Aspects of the stringy instanton calculus: part I

Alberto Lerda
U.P.O. "A. Avogadro" \& I.N.F.N. - Alessandria
Vienna, October 7, 2008

Plan of this talk

1 Introduction and motivation

2 Branes and instantons in flat space

3 Instanton classical solution from string diagrams

4 The stringy instanton calculus

Introduction and motivation

String theory is a very powerful tool to analyze field theories, and in particular gauge theories.

Behind this, there is a rather simple and well-known fact: in the field theory limit $\alpha^{\prime} \rightarrow 0$, a single string scattering amplitude reproduces a sum of different Feynman diagrams

Introduction and motivation

String theory is a very powerful tool to analyze field theories, and in particular gauge theories.

Behind this, there is a rather simple and well-known fact: in the field theory limit $\alpha^{\prime} \rightarrow 0$, a single string scattering amplitude reproduces a sum of different Feynman diagrams

String theory S-matrix elements \Longrightarrow vertices and effective actions in field theory

In general, a N-point string amplitude \mathcal{A}_{N} is given schematically by

$$
\mathcal{A}_{N}=\int_{\Sigma}\left\langle V_{\phi_{1}} \cdots V_{\phi_{N}}\right\rangle_{\Sigma}
$$

where

- $V_{\phi_{i}}$ is the vertex for the emission of the field $\phi_{i}: \quad V_{\phi_{i}} \equiv \phi_{i} \mathcal{V}_{\phi_{i}}$
- Σ is a Riemann surface of a given topology
$-\langle\ldots\rangle_{\Sigma}$ is the v.e.v. with respect to the vacuum defined by Σ.

In general, a N-point string amplitude \mathcal{A}_{N} is given schematically by

$$
\mathcal{A}_{N}=\int_{\Sigma}\left\langle V_{\phi_{1}} \cdots V_{\phi_{N}}\right\rangle_{\Sigma}
$$

where

- $V_{\phi_{i}}$ is the vertex for the emission of the field $\phi_{i}: \quad V_{\phi_{i}} \equiv \phi_{i} \mathcal{V}_{\phi_{i}}$
- Σ is a Riemann surface of a given topology
$-\langle\ldots\rangle_{\Sigma}$ is the v.e.v. with respect to the vacuum defined by Σ.

The simplest world-sheets Σ are:
spheres for closed strings and disks for open strings

- For any closed string field $\phi_{\text {closed }}$, one has

$$
\left\langle\mathcal{V}_{\phi_{\text {closed }}}\right\rangle_{\text {sphere }}=0 \Rightarrow\left\langle\phi_{\text {closed }}\right\rangle_{\text {sphere }}=0
$$

- For any closed string field $\phi_{\text {closed }}$, one has

$$
\left\langle\mathcal{V}_{\phi_{\text {closed }}}\right\rangle_{\text {sphere }}=0 \Rightarrow\left\langle\phi_{\text {closed }}\right\rangle_{\text {sphere }}=0
$$

- For any open string field $\phi_{\text {open }}$, one has

$$
\left\langle\mathcal{V}_{\phi_{\text {open }}}\right\rangle_{\text {disk }}=0 \Rightarrow\left\langle\phi_{\text {open }}\right\rangle_{\text {disk }}=0
$$

- For any closed string field $\phi_{\text {closed }}$, one has

$$
\left\langle\mathcal{V}_{\phi_{\text {closed }}}\right\rangle_{\text {sphere }}=0 \Rightarrow\left\langle\phi_{\text {closed }}\right\rangle_{\text {sphere }}=0
$$

- For any open string field $\phi_{\text {open }}$, one has

$$
\left\langle\mathcal{V}_{\phi_{\text {open }}}\right\rangle_{\text {disk }}=0 \Rightarrow\left\langle\phi_{\text {open }}\right\rangle_{\text {disk }}=0
$$

- spheres and disks describe the trivial vacuum around which ordinary perturbation theory is performed
- For any closed string field $\phi_{\text {closed }}$, one has

$$
\left\langle\mathcal{V}_{\phi_{\text {closed }}}\right\rangle_{\text {sphere }}=0 \Rightarrow\left\langle\phi_{\text {closed }}\right\rangle_{\text {sphere }}=0
$$

- For any open string field $\phi_{\text {open }}$, one has

$$
\left\langle\mathcal{V}_{\phi_{\text {open }}}\right\rangle_{\text {disk }}=0 \Rightarrow\left\langle\phi_{\text {open }}\right\rangle_{\text {disk }}=0
$$

- spheres and disks describe the trivial vacuum around which ordinary perturbation theory is performed
- spheres and disks are inadequate to describe non-perturbative backgrounds where fields have non trivial profile!

However, after the discovery of D-branes, the perspective has drastically changed, and nowadays we know that also some non-perturbative properties of field theories can be analyzed using perturbative string theory!

The solitonic brane solutions of SUGRA with RR charge have a perturbative description in terms of closed strings emitted from disks with Dirichlet boundary conditions

In this lecture

- We will extend this idea to open strings by introducing "mixed disks" (i.e. disks with mixed boundary conditions) such that

$$
\left\langle\phi_{\text {open }}\right\rangle_{\text {mixed disk }} \neq 0
$$

In this lecture

- We will extend this idea to open strings by introducing "mixed disks" (i.e. disks with mixed boundary conditions) such that

$$
\left\langle\phi_{\text {open }}\right\rangle_{\text {mixed disk }} \neq 0
$$

- We will exploit this idea to describe instantons in (supersymmetric) gauge theories using open strings and D-branes.

In this lecture

- We will extend this idea to open strings by introducing "mixed disks" (i.e. disks with mixed boundary conditions) such that

$$
\left\langle\phi_{\text {open }}\right\rangle_{\text {mixed disk }} \neq 0
$$

- We will exploit this idea to describe instantons in (supersymmetric) gauge theories using open strings and D-branes.
- We will see that instantons arise as (possibly wrapped) Euclidean branes

In this lecture

- We will extend this idea to open strings by introducing "mixed disks" (i.e. disks with mixed boundary conditions) such that

$$
\left\langle\phi_{\text {open }}\right\rangle_{\text {mixed disk }} \neq 0
$$

- We will exploit this idea to describe instantons in (supersymmetric) gauge theories using open strings and D-branes.
- We will see that instantons arise as (possibly wrapped) Euclidean branes
- We will show that in addition to the usual field theory effects, this stringy realization of the instanton calculus provides a rationale for explaining the presence of new types of non-perturbative terms in the low energy effection actions of D-brane models.

In phenomenological applications of string theory, instanton effects are important for various reasons, e.g.

- they may generate non-perturbative contributions to the effective superpotentials and hence play a crucial rôle for moduli stabilization
- they may generate perturbatively forbidden couplings, like Majorana masses for neutrinos, ...

In phenomenological applications of string theory, instanton effects are important for various reasons, e.g.

- they may generate non-perturbative contributions to the effective superpotentials and hence play a crucial rôle for moduli stabilization
- they may generate perturbatively forbidden couplings, like Majorana masses for neutrinos, ...

Instanton effects in string theory have been studied over the years from various standpoints, mainly exploiting string duality:

Witten, Becker²+Strominger, Harvey+Moore, Beasley+Witten, Antoniadis+Gava+Narain+Taylor, Bachas+Fabre+Kiritsis+Obers+Vanhove, Kiritis+Pioline, Green+Gutperle, + ...

In phenomenological applications of string theory, instanton effects are important for various reasons, e.g.

- they may generate non-perturbative contributions to the effective superpotentials and hence play a crucial rôle for moduli stabilization
- they may generate perturbatively forbidden couplings, like Majorana masses for neutrinos, ...

Only recently concrete tools have been developed to directly compute instanton effects using (perturbative) string theory:

Green+Gutperle, Billò+Frau+Fucito+A.L.+Liccardo+Pesando, Billò+Frau+Fucito+A.L., Blumenhagen,Cvetic+Weigand, Ibañez+Uranga, Akerblom+Blumenhagen+Luest+Plauschinn+Schmidt-Sommerfeld, + ...

Credits

Florea + Kachru + McGreevy + Saulina, 2006
Bianchi + Kiritsis, 2007
Cvetic + Richter + Weigand, 2007
Argurio + Bertolini + Ferretti + A.L. + Petersson, 2007
Bianchi + Fucito + Morales, 2007
lbanez + Schellekens + Uranga, 2007
Akerblom + Blumenhagen+ Luest + Schimdt-Sommerfeld, 2007
Antusch + Ibanez + Macri, 2007
Blumenhagen + Cvetic + Luest + Richter + Weigand, 2007
Billó + Di Vecchia + Frau + A.L. + Marotta + Pesando, 2007
Aharony + Kachru, 2007
Camara + Dudas + Maillard + Pradisi, 2007
Ibanez + Uranga, 2007
Garcia-Etxebarria + Uranga, 2007
Petersson, 2007
Bianchi + Morales, 2007
Blumenhagen + Schmidt-Sommerfeld, 2008
Argurio + Ferretti + Petersson, 2008
Cvetic + Richter + Weigand, 2008
Kachru + Simic, 2008
Garcia-Etxebarria + Marchesano + Uranga, 2008
Billò + Ferro + Frau + Fucito + A.L. + Morales, 2008
Uranga, 2008
Amariti + Girardello + Mariotti, 2008

Branes and instantons in flat space

String description of SYM theories and their instantons

The effective action of a SYM theory can be given a simple and calculable string theory realization:

- The gauge degrees of freedom are realized by open strings attached to N D3 branes.

- From the disk amplitudes of open string massless fields one recovers the standard Super Yang-Mills action.

String description of SYM theories and their instantons

The effective action of a SYM theory can be given a simple and calculable string theory realization:

- The gauge degrees of freedom are realized by open strings attached to N D3 branes.

- The instanton sector of charge k is realized by adding $k \mathrm{D}(-1)$ branes (D-instantons).

Instantons and D-instantons

- Consider the effective action for a stack of N D3 branes

$$
\text { D. B.I. }+\int_{\mathrm{D} 3}\left[C_{4}+\frac{1}{2} C_{0} \operatorname{Tr}(F \wedge F)\right]
$$

The topological density of an instanton configuration corresponds to a localized source for the R-R scalar C_{0}, i.e., to a distribution of D-instantons inside the D3's.

Instantons and D-instantons

- Consider the effective action for a stack of N D3 branes

$$
\text { D.B.I. }+\int_{\mathrm{D} 3}\left[C_{4}+\frac{1}{2} C_{0} \operatorname{Tr}(F \wedge F)\right]
$$

The topological density of an instanton configuration corresponds to a localized source for the R -R scalar C_{0}, i.e., to a distribution of D-instantons inside the D3's.

- Instanton solutions of $\operatorname{SU}(N)$ gauge theories with charge k correspond to k D-instantons inside N D3-branes.
[Witten 1995, Douglas 1995, Dorey 1999, ...]

	0	1	2	3	4	5	6	7	8	9
D3	-	-	-	-	$*$	$*$	$*$	$*$	$*$	$*$
$\mathrm{D}(-1)$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$

Open string degrees of freedom

In this D-brane system there are different open string sectors

- D3/D3 strings: gauge theory fields
- $D(-1) / D(-1)$ strings: neutral instanton moduli
- D3/D(-1) strings: charged instanton moduli

Moduli vertices and instanton parameters

Open strings with at least one end on a $D(-1)$ carry no momentum: they are moduli, rather than dynamical fields.

The $D(-1) / D(-1)$ open strings have $D D$ boundary conditions in all directions and the spectrum is:

	moduli	ADHM Meaning	Vertex	Chan-Paton
NS	a_{μ}^{\prime}	centers	$\psi^{\mu} \mathrm{e}^{-\varphi}$	adj. U(k)
	χ_{m}	aux.	$\psi^{m} \mathrm{e}^{-\varphi(z)}$	\vdots
	D_{C}	Lagrange mult.	$\bar{\eta}_{\mu \nu}^{c} \psi^{\nu} \psi^{\mu}$	\vdots
R	$M^{\alpha A}$	partners	$S_{\alpha} S_{A} \mathrm{e}^{-\frac{1}{2} \varphi}$	\vdots
	$\lambda_{\dot{\alpha} A}$	Lagrange mult.	$S^{\dot{\alpha}} S^{A} \mathrm{e}^{-\frac{1}{2} \varphi}$	\vdots

where $\mu, \nu=0,1,2,3 ; m, n=4,5, \ldots, 9 ; \alpha, \dot{\alpha}=1,2$ and $A=1,2,3,4$.

In the $\mathrm{D} 3 / \mathrm{D}(-1)$ sector the string coordinates X^{μ} and $\psi^{\mu}(\mu=0,1,2,3)$ satisfy mixed ND or DN boundary conditions \Rightarrow their moding is shifted by $1 / 2$ so that

- the lowest state of the NS sector is a bosonic spinor of $S O(4)$
- the lowest state of the R sector is a fermionic scalar of $S O(4)$

	moduli	ADHM Meaning	Vertex	Chan-Paton
NS	$w_{\dot{\alpha}}$	sizes	$\Delta S^{\dot{\alpha}} \mathrm{e}^{-\varphi}$	$k \times N$
	$\bar{w}_{\dot{\alpha}}$	sizes	$\bar{\Delta} S^{\dot{\alpha}} \mathrm{e}^{-\varphi}$	$N \times k$
R	μ^{A}	partners	$\Delta S_{A} \mathrm{e}^{-\frac{1}{2} \varphi}$	$k \times N$
	$\bar{\mu}^{A}$	\vdots	$\bar{\Delta} S_{A} \mathrm{e}^{-\frac{1}{2} \varphi}$	$N \times k$

Δ and $\bar{\Delta}$ are the twist fields whose insertion modify the boundary conditions from D3 to $D(-1)$ type and viceversa.

Disk amplitudes and effective actions

D3 disks

Disk amplitudes and effective actions

D3 disks

$\mathrm{D}(-1)$ disks

Disk amplitudes and effective actions

D3 disks

$D(-1)$ disks

Mixed disks

Disk amplitudes and effective actions

D3 disks

$D(-1)$ disks

Disk amplitudes

field theory limit $\alpha^{\prime} \rightarrow 0$

Mixed disks

Effective actions

SYM action
instanton action (ADHM)

An example of mixed disk amplitude

Consider the following mixed disk diagram

which corresponds to the following amplitude
$\left\langle V_{\lambda} V_{\bar{w}} V_{\mu}\right\rangle \equiv C_{0} \int \frac{\prod_{i} d z_{i}}{d V_{\mathrm{CKG}}} \times\left\langle V_{\lambda}\left(z_{1}\right) V_{\bar{w}}\left(z_{2}\right) V_{\mu}\left(z_{3}\right)\right\rangle=\ldots=\operatorname{tr}_{k}\left\{i \lambda_{A}^{\dot{\alpha}} \bar{w}_{\dot{\alpha}} \mu^{A}\right\}$
where $C_{0}=8 \pi^{2} / g^{2}$ is the disk normalization.

The instanton moduli action

Collecting all diagrams $\mathrm{D}(-1)$ and mixed disk diagrams with insertion of all moduli vertices, we can extract the instanton moduli action

$$
\begin{aligned}
S_{1}=\operatorname{tr}\{ & -\left[a_{\mu}, \chi^{m}\right]^{2}-\frac{i}{4} M^{\alpha A}\left[\chi_{A B}, M_{\alpha}^{B}\right]+\chi^{m} \bar{w}_{\dot{\alpha}} w^{\dot{\alpha}} \chi_{m}+\frac{i}{2} \bar{\mu}^{A} \mu^{B} \chi_{A B} \\
& -i D^{c}\left(\bar{w}^{\dot{\alpha}}\left(\tau^{c}\right)_{\dot{\alpha}}^{\dot{\beta}} w_{\dot{\beta}}+i \bar{\eta}_{\mu \nu}^{c}\left[a^{\mu}, a^{\nu}\right]\right) \\
& \left.+i \lambda_{A}^{\dot{\alpha}}\left(\bar{\mu}^{A} w_{\dot{\alpha}}+\bar{w}_{\dot{\alpha}} \mu^{A}+\sigma_{\beta \dot{\alpha}}^{\mu}\left[M^{\beta A}, a_{\mu}\right]\right)\right\}
\end{aligned}
$$

where $\chi_{A B}=\chi_{m}\left(\Sigma^{m}\right)_{A B}$.

- S_{1} is just a gauge theory action dimensionally reduced to $d=0$ in the ADHM limit.
- The last two lines in S_{1} correspond to the bosonic and fermionic ADHM constraints.

Take for simplicity $k=1(\longrightarrow[]=0$,$) . The bosonic "equations of$ motion"

$$
w_{u \dot{\alpha}} \chi^{m}=0 \quad, \quad \bar{w}_{\dot{\alpha} u}\left(\tau^{c}\right)^{\dot{\alpha} \dot{\beta}} w_{u \dot{\beta}}=0
$$

determine the classical vacua.

Take for simplicity $k=1(\longrightarrow[]=0$,$) . The bosonic "equations of$ motion"

$$
w_{u \dot{\alpha}} \chi^{m}=0 \quad, \quad \bar{w}_{\dot{\alpha} u}\left(\tau^{c}\right)^{\dot{\alpha} \dot{\beta}} w_{u \dot{\beta}}=0
$$

determine the classical vacua.
There are two types of solutions:

$$
\chi^{m} \neq 0, \quad w_{u \dot{\alpha}}=0
$$

Take for simplicity $k=1(\longrightarrow[]=0$,$) . The bosonic "equations of$ motion"

$$
w_{u \dot{\alpha}} \chi^{m}=0, \quad \bar{w}_{\dot{\alpha} u}\left(\tau^{c}\right)^{\dot{\alpha} \dot{\beta}} w_{u \dot{\beta}}=0
$$

determine the classical vacua.
There are two types of solutions:

$$
\chi^{m} \neq 0, \quad w_{u \dot{\alpha}}=0
$$

$$
\chi^{m}=0, w_{u \dot{\alpha}}=\rho\binom{1_{2 \times 2}}{0_{(N-2) \times 2}}
$$

- The neutral zero-modes

$$
x^{\mu}=\operatorname{tr}\left(a^{\mu}\right) \quad \text { and } \quad \theta^{\alpha A}=\operatorname{tr}\left(M^{\alpha A}\right)
$$

are the Goldstone modes of the broken (super)translations. S_{1} does not depend on them. They play the role of the superspace coordinates.

- The neutral zero-modes

$$
x^{\mu}=\operatorname{tr}\left(a^{\mu}\right) \quad \text { and } \quad \theta^{\alpha A}=\operatorname{tr}\left(M^{\alpha A}\right)
$$

are the Goldstone modes of the broken (super)translations. S_{1} does not depend on them. They play the role of the superspace coordinates.

- The other neutral (anti-chiral) fermionic zero-modes

$$
\lambda_{\dot{\alpha} A}
$$

appear linearly in S_{1} and are the Lagrange multipliers for the fermionic ADHM constraints. They have dimensions of (length) ${ }^{-3 / 2}$.

- The neutral zero-modes

$$
x^{\mu}=\operatorname{tr}\left(a^{\mu}\right) \quad \text { and } \quad \theta^{\alpha A}=\operatorname{tr}\left(M^{\alpha A}\right)
$$

are the Goldstone modes of the broken (super)translations. S_{1} does not depend on them. They play the role of the superspace coordinates.

- The other neutral (anti-chiral) fermionic zero-modes

$$
\lambda_{\dot{\alpha} A}
$$

appear linearly in S_{1} and are the Lagrange multipliers for the fermionic ADHM constraints. They have dimensions of (length) ${ }^{-3 / 2}$.

- The bosonic charged moduli

$$
\bar{w}_{\dot{\alpha}} \quad, \quad w_{\dot{\alpha}}
$$

describe the instanton size and its orientation (in the $\mathrm{SU}(N)$). They carry dimensions of (length).

To understand better all this, let us look at the instanton classical solution

Instanton classical solution

- The mixed disks are the sources for a non-trivial gauge field whose profile is exactly that of the classical instanton!!
[Billó et al. 2002,...]

Instanton classical solution

- The mixed disks are the sources for a non-trivial gauge field whose profile is exactly that of the classical instanton!!
[Billó et al. 2002,...]

Let us consider the following mixed-disk amplitude:

Instanton classical solution

- The mixed disks are the sources for a non-trivial gauge field whose profile is exactly that of the classical instanton!!
[Billó et al. 2002,...]

Using the explicit expressions of the vertex operators, for $S U(2)$ with $k=1$ one finds

$$
\begin{aligned}
\left\langle\mathcal{V}_{A_{\mu}^{c}(p)}\right\rangle_{\text {mixed disk }} & \equiv\left\langle V_{\bar{w}} \mathcal{V}_{A_{\mu}^{c}}(p) V_{w}\right\rangle \\
& =-i p^{\nu} \bar{\eta}_{\mu \nu}^{c}\left(\bar{w}^{\dot{\alpha}} w_{\dot{\alpha}}\right) \mathrm{e}^{-i p \cdot x_{0}} \equiv A_{\mu}^{c}\left(p ; w, x_{0}\right)
\end{aligned}
$$

- On this mixed disk the gauge vector field has a non-vanishing tadpole!
- Taking the Fourier transform of $A_{\mu}^{c}\left(p ; w, x_{0}\right)$, after inserting the free propagator $1 / p^{2}$, we obtain

$$
A_{\mu}^{c}(x) \equiv \int \frac{d^{4} p}{(2 \pi)^{2}} A_{\mu}^{c}\left(p ; w, x_{0}\right) \frac{1}{p^{2}} \mathrm{e}^{i p \cdot x}=2 \rho^{2} \bar{\eta}_{\mu \nu}^{c} \frac{\left(x-x_{0}\right)^{\nu}}{\left(x-x_{0}\right)^{4}}
$$

where we have used the solution of the ADHM constraints so that $\bar{w}^{\dot{\alpha}} w_{\dot{\alpha}}=2 \rho^{2}$.

- This is the leading term in the large distance expansion of an $\mathrm{SU}(2)$ instanton with size ρ and center x_{0} in the singular gauge!!
- Taking the Fourier transform of $A_{\mu}^{c}\left(p ; w, x_{0}\right)$, after inserting the free propagator $1 / p^{2}$, we obtain

$$
A_{\mu}^{c}(x) \equiv \int \frac{d^{4} p}{(2 \pi)^{2}} A_{\mu}^{c}\left(p ; w, x_{0}\right) \frac{1}{p^{2}} \mathrm{e}^{i p \cdot x}=2 \rho^{2} \bar{\eta}_{\mu \nu}^{c} \frac{\left(x-x_{0}\right)^{\nu}}{\left(x-x_{0}\right)^{4}}
$$

where we have used the solution of the ADHM constraints so that $\bar{w}^{\dot{\alpha}} w_{\dot{\alpha}}=2 \rho^{2}$.

- This is the leading term in the large distance expansion of an $\mathrm{SU}(2)$ instanton with size ρ and center x_{0} in the singular gauge!!
- In fact

$$
\begin{aligned}
\left.A_{\mu}^{c}(x)\right|_{\text {instanton }} & =2 \rho^{2} \bar{\eta}_{\mu \nu}^{c} \frac{\left(x-x_{0}\right)^{\nu}}{\left(x-x_{0}\right)^{2}\left[\left(x-x_{0}\right)^{2}+\rho^{2}\right]} \\
& =2 \rho^{2} \bar{\eta}_{\mu \nu}^{c} \frac{\left(x-x_{0}\right)^{\nu}}{\left(x-x_{0}\right)^{4}}\left(1-\frac{\rho^{2}}{\left(x-x_{0}\right)^{2}}+\ldots\right)
\end{aligned}
$$

- The subleading terms in the large distance expansion can be obtained from mixed disks with more insertions of moduli.
- For example, at the next-to-leading order we have to consider the following mixed disk which can be easily evaluated for $\alpha^{\prime} \rightarrow 0$

$\alpha^{\prime} \rightarrow 0$

- Its Fourier transform gives precisely the 2nd order in the large distance expansion of the instanton profile

$$
A_{\mu}^{c}(x)^{(2)}=-2 \rho^{4} \bar{\eta}_{\mu \nu}^{c} \frac{\left(x-x_{0}\right)^{\nu}}{\left(x-x_{0}\right)^{6}}
$$

Summary

- Mixed disks are sources for open strings

mixed disk

- The gauge field emitted from mixed disks is precisely that of the classical instanton

$$
\left.\left\langle\mathcal{V}_{A_{\mu}}\right\rangle_{\text {mixed disk }} \Leftrightarrow A_{\mu}\right|_{\text {instanton }}
$$

- This procedure can be easily generalized to the SUSY partners of the gauge boson.

The stringy instanton calculus

The instanton partition function

- The crucial ingredient is the moduli action S_{1} : it is given by (mixed) disk diagrams; the result depends only on the centered moduli $\widehat{\mathcal{M}}_{(k)}$ but not on the center x^{μ} nor on its super-partners $\theta^{\alpha A}$

The instanton partition function

- The crucial ingredient is the moduli action S_{1} : it is given by (mixed) disk diagrams; the result depends only on the centered moduli $\widehat{\mathcal{M}}_{(k)}$ but not on the center x^{μ} nor on its super-partners $\theta^{\alpha A}$
- The combinatorics of the disk diagrams

is such that they exponentiate, leading to the instanton partition function

$$
Z^{(k)} \sim \int d^{4} x d^{8} \theta d \widehat{\mathcal{M}}_{(k)} \mathrm{e}^{-\frac{8 \pi^{2} k}{g^{2}}-S_{1}\left(\widehat{\mathcal{M}}_{(k)}\right)} \sim \int_{\text {[Panchinki } 1094} d^{4} x d^{8} \theta \widehat{Z^{(k)}}
$$

- The mixed disk amplitudes giving rise to the moduli action $S_{1}\left(\mathcal{M}_{(k)}\right)$, i.e.

from the D3 brane point of view represent a "vacuum contribution".
- The mixed disk amplitudes giving rise to the moduli action $S_{1}\left(\mathcal{M}_{(k)}\right)$, i.e.

from the D3 brane point of view represent a "vacuum contribution".
- Since we integrate over the instanton moduli $\mathcal{M}_{(k)}$, also disconnected diagrams must be considered. For example we must take into account also

- Of course one should add more disconnected components and take into account the appropriate symmetry factors
- A careful study of the combinatorics of boundaries leads to the exponentiation of the disk amplitudes, namely to
[Polchinski 1994]

$$
\begin{gathered}
\left\{1+\left(\frac{1}{2}\left(\frac{1}{2}\right) \times 1\right\}\right. \\
=1-S_{1}\left(\mathcal{M}_{(k)}\right)+\frac{1}{2} S_{1}\left(\mathcal{M}_{(k)}\right)^{2}+\ldots \\
=\mathrm{e}^{-S_{1}\left(\mathcal{M}_{(k)}\right)}=\mathrm{e}^{-\frac{8 \pi^{2} k}{g^{2}}-S_{1}\left(\widehat{\mathcal{M}}_{(k)}\right)}
\end{gathered}
$$

Field dependent moduli action

- Consider correlators of D3/D3 fields, e.g. of the scalars Φ^{m}, in presence of k D-instantons. They are described by disk diagrams with (at least) one insertion of $V_{\Phi^{m}}$. For example we have

Field dependent moduli action

- Consider correlators of D3/D3 fields, e.g. of the scalars ϕ^{m}, in presence of k D-instantons. They are described by disk diagrams with (at least) one insertion of $V_{\Phi^{m}}$. For example we have

- Considering all such diagrams one obtains the field-dependent moduli action

$$
\begin{aligned}
S_{2}\left(\mathcal{M}_{(k)} ; \Phi\right)= & \operatorname{tr}\left\{\bar{w}_{\dot{\alpha}} \Phi^{m} \Phi_{m} w^{\dot{\alpha}}+\frac{i}{2}\left(\Sigma^{m}\right)_{A B} \bar{\mu}^{A} \Phi_{m} \mu^{B}\right. \\
& \left.+\chi^{m} \bar{w}_{\dot{\alpha}} \Phi_{m} w^{\dot{\alpha}}+\bar{w}_{\dot{\alpha}} \Phi_{m} w^{\dot{\alpha}} \chi^{m}\right\}+ \text { fermion terms }
\end{aligned}
$$

A k-instanton contribution is then given by the integral over ALL MODULI

$$
\begin{aligned}
Z^{(k)} & \propto \int d \mathcal{M}_{(k)} e^{-S_{1}\left(\mathcal{M}_{(k)}\right)-S_{2}\left(\mathcal{M}_{(k)} ; \Phi\right)} \\
& \propto \int d\{a, \chi, M, \lambda, D, w, \bar{w}, \mu, \bar{\mu}\} e^{-S_{1}-S_{2}}
\end{aligned}
$$

Since

$$
x^{\mu}=\operatorname{tr}\left(a^{\mu}\right) \quad \text { and } \quad \theta^{\alpha A}=\operatorname{tr}\left(M^{\alpha A}\right)
$$

are the Goldstone modes of the broken (super)translations and play the role of the superspace coordinates, it is convenient to separate them and write

$$
\begin{aligned}
Z^{(k)} & \sim \int d^{4} x d^{8} \theta d \widehat{\mathcal{M}}_{(k)} \mathrm{e}^{-\frac{8 \pi^{2} k}{g^{2}}-S_{1}\left(\widehat{\mathcal{M}}_{(k)}\right)-S_{2}\left(\widehat{\mathcal{M}}_{(k)} ; \phi\right)} \\
& \sim \int d^{4} x d^{8} \theta \widehat{Z^{(k)}}(\Phi)
\end{aligned}
$$

Some simple possibilities:

- $\quad \mathrm{D} 3 / \mathrm{D}(-1)$ system on $\mathbb{R}^{4} \times \mathbb{C}^{3}$

$$
\mathcal{N}=4 \quad \begin{aligned}
& \Downarrow \\
& \text { SYM } \\
& \text { + instantons }
\end{aligned} \quad(A=1,2,3,4)
$$

- $\quad \mathrm{D} 3 / \mathrm{D}(-1)$ system on $\mathbb{R}^{4} \times \mathbb{C} \times \mathbb{C}^{2} / \mathbb{Z}_{2}$
\Downarrow

$$
\mathcal{N}=2 \text { SYM }+ \text { instantons } \quad(A=1,2)
$$

- $\quad \mathrm{D} 3 / \mathrm{D}(-1)$ system on $\mathbb{R}^{4} \times \mathbb{C}^{3} /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$

$$
\mathcal{N}=1 \quad \mathrm{SYM}+\text { instantons } \quad(A=1)
$$

In the case of reduced SUSY, some of the $\theta^{\alpha A}$ will not be present.

- $\mathcal{N}=2$

$$
Z=\int d x^{4} d \theta^{4} \mathcal{F} \quad \text { where } \quad \mathcal{F} \propto \int d \widehat{\mathcal{M}}_{(k)} e^{-S_{1}-S_{2}}
$$

In the case of reduced SUSY, some of the $\theta^{\alpha A}$ will not be present.

- $\mathcal{N}=2$

$$
Z=\int d x^{4} d \theta^{4} \mathcal{F} \quad \text { where } \quad \mathcal{F} \propto \int d \widehat{\mathcal{M}}_{(k)} e^{-S_{1}-S_{2}}
$$

- $\mathcal{N}=1$

$$
Z=\int d x^{4} d \theta^{2} W \text { where } W \propto \int d \widehat{\mathcal{M}}_{(k)} e^{-S_{1}-S_{2}}
$$

In the case of reduced SUSY, some of the $\theta^{\alpha A}$ will not be present.

- $\mathcal{N}=2$

$$
Z=\int d x^{4} d \theta^{4} \mathcal{F} \quad \text { where } \quad \mathcal{F} \propto \int d \widehat{\mathcal{M}}_{(k)} e^{-S_{1}-S_{2}}
$$

- $\mathcal{N}=1$

$$
Z=\int d x^{4} d \theta^{2} W \quad \text { where } \quad W \propto \int d \widehat{\mathcal{M}}_{(k)} e^{-S_{1}-S_{2}}
$$

- The integral over the anti-chiral zero modes $\lambda_{\dot{\alpha} A}$ enforces the fermionic ADHM constraints from S_{1}.
- In general, one must investigate under what conditions these instanton contributions to \mathcal{F} or W are non vanishing, and what is their structure (prepotential, superpotential, ...)

Some explicit examples and applications of this stringy instanton calculus will be discussed in

Marco Billò's talk

The instanton partition function (... again)

The k-instanton partition function is the "functional" integral over the instanton moduli:

$$
Z^{(k)}=\mathcal{C}_{k} \int d \mathcal{M}_{k} \mathrm{e}^{-S\left(\mathcal{M}_{k}\right)}
$$

where

- \mathcal{C}_{k} is a dimensionful normalization factor which compensates for the dimensions of $d \mathcal{M}_{k}$
- $S\left(\mathcal{M}_{k}\right)$ is the moduli action which accounts for all interactions among the instanton moduli in the limit $\alpha^{\prime} \rightarrow 0$ at any order of string perturbation theory, i.e. on any world-sheet topology.

$$
-S\left(\mathcal{M}_{k}\right)=\lim _{\alpha^{\prime} \rightarrow 0}\left\{\left(\begin{array}{ll}
\cdots \\
\vdots & \\
\hdashline & \\
\hdashline
\end{array}\right\}\right.
$$

As we have seen before, at the tree-level, we have

$$
=\langle 1\rangle_{\text {disk }}+\left\langle\mathcal{M}_{(k)}\right\rangle_{\text {disk }}
$$

$$
\stackrel{\alpha^{\prime} \rightarrow 0}{\simeq}-\frac{8 \pi^{2} k}{g^{2}}-S_{1}\left(\widehat{\mathcal{M}}_{(k)}\right)
$$

Thus,

$$
\langle 1\rangle_{\text {disk }} \sim O\left(g^{-2}\right) \quad, \quad\left\langle\mathcal{M}_{(k)}\right\rangle_{\text {disk }} \sim O\left(g^{0}\right)
$$

Similarly, at the one-loop level, one can show that

where

$$
\langle 1\rangle_{\text {annulus }} \sim O\left(g^{0}\right) \quad, \quad\left\langle\mathcal{M}_{(k)}\right\rangle_{\text {annulus }} \sim O\left(g^{2}\right)
$$

Thus, in the semi-classical approximation one has
[Blumenhagen et al., Akerblom et al. 2006]

$$
\begin{aligned}
Z^{(k)} & =\mathcal{C}_{k} \int d \mathcal{M}_{k} \mathrm{e}^{-S\left(\mathcal{M}_{k}\right)} \\
& \sim \mathcal{C}_{k} \int d \mathcal{M}_{k} \mathrm{e}^{\langle 1\rangle_{\text {disk }}+\left\langle\mathcal{M}_{(k)}\right\rangle_{\text {disk }}+\langle 1\rangle_{\text {annulus }}^{\prime}}
\end{aligned}
$$

The disk vacuum amplitude

The YM action

$$
S=\frac{1}{g^{2}} \int d^{4} x \operatorname{Tr}\left(\frac{1}{2} F_{\mu \nu}^{2}\right)
$$

- evaluated on a constant gauge field f becomes

$$
S(f)=\frac{V_{4} f^{2}}{2 g^{2}}
$$

The disk vacuum amplitude

The YM action

$$
S=\frac{1}{g^{2}} \int d^{4} x \operatorname{Tr}\left(\frac{1}{2} F_{\mu \nu}^{2}\right)
$$

- evaluated on a constant gauge field f becomes

$$
S(f)=\frac{V_{4} f^{2}}{2 g^{2}}
$$

- evaluated on a k-instanton background becomes

$$
S_{\mathrm{inst}}=\frac{8 \pi^{2} k}{g^{2}}
$$

The disk vacuum amplitude

The YM action

$$
S=\frac{1}{g^{2}} \int d^{4} x \operatorname{Tr}\left(\frac{1}{2} F_{\mu \nu}^{2}\right)
$$

- evaluated on a constant gauge field f becomes

$$
S(f)=\frac{V_{4} f^{2}}{2 g^{2}}
$$

- evaluated on a k-instanton background becomes

$$
S_{\mathrm{inst}}=\frac{8 \pi^{2} k}{g^{2}}
$$

Thus we have the simple relation

$$
\frac{1}{g^{2}}=\frac{S(f)^{\prime \prime}}{V_{4}}=\frac{S_{\mathrm{inst}}}{8 \pi^{2} k}
$$

The disk vacuum amplitude

The YM action

$$
S=\frac{1}{g^{2}} \int d^{4} x \operatorname{Tr}\left(\frac{1}{2} F_{\mu \nu}^{2}\right)
$$

- evaluated on a constant gauge field f becomes

$$
S(f)=\frac{V_{4} f^{2}}{2 g^{2}}
$$

- evaluated on a k-instanton background becomes

$$
S_{\mathrm{inst}}=\frac{8 \pi^{2} k}{g^{2}}
$$

Thus we have the simple relation

The annulus vacuum amplitude

A similar relation holds also at one-loop:

- in the constant gauge field background we have

$$
S(f)+S^{1-\mathrm{loop}}(f)=\frac{V_{4} f^{2}}{2 g^{2}(\mu)}
$$

where $g(\mu)$ is the running coupling constant at scale μ

$$
\frac{1}{g^{2}(\mu)}=\frac{1}{g^{2}}+\frac{b_{1}}{16 \pi^{2}} \log \frac{\mu^{2}}{\Lambda_{\mathrm{UV}}^{2}}+\Delta
$$

The annulus vacuum amplitude

A similar relation holds also at one-loop:

- in the constant gauge field background we have

$$
S(f)+S^{1-\mathrm{loop}}(f)=\frac{V_{4} f^{2}}{2 g^{2}(\mu)}
$$

- in the k-instanton background, for a supersymmetric theory we have

$$
S_{\mathrm{inst}}+S_{\mathrm{inst}}^{1-\text { loop }}=\frac{8 \pi^{2} k}{g^{2}(\mu)}
$$

The annulus vacuum amplitude

A similar relation holds also at one-loop:

- in the constant gauge field background we have

$$
S(f)+S^{1-\mathrm{loop}}(f)=\frac{V_{4} f^{2}}{2 g^{2}(\mu)}
$$

- in the k-instanton background, for a supersymmetric theory we have

$$
S_{\mathrm{inst}}+S_{\mathrm{inst}}^{1-\text { loop }}=\frac{8 \pi^{2} k}{g^{2}(\mu)}
$$

Thus, also at one-loop we have the simple relation

$$
\frac{S^{1-\text { loop }}(f)^{\prime \prime}}{V_{4}}=\frac{S_{\text {inst }}^{1-\text { loop }}}{8 \pi^{2} k}
$$

The annulus vacuum amplitude

A similar relation holds also at one-loop:

- in the constant gauge field background we have

$$
S(f)+S^{1-\operatorname{loop}}(f)=\frac{V_{4} f^{2}}{2 g^{2}(\mu)}
$$

- in the k-instanton background, for a supersymmetric theory we have

$$
S_{\text {inst }}+S_{\text {inst }}^{1-\text { loop }}=\frac{8 \pi^{2} k}{g^{2}(\mu)}
$$

Thus, also at one-loop we have the simple relation

The rôle of the annulus amplitude

By explicitly computing the annulus diagrams, one finds

where the β-function coefficient b_{1} counts the number of charged (and flavored) ADHM instanton moduli

$$
b_{1}=n_{\mathrm{bos}}-\frac{1}{2} n_{\text {ferm }}=\#\{w, \bar{w}\}-\frac{1}{2} \#\{\mu, \bar{\mu}\}
$$

and Δ are the threshold corrections.
[Akerblom et al., Billó et al.]

To conclude:

- The k-instanton contributions can be computed from perturbative string diagrams:

mixed disks and mixed annuli

To conclude:

- The k-instanton contributions can be computed from perturbative string diagrams:

mixed disks and mixed annuli

- The k-instanton contributions are

$$
\begin{aligned}
Z^{(k)} & =\mathcal{C}_{k} \int d \mathcal{M}_{k} \mathrm{e}^{\langle 1\rangle_{\text {disk }}+\left\langle\mathcal{M}_{(k)}\right\rangle_{\text {disk }}+\langle 1\rangle_{\text {annulus }}^{\prime}} \\
& =\mathcal{C}_{k} \int d \mathcal{M}_{k} \mathrm{e}^{-\frac{8 \pi^{2} k}{g^{2}}-S\left(\widehat{\mathcal{M}}_{(k)} ; \phi\right)-8 \pi^{2} k \Delta}
\end{aligned}
$$

where $\mathcal{C}_{k} \sim\left(M_{s}\right)^{k b_{1}}$. Thus,

$$
Z^{(k)} \sim \Lambda^{k b_{1}} \mathrm{e}^{-8 \pi^{2} k \Delta} \int d \mathcal{M}_{k} \mathrm{e}^{-S\left(\widehat{\mathcal{M}}_{(k)} ; \phi\right)}
$$

where Λ is the dynamically generated scale.

Stay tuned for Marco's talk

Thank you!

