary fields (see later)
- Charged moduli: $\left\{w_{\dot{\alpha} u}, \mu_{u}\right\},\left\{\bar{w}_{\dot{\alpha}}^{u}, \mu^{\mu}\right\}$ from the two orientations.
- $w_{\dot{\alpha}}$ bosonic, μ fermionic: effect of ND b.c.'s.
- $u=$ color index

Ordinary instanton: spectrum

Let us focus on a single $D(-1)$ of type 0 in the SQCD set-up

- Neutral moduli: $\left\{x^{\mu}, D_{C}, \theta^{\alpha}, \lambda_{\dot{\alpha}}\right\}$
- $x, \theta:$ position of the instanton + superpartner
- $D_{c}(c=1,2,3)$: auxiliary fields (see later)
- Charged moduli: $\left\{w_{\dot{\alpha} u}, \mu_{u}\right\},\left\{\bar{w}_{\dot{\alpha}}^{u}, \mu^{u}\right\}$ from the two orientations.
- $w_{\dot{\alpha}}$ bosonic, μ fermionic: effect of ND b.c.'s.
- $u=$ color index
- Flavored moduli: $\mu_{f}^{\prime}, \bar{\mu}^{\prime f}$ from the two orientations
- Fermionic only! D(-1) of type 0, D3 of type 1 can be seen as branes wrapped on non-parallel (exceptional cycles): "exotic" configuration
- $f=$ flavor index

Ordinary instanton: action

The disks with moduli insertions yield the action

$$
S_{\text {mod }}=\frac{D_{c} D^{c}}{2 g_{0}^{2}}+i D_{c}\left(\bar{w}^{u} \tau^{c} w_{u}\right)+i \lambda \cdot\left(\bar{\mu}^{u} w_{u}+\bar{w}^{u} \mu_{u}\right)
$$

The dimensions of the moduli are chosen as follows:

x_{μ}	D_{c}	θ^{α}	$\lambda_{\dot{\alpha}}$	$w_{\dot{\alpha}}$	μ	μ^{\prime}
M^{-1}	M^{2}	$M^{-1 / 2}$	$M^{3 / 2}$	M^{-1}	$M^{-1 / 2}$	$M^{-1 / 2}$

- In the field theory limit $\alpha^{\prime} \rightarrow 0, D_{C}$ and $\lambda_{\dot{\alpha}}$ are Lagrange multiplier for the bosonic and fermionic constraints of the ADHM construction.
- Indeed, $1 / g_{0}^{2} \propto\left(2 \pi \alpha^{\prime}\right)^{2} / g_{s}$ goes to 0 for g_{s} fixed, i.e. fixed gauge coupling

Ordinary instanton: action

The disks with moduli insertions yield the action

$$
S_{\text {mod }}=\frac{D_{c} D^{c}}{2 g_{0}^{2}}+i D_{c}\left(\bar{w}^{u} \tau^{c} w_{u}\right)+i \lambda \cdot\left(\bar{\mu}^{u} w_{u}+\bar{w}^{u} \mu_{u}\right)
$$

The dimensions of the moduli are chosen as follows:

x_{μ}	D_{c}	θ^{α}	$\lambda_{\dot{\alpha}}$	$w_{\dot{\alpha}}$	μ	μ^{\prime}
M^{-1}	M^{2}	$M^{-1 / 2}$	$M^{3 / 2}$	M^{-1}	$M^{-1 / 2}$	$M^{-1 / 2}$

- x^{μ}, θ^{α} have the dimensions of supercoordinates
- They do not enter in the pure moduli action

Ordinary instanton: action

The disks with moduli insertions yield the action

$$
S_{\text {mod }}=\frac{D_{c} D^{c}}{2 g_{0}^{2}}+i D_{c}\left(\bar{w}^{u} \tau^{c} w_{u}\right)+i \lambda \cdot\left(\bar{\mu}^{u} w_{u}+\bar{w}^{u} \mu_{u}\right)
$$

The dimensions of the moduli are chosen as follows:

x_{μ}	D_{c}	θ^{α}	$\lambda_{\dot{\alpha}}$	$w_{\dot{\alpha}}$	μ	μ^{\prime}
M^{-1}	M^{2}	$M^{-1 / 2}$	$M^{3 / 2}$	M^{-1}	$M^{-1 / 2}$	$M^{-1 / 2}$

- The $w_{\dot{\alpha} u}$ are related to the size and orientation of the instanton: $\bar{w}^{u} \cdot w_{u}=\rho^{2}$ once the constraints are solved

Field-dependent terms

New diagrams with insertions of matter fields from D3(0)/D3(1) strings give extra terms in the moduli action

```
Back
```


$$
\begin{aligned}
S_{\text {mod }} & +\bar{w}_{\dot{\alpha}}^{u}\left(\phi^{\dagger}(x) \Phi(x, \theta)+\Phi(x, \theta) \phi^{\dagger}(x)\right) w_{\dot{\alpha}}^{\dot{\alpha}} \\
& +\bar{\mu}^{u} \phi_{u}^{\dagger f}(x) \mu_{f}^{\prime}-\bar{\mu}^{\prime f} \phi_{f}^{\dagger u}(x) \mu_{u}+\bar{w}^{\dot{\alpha} u} \psi_{u}^{\dagger \dot{\alpha}}(x) \mu^{\prime}-\bar{\mu}^{\prime} \psi_{\dot{\alpha}}^{\dagger u}(x) w_{u}^{\dot{\alpha}}
\end{aligned}
$$

- ϕ_{f}^{u} is a chiral multiplet:

$$
\Phi(x, \theta)=\phi(x)+\theta^{\alpha} \psi_{\alpha}(x)+\theta^{2} F(x)
$$

- The moduli x, θ enter in the moduli action only through this expansion

Field-dependent terms

New diagrams with insertions of matter fields from D3(0)/D3(1) strings give extra terms in the moduli action

```
- Back
```


$$
\begin{aligned}
S_{\text {mod }} & +\bar{w}_{\dot{\alpha}}^{u}\left(\phi^{\dagger}(x) \Phi(x, \theta)+\Phi(x, \theta) \phi^{\dagger}(x)\right) w_{v}^{\dot{\alpha}} \\
& +\bar{\mu}^{u} \phi_{u}^{\dagger \dagger}(x) \mu_{f}^{\prime}-\bar{\mu}^{\prime f} \phi_{f}^{\dagger \dagger}(x) \mu_{u}+\bar{w}^{\dot{\alpha} u} \psi_{u}^{\dagger \dot{\alpha}}(x) \mu^{\prime}-\bar{\mu}^{\prime} \psi_{\dot{\alpha}}^{\dagger u}(x) w_{u}^{\dot{\alpha}}
\end{aligned}
$$

- The moduli action is not holomorphic.
- The dependence on $\phi^{\dagger}(x)=\Phi^{\dagger}(x, \bar{\theta}=0)$, is not extended (in the $\alpha^{\prime} \rightarrow 0$ limit) to anti-chiral multiplets $\Phi^{\dagger}(x, \bar{\theta})$,

Field-dependent terms

New diagrams with insertions of matter fields from D3(0)/D3(1) strings give extra terms in the moduli action

```
- Back
```


$$
\begin{aligned}
S_{\text {mod }} & +\bar{w}_{\dot{\alpha}}^{u}\left(\phi^{\dagger}(x) \Phi(x, \theta)+\Phi(x, \theta) \phi^{\dagger}(x)\right) w_{v}^{\dot{\alpha}} \\
& +\bar{\mu}^{u} \phi_{u}^{\dagger f}(x) \mu_{f}^{\prime}-\bar{\mu}^{\prime f} \phi_{f}^{\dagger \dagger}(x) \mu_{u}+\bar{w}^{\dot{\alpha} u} \psi_{u}^{\dagger \dot{\alpha}}(x) \mu^{\prime}-\bar{\mu}^{\prime} \psi_{\dot{\alpha}}^{\dagger u}(x) w_{u}^{\dot{\alpha}}
\end{aligned}
$$

- These terms involve the "quarks", and can be rewritten in terms of $\left.\bar{D}_{\dot{\alpha}} \Phi^{\dagger}(x, \bar{\theta})\right|_{\bar{\theta}=0}$
- Responsible for Beasley-Witten multifermion terms in the effective action (see later)

Symmetries of the moduli action

- The gauge theory action and the moduli action are invariant under $U(1)^{3} \subset S O(6)$ global symmetries surviving the orbifold projection.
- We can assign to the fields/moduli the following charges

	ϕ	ψ^{α}	$\mu, \bar{\mu}, \theta^{\alpha}$	$\mu^{\prime}, \bar{\mu}^{\prime}$	$\lambda_{\dot{\alpha}}$
q	1	$-1 / 2$	$3 / 2$	-1	$-3 / 2$
q^{\prime}	1	1	0	1	0
$q^{\prime \prime}$	1	1	0	1	0

The bosonic moduli $a^{\mu}, w_{\dot{\alpha}}, \bar{w}_{\dot{\alpha}}, D_{C}$ are invariant

- These symmetries powerfully constrain the form of the instantonic contributions to the effective action
- They can be extended to $\left\{k_{A}\right\}$ D-instantons in a generic quiver theory with $\left\{N_{A}\right\}$ D3-branes

Non-perturbative F-terms

Low energy effective action in the instanton sector:

$$
S_{n . p .}=\int d^{4} x d^{2} \theta \mathrm{e}^{2 \pi \tau_{\gamma M}\left(M_{s}\right)}\left(M_{s}\right)^{3 N_{c}-N_{f}} \int d \widehat{\mathcal{M}} \mathrm{e}^{-S_{\bmod }\left(\Phi, \Phi^{\dagger}\right)}
$$

Non-perturbative F-terms

Low energy effective action in the instanton sector:

$$
S_{n . p .}=\int d^{4} x d^{2} \theta \mathrm{e}^{2 \pi \tau_{Y M}\left(M_{s}\right)}\left(M_{s}\right)^{3 N_{c}-N_{f}} \int d \widehat{\mathcal{M}} \mathrm{e}^{-S_{\text {mod }}\left(\Phi, \Phi^{\dagger}\right)}
$$

- The pure disks and annuli attached to the $D(-1)$ give the exponential of the classical instanton action with the 1-loop coupling $\tau_{Y M}$ evaluated at $M_{S}=1 / \sqrt{\alpha^{\prime}}$
- The dimensionality of $d \mathcal{M}$ implies the factor $M_{s}^{3 N_{c}-N_{f}}$
- Together, these terms reconstruct the dynamical scale $\Lambda^{3 N_{c}-N_{f}}=\Lambda^{b_{1}}$

Form of the F-term corrections

- Write

$$
S_{\text {n.p. }}=\int d^{4} x d^{2} \theta W_{\text {n.p. }}, \quad W_{\text {n.p. }}=\Lambda^{b_{1}} \int d \widehat{\mathcal{M}} \mathrm{e}^{-S_{\bmod }\left(\Phi, \Phi^{\dagger}\right)}
$$

- Ansatz (due to the form of $S_{\text {mod }}$)

$$
\left.W_{n . p .} \sim \Lambda^{b_{1}}\left(\Phi^{\dagger}\right)^{n} \Phi^{m}\left(\bar{D}_{\dot{\alpha}} \Phi^{\dagger} \bar{D}^{\dot{\alpha}} \Phi^{\dagger}\right)^{p}\right|_{\bar{\theta}=0}
$$

- Exploit the $U(1)^{3}$ symmetry requiring that

$$
q, q^{\prime}, q^{\prime \prime}\left[W_{n . p .}\right]=q, q^{\prime}, q^{\prime \prime}[d \mathcal{M}]
$$

This fixes

$$
p=-n=1-N_{c}+N_{f}, \quad m=1-N_{c}-N_{f} .
$$

Form of the F-term corrections

- Write

$$
S_{\text {n.p. }}=\int d^{4} x d^{2} \theta W_{\text {n.p. }}, \quad W_{\text {n.p. }}=\Lambda^{b_{1}} \int d \widehat{\mathcal{M}} \mathrm{e}^{-S_{\bmod \left(\Phi, \Phi^{\dagger}\right)}}
$$

- The form of the induced interactions is thus

$$
\left.W_{n . p .} \sim \Lambda^{b_{1}} \frac{\left(\bar{D}_{\dot{\alpha}} \Phi^{\dagger} \bar{D}^{\dot{\alpha}} \Phi^{\dagger}\right)^{p}}{\left(\Phi^{\dagger}\right)^{p} \Phi^{p+2 N_{c}-2}}\right|_{\bar{\theta}=0}
$$

for $p=0,1, \ldots$.

The ADS superpotential

- In the case $p=0$, i.e. $N_{f}=N_{c}-1$, the structure is $W_{n . p .} \sim \Lambda^{2 N_{f}+3} \Phi^{-2 N_{f}}$
- The integrals over the moduli can be done explicitly
- $W_{\text {n.p. }}$ should depend on low-energy fields only. We have to impose the D-flatness condition Recall
- By doing so, in the result of the integration over $d \mathcal{M}$ only the low-energy d.o.f. (meson fields, ...) appear
- We get the ADS superpotential

$$
W(M)=\frac{\Lambda^{2 N_{f}+3}}{\operatorname{det} M}
$$

where M is the meson superfield $(M)_{f}{ }^{f^{\prime}}=\tilde{Q}_{f}{ }^{u} Q_{u}{ }^{f^{\prime}}$

BW multifermion terms

- For $p>0$, i.e. $N_{f} \geq N_{c}$, one gets the multifermion instanton interactions in SQCD of BW Beasley and Witten, 0409149
- For $p=1$ and $N_{f}=N_{C}=2$, the form of the interaction is

$$
\left.W_{n . p .} \sim \Lambda^{4} \frac{\bar{D}_{\dot{\alpha}} \Phi^{\dagger} \bar{D}^{\dot{\alpha}} \Phi^{\dagger}}{\Phi^{\dagger} \Phi^{3}}\right|_{\bar{\theta}=0}
$$

- The moduli integral in this case can be done matsuo etal, 0803.0798 . Result in accordance with the above structure:

$$
W_{\text {n.p. }}=\left.\mathcal{C} \Lambda^{4} \frac{\epsilon_{f_{1} f_{1}^{\prime}} \epsilon_{2}^{f_{2} f_{2}^{\prime}} \bar{D}_{\dot{\alpha}} M_{f_{2}}^{\dagger f_{1}} \bar{D}^{\dot{\alpha}} M^{\dagger}{ }_{f_{2}^{\prime}}^{f_{1}^{\prime}}+2 \bar{D}_{\dot{\alpha}} B^{\dagger} \bar{D}^{\dot{\alpha}} \tilde{B}^{\dagger}}{\left(\operatorname{tr} M^{\dagger} M+B^{\dagger} B+\tilde{B}^{\dagger} \tilde{B}\right)^{3 / 2}}\right|_{\bar{\theta}=0}
$$

in terms of the $S U(2)$ meson and baryon fields.

BW multifermion terms

- For $p>0$, i.e. $N_{t} \geq N_{c}$, one gets the multifermion instanton interactions in SQCD of BW Beasley and witten, 0409149
- For $p>1$, more general multi-fermion terms
- The BW multi-fermion terms are non-holomorphic but are annihilated by the anti-chiral supercharges $\bar{Q}_{\dot{\alpha}}$

Possible multi-instanton corrections

- More general configurations of "ordinary" D-instantons: k_{0}, k_{1} generic
 (but $k_{2}=k_{3}=0$)
- In this case one can argue that there can be holomorphic non-perturbative corrections of the form

$$
W_{\text {n.p. }}=\mathcal{C} M_{s}^{\left(k_{0} b_{1}+k_{1} \beta_{1}\right)} \mathrm{e}^{2 \pi i\left(k_{0} \tau_{0}+k_{1} \tau_{1}\right)} \phi^{\left(3-k_{0} b_{1}-k_{1} \beta_{1}\right)}
$$

(here ϕ is the v.e.v. of the chiral multiplet Φ).

- Can be promoted to depende on the entire multiplet Φ,

Possible multi-instanton corrections

- More general configurations of "ordinary" D-instantons: k_{0}, k_{1} generic
 (but $k_{2}=k_{3}=0$)
- In this case one can argue that there can be holomorphic non-perturbative corrections of the form

$$
W_{\text {n.p. }}=\mathcal{C} M_{s}^{\left(k_{0} b_{1}+k_{1} \beta_{1}\right)} \mathrm{e}^{2 \pi i\left(k_{0} \tau_{0}+k_{1} \tau_{1}\right)} \phi^{\left(3-k_{0} b_{1}-k_{1} \beta_{1}\right)}
$$

(here ϕ is the v.e.v. of the chiral multiplet Φ).

- Can be promoted to depende on the entire multiplet Φ,
- See Schmidt-Sommerfeld's talk for a general discussion of Multi D-instanton Effects in String Compactifications

Flux effects and stringy instantons

Incorporating flux effects

- From the table derived before Recall one sees that D3 fermions couple to the flux combination

$$
G=F-\frac{i}{g_{s}} H
$$

- One finds that $G_{3,0}$ gives mass to the gaugino while $G_{0,3}$ corresponds to the GVW bulk superpotential Gukov etal, 9906070

$$
W \sim \int G \wedge \Omega \sim G_{0,3}
$$

- We want to investigate flux effects in the low energy effective theory for the massless d.o.f. in the Higgs phase
- The fluxes may modify the non-perturbative contributions which in this context are due to (fractional) $D(-1)$ branes

Flux corrections

Applying our results for the flux interactions on $\mathrm{D}(-1)$'s to the "ordinary" instanton configuration ($k_{0}=1$) one gets extra contributions to the moduli action of the form: Back

$$
S_{\text {mod }}^{(f l u x)} \sim i \alpha^{\prime 2} G_{(0,3)} \lambda_{\dot{\alpha}} \lambda^{\dot{\alpha}}+i G_{(3,0)} \theta_{\alpha} \theta^{\alpha}+i G_{(3,0)} \bar{\mu}_{u} \mu^{u}
$$

(The last term corrisponds to couplings with twisted moduli)

- I will now briefly discuss some of the effects that these extra terms induce in the non-perturbative low energy effective action
- For simplicity, from now on $G=G_{(3,0)}$ and $\bar{G}=G_{(0,3)}$.

One-instanton effects at $G \neq 0$

- If we pull down once the term $G \bar{\mu}_{u} \mu^{u}$, we get

$$
\begin{aligned}
S_{\text {n.p. }}(G) & =\int d^{4} x d^{2} \theta W_{\text {n.p. }}(G) \\
W_{\text {n.p. }}(G) & =\Lambda^{b_{1}} \int d \widehat{\mathcal{M}} \mathrm{e}^{-S_{\bmod }(\Phi, \bar{\Phi})}(i G \bar{\mu} \mu)
\end{aligned}
$$

- Ansatz:

$$
W_{n . p .}(G)=\left.\mathcal{C} G \wedge^{b_{1}}\left(\Phi^{\dagger}\right)^{n} \Phi^{m}\left(\bar{D}_{\dot{\alpha}} \Phi^{\dagger} \bar{D}^{\dot{\alpha}} \Phi^{\dagger}\right)^{p}\right|_{\bar{\theta}=0}
$$

- Exploiting the $U(1)^{3}$ symmetries (one has $q[G]=-3$), one finds

$$
p=-n-2=2-N_{c}+N_{f}, \quad m=-N_{c}-N_{f}
$$

Multifermion terms at $N_{f}=N_{c}-1$

The case $p=1$ corresponds to an SQCD with $N_{f}=N_{c}-1$

- In presence of G-flux, besides the ADS superpotential, we get a multifermion interaction of the form

$$
W_{\text {n.p. }}(G)=\left.\mathcal{C} G \Lambda^{2 N_{c}+1} \frac{\bar{D}_{\dot{\alpha}} \Phi^{\dagger} \bar{D}^{\dot{\alpha}} \Phi^{\dagger}}{\left(\Phi^{\dagger}\right)^{3} \Phi^{2 N_{c}-1}}\right|_{\bar{\theta}=0}
$$

- For $N_{c}=2$ the moduli integral can be explicitly done and the result can be expressed in terms of the low energy d.o.f

$$
W_{\text {n.p. }}(G)=\left.\mathcal{C} G \Lambda^{5} \frac{\bar{D}^{2} M^{\dagger}}{\left(M^{\dagger} M\right)^{3 / 2}}\right|_{\bar{\theta}=0}
$$

- This appears as a non-perturbative effect of the soft supersymmetry breaking due to the G-flux in the microscopic theory.

Stringy effects in ordinary instantons

$\boldsymbol{G}_{(0,3)}$ appears in the moduli action with an $\alpha^{\prime 2}$ in front. We must include other terms vanishing in the $\alpha^{\prime} \rightarrow 0$ limit

- From disk diagrams one has extra terms that correspond to

$$
\begin{gathered}
\Phi^{\dagger}(x, \bar{\theta}=0) \rightarrow \bar{\Phi}^{\dagger}\left(x, \bar{\theta}=\alpha^{\prime} \lambda\right) \\
\bar{D}_{\dot{\alpha}} \Phi^{\dagger}(x, \bar{\theta}=0) \rightarrow \bar{D}_{\dot{\alpha}} \Phi^{\dagger}\left(x, \bar{\theta}=\alpha^{\prime} \lambda\right)
\end{gathered}
$$

in the moduli action, which becomes

$$
\begin{aligned}
S_{\text {mod }}= & \frac{2 \pi^{3} \alpha^{\prime 2}}{g_{s}} D_{c} D^{c}+i D_{c}\left(\bar{w}_{\dot{\alpha}}\left(\tau^{c}\right)_{\dot{\beta}}^{\dot{\alpha}} w^{\dot{\beta}}\right)+i \frac{\sqrt{2}}{\pi \alpha^{\prime}} \bar{\theta}_{\dot{\alpha}}\left(\bar{\mu} w^{\dot{\alpha}}+\bar{w}^{\dot{\alpha}} \mu\right) \\
& +\frac{1}{2} \bar{w}_{\dot{\alpha}}\left(\Phi \Phi^{\dagger}+\Phi^{\dagger} \Phi\right) w^{\dot{\alpha}}+\frac{i}{2} \bar{\mu}^{1} \Phi^{\dagger} \mu-\frac{i}{2} \bar{\mu} \Phi^{\dagger} \mu^{1} \\
& +i \bar{w}_{\dot{\alpha}}\left(\bar{D}^{\dot{\alpha}} \Phi^{\dagger}\right) \mu^{1}-i \bar{\mu}^{1}\left(\bar{D}_{\dot{\alpha}} \Phi^{\dagger}\right) w^{\dot{\alpha}}+\text { flux terms }
\end{aligned}
$$

Stringy effects in ordinary instantons

When the λ-integration is saturated using $\bar{\theta}$-terms in the above superfields

- The fermionic ADHM constraint is not imposed: we lose contact with gauge instanton solutions
- We get explicit α^{\prime} factors in front of the corresponding contributions, which are D-terms:

$$
S_{n . p \text {. }}=\int d^{4} x d^{2} \theta d^{2} \bar{\theta} K_{n . p \text { p }}, \quad K_{\text {n.p. }}=\alpha^{\prime 2} \Lambda^{b_{1}} \int d \widehat{\mathcal{M}^{\prime}} \mathrm{e}^{-S_{\text {mod }}^{\prime}\left(\Phi, \phi^{\dagger}\right)}
$$

- The form of is constrained by the $U(1)^{3}$ symmetries to be

$$
K_{n . p .}=\mathcal{C} \alpha^{\prime 2} \Lambda^{3 N_{c}-N_{t}}\left(\Phi^{\dagger}\right)^{3+N_{c}-N_{t}} \Phi^{3-N_{c}-N_{t}}\left(\bar{D}_{\dot{\alpha}} \phi^{\dagger} \bar{D}^{\dot{\alpha}} \Phi^{\dagger}\right)^{N_{t}-N_{c}}+\ldots
$$

- Such terms deserve to be further investigated

Stringy effects in ordinary instantons

with $\bar{G} \neq 0$

- If we perform the $d^{2} \bar{\theta}$ integration using the $\bar{G} \bar{\theta} \bar{\theta}$ interaction
- Recall we get

$$
\begin{aligned}
& S_{\text {n.p. }(\bar{G})}=\alpha^{\prime 2} \int d^{4} x d^{2} \theta W_{\text {n.p. }}(\bar{G}) \\
& W_{\text {n.p. }}(\bar{G})=\alpha^{\prime 2} \frac{2 \pi i}{g_{s}} \Lambda^{b_{1}} \bar{G} \int d \widehat{\mathcal{M}}^{\prime} \mathrm{e}^{-\left.S_{\bmod }\left(\Phi, \Phi^{\dagger}\right)\right|_{\bar{\theta}=0}}
\end{aligned}
$$

- The schematic form of $W_{n . p}$. can be fixed similarly to previous cases

Non-holomorphic terms at $N_{f}=N_{c}$

Let us consider, for instance, the case $N_{f}=N_{c}$.

- At $\bar{G}=0$ we got BW multifermion F-terms
- Now we get also a non-holomorphic contribution of the form

$$
W_{\text {n.p. }}=\left.\mathcal{C} \alpha^{\prime 2} \bar{G} \Lambda^{2 N_{c}} \Phi^{\dagger^{3}} \Phi^{3-2 N_{c}}\right|_{\bar{\theta}=0}
$$

- For $N_{c}=2$, the explicit integral over the moduli yields

$$
W_{\text {n.p. }}=\left.\mathcal{C} \alpha^{\prime 2} \bar{G} \Lambda^{4} \frac{\operatorname{det} M^{\dagger}}{\left(\operatorname{tr} M^{\dagger} M+B^{\dagger} B+\tilde{B}^{\dagger} \tilde{B}\right)^{1 / 2}}\right|_{\bar{\theta}=0},
$$

(M is the meson, B and \widetilde{B} the baryon superfields).

Exotic (stringy) instantons

- Let us consider a set-up in which the instantonic brane does not correspond to a classical instanton for the gauge group
- $\mathrm{D}(-1) / \mathrm{D} 3$ strings have only fermionic excitations $\mu_{u}, \bar{\mu}^{u}$ and $\mu^{\prime} f, \bar{\mu}^{\prime f}$

- The field-dependent moduli action is simply

$$
S_{\text {mod }}=\left(\alpha^{\prime}\right)^{2} D_{c} D^{c}+\mu_{u} \Phi(x, \theta){ }_{f} \bar{\mu}^{\prime f}-\mu^{\prime}{ }_{f} \tilde{\Phi}(x, \theta)^{f}{ }_{u} \bar{\mu}^{u}
$$

Notice that the field-dependent terms are now holomorphic

- The integration over the $\bar{\theta}=\alpha^{\prime} \lambda^{\prime}$'s kills any contribution to the effective action

Exotic (stringy) instantons

- Let us consider a set-up in which the instantonic brane does not correspond to a classical instanton for the gauge group
- $\mathrm{D}(-1) / \mathrm{D} 3$ strings have only fermionic excitations $\mu_{u}, \bar{\mu}^{u}$ and $\mu^{\prime} f, \bar{\mu}^{\prime f}$

- Including flux corrections, the moduli action becomes

$$
S_{\text {mod }}=\left(\alpha^{\prime}\right)^{2} D_{c} D^{c}+\mu_{u} \Phi(x, \theta)^{u}{ }_{f} \bar{\mu}^{\prime f}-\mu_{f}^{\prime}{ }_{f} \tilde{\Phi}(x, \theta)^{f}{ }_{u} \bar{\mu}^{u}+\bar{G} \bar{\theta}_{\dot{\alpha}} \bar{\theta}^{\dot{\alpha}}+\ldots
$$

- The $\bar{\theta}$ integral can now be saturated with the $\bar{G} \bar{\theta}_{\dot{\alpha}} \bar{\theta}^{\dot{\alpha}}$ term
- At linear level, other flux interactions become irrelevant

Exotic but Holomorphic

- We get therefore

$$
\begin{aligned}
S_{\text {n.p. }} & =\int d^{4} x d^{2} \theta W_{\text {n.p. }}(\bar{G}) \\
W_{\text {n.p. }} & =\mathcal{C} \alpha^{\prime 2} M_{s}^{-\left(N_{c}+N_{f}\right)} \mathrm{e}^{2 \pi i \tau_{2}} \bar{G} \\
& \times \int d^{3} D d^{N_{c}} \mu^{2} d^{N_{c}} \bar{\mu}^{2} d^{N_{f}} \mu^{3} d^{N_{f}} \bar{\mu}^{3} \mathrm{e}^{-\frac{2 \pi^{3} \alpha^{\prime \prime}}{g_{s}} D_{c} D^{c}+\frac{i}{2}\left(\bar{\mu}^{3} \Phi \mu^{2}-\bar{\mu}^{2} \Phi \mu^{3}\right)}
\end{aligned}
$$

- The integration vanishes unless $N_{C}=N_{f}$, in which case it is easy and we get an holomorphic superpotential contribution

$$
W_{n . p .}=\mathcal{C} M_{s}^{2-2 N_{c}} \mathrm{e}^{2 \pi i \tau_{2}} \bar{G} \operatorname{det} M .
$$

Exotic but Holomorphic

- We get therefore

$$
\begin{aligned}
S_{\text {n.p. }} & =\int d^{4} x d^{2} \theta W_{\text {n.p. }}(\bar{G}) \\
W_{\text {n.p. }} & =\mathcal{C} \alpha^{\prime 2} M_{s}^{-\left(N_{c}+N_{f}\right)} \mathrm{e}^{2 \pi i \tau_{2}} \bar{G} \\
& \times \int d^{3} D d^{N_{c}} \mu^{2} d^{N_{c}} \bar{\mu}^{2} d^{N_{f}} \mu^{3} d^{N_{f}} \bar{\mu}^{3} \mathrm{e}^{-\frac{2 \pi^{3} \alpha^{\prime 2}}{g_{s}} D_{c} D^{c}+\frac{i}{2}\left(\bar{\mu}^{3} \Phi \mu^{2}-\bar{\mu}^{2} \Phi \mu^{3}\right)}
\end{aligned}
$$

- The integration vanishes unless $N_{C}=N_{f}$, in which case it is easy and we get an holomorphic superpotential contribution

$$
W_{n . p .}=\mathcal{C} M_{s}^{2-2 N_{c}} \mathrm{e}^{2 \pi i \tau_{2}} \bar{G} \operatorname{det} M .
$$

- M_{S} does not combine with $\mathrm{e}^{2 \pi i \tau_{2}}$ to give the scale $\Lambda: \tau_{2}$ is not the YM coupling on the N_{c} branes

Conclusions

- The technologies of the so-called "stringy instanton calculus" are an essential tool to devise the structure of non-perturbative contributions to the effective action for gauge theories engineered by brane constructions in a string compactification.

Conclusions

- The technologies of the so-called "stringy instanton calculus" are an essential tool to devise the structure of non-perturbative contributions to the effective action for gauge theories engineered by brane constructions in a string compactification.
- In such a situation
- Different types of instantonic branes, ordinary (i.e., corresponding to gauge instantons) and exotic
- Fluxes may be turned on
and we must be able to follow the pattern through which the l.e.e.a is affected by all this

Conclusions

- The technologies of the so-called "stringy instanton calculus" are an essential tool to devise the structure of non-perturbative contributions to the effective action for gauge theories engineered by brane constructions in a string compactification.
- In such a situation
- Different types of instantonic branes, ordinary (i.e., corresponding to gauge instantons) and exotic
- Fluxes may be turned on
and we must be able to follow the pattern through which the l.e.e.a is affected by all this

Thank You for Your Attention!

General result (RR)

Back

$$
\mathcal{A}_{F}=-8 c_{F} \Theta^{\prime} \Gamma^{M} \Theta\left[F \mathcal{R}_{0}\left(2 l_{1}-l_{2}\right)\right]_{M}+\frac{4 c_{F}}{3!} \Theta^{\prime} \Gamma^{M N P} \Theta\left[F \mathcal{R}_{0} I_{2}\right]_{M N P}
$$

- $\Theta_{\mathcal{A}}$: polarization of the open string R vertex, with $\mathcal{A}=1, \ldots, 16=$ (antichiral) 10 d spinor index labeling $\vec{\epsilon}_{\mathcal{A}}=\frac{1}{2}(\pm, \pm, \pm, \pm, \pm)$

General result (RR)

Back

$$
\mathcal{A}_{F}=-8 c_{F} \Theta^{\prime} \Gamma^{M} \Theta\left[F \mathcal{R}_{0}\left(2 l_{1}-l_{2}\right)\right]_{M}+\frac{4 c_{F}}{3!} \Theta^{\prime} \Gamma^{M N P} \Theta\left[F \mathcal{R}_{0} I_{2}\right]_{M N P}
$$

- The IIB RR vertex is a bi-spinor containing the fields strengths:

$$
F_{\mathcal{A B}}=\sum_{n=1,3,5} \frac{1}{n!} F_{M_{1} \ldots M_{n}}\left(\Gamma^{M_{1} \ldots M_{n}}\right)_{\mathcal{A B}}
$$

General result (RR)

Back

$$
\mathcal{A}_{F}=-8 c_{F} \Theta^{\prime} \Gamma^{M} \Theta\left[F \mathcal{R}_{0}\left(2 l_{1}-I_{2}\right)\right]_{M}+\frac{4 c_{F}}{3!} \Theta^{\prime} \Gamma^{M N P} \Theta\left[F \mathcal{R}_{0} I_{2}\right]_{M N P}
$$

- I.m. and r.m. fields identification at the boundary:

$$
\widetilde{X}^{M}(\bar{z})=\left(R_{0}\right)_{N}^{M} x^{N}(\bar{z}) \quad, \quad \widetilde{s}_{\epsilon_{\mathcal{A}}}(\bar{z})=\left(\mathcal{R}_{0}\right)_{\mathcal{B}}^{\mathcal{A}} s_{\vec{\epsilon}_{\mathcal{B}}}(\bar{z})
$$

where \mathcal{R}_{0} is the spinorial reflection matrix. Thus

$$
F_{\mathcal{A B}} \rightarrow\left(F \mathcal{R}_{0}\right)_{\mathcal{A B}}
$$

General result (RR)

Back

$$
\mathcal{A}_{F}=-8 c_{F} \Theta^{\prime} \Gamma^{M} \Theta\left[F \mathcal{R}_{0}\left(2 l_{1}-l_{2}\right)\right]_{M}+\frac{4 c_{F}}{3!} \Theta^{\prime} \Gamma^{M N P} \Theta\left[F \mathcal{R}_{0} I_{2}\right]_{M N P}
$$

- I_{1} and I_{2} are $\vec{\vartheta}$-dependent diagonal matrices:

$$
\begin{aligned}
& \left(I_{1}\right)_{\mathcal{A}_{3}}^{\mathcal{A}_{3}}=\frac{1}{2} \mathrm{e}^{-\frac{i \pi \alpha^{\prime} s}{2}}\left(\mathrm{e}^{-2 \pi i\left(\alpha^{\prime} t-\vec{\vartheta} \cdot \vec{\epsilon}_{3}\right)}-1\right) B\left(\alpha^{\prime} s ; \alpha^{\prime} t-\vec{\vartheta} \cdot \vec{\epsilon}_{3}\right) \\
& \left(I_{2}\right)_{\mathcal{A}_{3}}^{\mathcal{A}_{3}}=\frac{1}{2} \mathrm{e}^{-\frac{i \pi \alpha^{\prime} s}{2} s}\left(\mathrm{e}^{-2 \pi i\left(\alpha^{\prime} t-\vec{\vartheta} \cdot \vec{\epsilon}_{3}\right)}-1\right) B\left(\alpha^{\prime} s+1 ; \alpha^{\prime} t-\vec{\vartheta} \cdot \overrightarrow{\epsilon_{3}}\right)
\end{aligned}
$$

where $\vec{\epsilon}_{3}$ is the spinorial weight of the r.m. part of the RR vertex
that

General result (NS-NS)

$$
\begin{aligned}
\mathcal{A}_{H} & =-4 c_{H} \Theta^{\prime} \Gamma^{N} \Theta \delta^{M P}\left[\partial B R_{0}\left(2 I_{1}-I_{2}\right)\right]_{[M N] P} \\
& +2 c_{H} \Theta^{\prime} \Gamma^{M N P} \Theta\left[\partial B R_{0} I_{2}\right]_{M N P}
\end{aligned}
$$

- We use an effective NS-NS vertex containing the derivatives of B

$$
\begin{aligned}
V_{H}(z, \bar{z}) & =\mathcal{N}_{H}\left(\partial_{M} B_{N P}\right) \mathrm{e}^{-i \pi \alpha^{\prime} k_{L} \cdot k_{\mathrm{R}}}\left[\psi^{M} \psi^{N^{i} \mathrm{k}_{\mathrm{L}} \cdot x}\right](z) \\
& \times\left[\widetilde{\psi}^{P} \mathrm{e}^{-\tilde{\phi}} \mathrm{e}^{i k_{\mathrm{R}} \cdot \tilde{x}}\right](\bar{z})
\end{aligned}
$$

General result (NS-NS)

$$
\begin{aligned}
\mathcal{A}_{H} & =-4 c_{H} \Theta^{\prime} \Gamma^{N} \Theta \delta^{M P}\left[\partial B R_{0}\left(2 I_{1}-I_{2}\right)\right]_{[M N] P} \\
& +2 c_{H} \Theta^{\prime} \Gamma^{M N P} \Theta\left[\partial B R_{0} l_{2}\right]_{M N P}
\end{aligned}
$$

- In presence of D-branes, the left-right identifications leads to

$$
(\partial B) \rightarrow\left(\partial B R_{0}\right)
$$

with the vectorial reflection matrix R_{0}

General result (NS-NS)

$$
\begin{aligned}
\mathcal{A}_{H} & =-4 c_{H} \Theta^{\prime} \Gamma^{N} \Theta \delta^{M P}\left[\partial B R_{0}\left(2 I_{1}-I_{2}\right)\right]_{[M N] P} \\
& +2 c_{H} \Theta^{\prime} \Gamma^{M N P} \Theta\left[\partial B R_{0} I_{2}\right]_{M N P}
\end{aligned}
$$

- I_{1} and I_{2} are again given by:

$$
\begin{aligned}
& \left(I_{1}\right)_{\mathcal{A}_{3}}^{\mathcal{A}_{3}}=\frac{1}{2} \mathrm{e}^{-\frac{i \pi \alpha^{\prime} s}{2}}\left(\mathrm{e}^{-2 \pi i\left(\alpha^{\prime} t-\vec{\vartheta} \cdot \vec{\epsilon}_{3}\right)}-1\right) B\left(\alpha^{\prime} s ; \alpha^{\prime} t-\vec{\vartheta} \cdot \vec{\epsilon}_{3}\right) \\
& \left(I_{2}\right)_{\mathcal{A}_{3}}^{\mathcal{A}_{3}}=\frac{1}{2} \mathrm{e}^{-\frac{i \pi \alpha^{\prime} s}{2}\left(\mathrm{e}^{-2 \pi i\left(\alpha^{\prime} t-\vec{\vartheta} \cdot \vec{\epsilon}_{3}\right)}-1\right) B\left(\alpha^{\prime} s+1 ; \alpha^{\prime} t-\vec{\vartheta} \cdot \overrightarrow{\epsilon_{3}}\right)}
\end{aligned}
$$

but $\vec{\epsilon}_{3}$ is now the vectorial weight associated to $\psi^{P}\left(z_{3}\right)$ in the r.m. part of the NS-NS vertex

Details on the orbifold

- Character table and Clebsh-Gordan series:

	e	h_{1}	h_{2}	h_{3}
R_{0}	1	1	1	1
R_{1}	1	1	-1	-1
R_{2}	1	-1	1	-1
R_{3}	1	-1	-1	1

$$
R_{0} \otimes R_{A}=R_{A}, \quad R_{i} \otimes R_{j}=\delta_{i j} R_{0}+\left|\epsilon_{i j k}\right| R_{k}
$$

- Transformations of massless string fields:

NS fields	irrep
$\partial Z^{i}, \Psi^{i}$	R_{i}

chiral S^{A}	anti-chiral S_{A}	irrep
$S^{0} \equiv S^{+++}$	$S_{0} \equiv S_{---}$	R_{0}
$S^{1} \equiv S^{+--}$	$S_{1} \equiv S_{-++}$	R_{1}
$S^{2} \equiv S^{-+-}$	$S_{2} \equiv S_{+-+}$	R_{2}
$S^{3} \equiv S^{--+}$	$S_{3} \equiv S_{+++}$	R_{3}

