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Foreword

This talk is based on

M. Billó and M. Caselle, “Polyakov loop correlators from
D0-brane interactions in bosonic string theory”, JHEP 0507
(2005) 038 [arXiv:hep-th/0505201].

also outlined in the LATTICE 2005 talk of M. Caselle:

M. Billo, M. Caselle, M. Hasenbusch and M. Panero, “QCD
string from D0 branes,” PoS (LAT2005) 309
[arXiv:hep-lat/0511008].

and on

M. Billo, M. Caselle and L. Ferro, “The partition function of
interfaces from the Nambu-Goto effective string theory,” JHEP
0602 (2006) 070 [arXiv:hep-th/0601191].

plus work in progress with L. Ferro and I. Pesando.
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The main ideas

The main ideas
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The main ideas

String theory and (lattice) gauge theories

A description of strongly coupled gauge theories in terms of
strings has long been suspected
These strings should describe the fluctuations of the color flux
tube in the confining regime

Potential V (R) between two external,
massive quark and anti-quark sources
from Wilson loops Back

〈W (L, R)〉 ∼ e−LV (R) (large R)

Area law ↔ linear potential

V (R) = σR + . . .

σ is the string tension

q q̄

R

L
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The main ideas

Quantum corrections and effective models

Leading correction for large R

V (R) = σ R − π

24
d − 2

R
+ O

(
1

R2

)
.

from quantum fluctuations of d − 2 massless modes: transverse
fluctuations of the string [Lüscher, Symanzik and Weisz]

Simplest effective description via the two-dimensional conformal
field theory of d − 2 free bosons

I Higher order interactions among these fields distinguish the various
effective theories

I The underlying string model should determine a specific form of the
effective theory, and an expression of the potential V (R) that
extends to finite values of R.
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The main ideas

Various observables with an effective string
description

Three typical observables with a geometrically simple effective string
picture

Wilson loop

q q̄

R

L

disk

Correlator of
Polyakov loops

P(~0)

P(~R)

cylinder

interfaces or
’t Hooft loops

torus
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The main ideas

Various models of effective strings

“Free” theory: d − 2 bosonic fields living on the surface spanned
by the string, describing its transverse fluctuations
Standard bosonic string theory: Nambu-Goto action ∝ area of the
world-sheet surface

I Possible first-order formulation á la Polyakov (we’ll use this)
I In d 6= 26, bosonic string is ill-defined (conformal invariance broken

by quantum effects). This is manifest at short distances in the
description of LGT observables.

Attempts to a consistent string theory description:
Polchinski-Strominger, Polyakov, AdS/CFT

I This is the aim, of course. However, we’ll not touch the subject in
this talk...

Marco Billò ( D.F.T., Univ. Torino ) Partition functions for the confining string Vietri, April 11, 2006 8 / 47



The main ideas

Various models of effective strings

“Free” theory: d − 2 bosonic fields living on the surface spanned
by the string, describing its transverse fluctuations
Standard bosonic string theory: Nambu-Goto action ∝ area of the
world-sheet surface

I Possible first-order formulation á la Polyakov (we’ll use this)
I In d 6= 26, bosonic string is ill-defined (conformal invariance broken

by quantum effects). This is manifest at short distances in the
description of LGT observables.

Attempts to a consistent string theory description:
Polchinski-Strominger, Polyakov, AdS/CFT

I This is the aim, of course. However, we’ll not touch the subject in
this talk...

Marco Billò ( D.F.T., Univ. Torino ) Partition functions for the confining string Vietri, April 11, 2006 8 / 47



The main ideas

Various models of effective strings

“Free” theory: d − 2 bosonic fields living on the surface spanned
by the string, describing its transverse fluctuations
Standard bosonic string theory: Nambu-Goto action ∝ area of the
world-sheet surface

I Possible first-order formulation á la Polyakov (we’ll use this)
I In d 6= 26, bosonic string is ill-defined (conformal invariance broken

by quantum effects). This is manifest at short distances in the
description of LGT observables.

Attempts to a consistent string theory description:
Polchinski-Strominger, Polyakov, AdS/CFT

I This is the aim, of course. However, we’ll not touch the subject in
this talk...

Marco Billò ( D.F.T., Univ. Torino ) Partition functions for the confining string Vietri, April 11, 2006 8 / 47



The main ideas

The Nambu-Goto approach

Action ∼ area of the surface spanned by the string in its motion:

S = −σ

∫
dξ0dξ1

√
det gαβ

where gαβ is the metric “induced” on the w.s. by the embedding:

gαβ =
∂X M

∂ξα

∂X N

∂ξβ
GMN

ξα = world-sheet coords. (ξ0 = proper time, ξ1 spans the extension
of the string)

ξ1

ξ0

X M(ξ0, ξ1)
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The main ideas

The nambu-Goto approach: perturbative approach

One can use the world-sheet re-parametrization invariance of the
NG action to choose a “physical gauge”:

I The w.s. coordinates ξ0, ξ1 are identified with two target space
coordinates x0, x1

One can study the 2d QFT for the d − 2 transverse bosonic fields
with the gauge-fixed NG action

Z =

∫
DX ie−σ

R
dx0dx1

√
1+(∂0

~X)2+(∂1
~X)2+(∂0

~X∧∂1
~X)2

=

∫
DX ie−σ

R
dx0dx1{1+(∂0

~X)2+(∂1
~X)2+int.s}

perturbatively, the loop expansion parameter being 1/(σA)
I [Dietz-Filk, 1982]: up to 2 loop for the 3 geometries (disk, cylinder, torus)
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The main ideas

The first order approach

The NG goto action can be given a 1st order formulation (no
awkward square roots)

S = −σ

∫
dξ0dξ1

√
hhαβ∂αX M∂βX M

with hαβ = independent w.s metric
Use re-parametrization and Weyl invariance to set hαβ → ηαβ

I Actually, Weyl invariance is broken by quantum effects in d 6= 26
Remain with a free action but

I Virasoro constraints Tαβ = 0 from hαβ e.o.m.
I residual conformal invariance
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The main ideas

Physical gauge vs. covariant quantization

The residual conformal invariance can be used to fix a light-cone
(physical) type of gauge: w.s. coordinates identified with two
target space ones (non-covariant choice)

I One explicitly solves the Virasoro constraints and remains with the
d − 2 transverse directions as the only independent d.o.f.

I The quantum anomaly for d 6= 26 manifests itself as a failure in
Lorentz algebra

In a covariant quantization, the Virasoro constraints are imposed
on physical states á la BRST

I All d directions are treated on the same footing
I Introduction of ghosts
I For d 6= 26, anomaly in the conformal algebra
I This is the framework we will use
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Polyakov loop correlators

Polyakov loop correlators
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Polyakov loop correlators

The set-up

T

~r

~x

q̄

x0

P(~0)

q

P(~R)

Finite temperature geometry + static
external sources (quarks)
Polyakov loop = trace of the temporal
Wilson line

〈P(~R)〉 = e−F 6= 0 → de-confinement

On the lattice, the correlator

〈P(~0)P(~R)〉c .

can be measured with great accuracy.
In the string picture, the correlation is due
to the strings connecting the two external
sources: cylindric world-sheet

P(~0)

P(~R)
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Polyakov loop correlators

Nambu-Goto description of the correlator

P.L. correlator = partition function of an open string with
I Nambu-Goto action
I Dirichlet boundary conditions (end-points attached to the Polyakov

loops)
Functional integral result (Dietz and Filk):

I Loop expansion. Expansion parameter 1/(σLR)
I Two-loop result [set τ̂ = iL/(2R), d = 3]: Back

Z = e−σLR 1
η(τ̂)

(
1− π2L

1152σR3

[
2E4(τ̂)− E2

2 (τ̂)
]
+ . . .

)
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Polyakov loop correlators

First order formulation

Action (in conformal gauge)

S =
1

4πα′

∫
dξ0

∫ π

0
dξ1

[
(∂0X M)2 + (∂1X M)2

]
+ Sgh.

L

~r

~x

x0 ∼ x0 + L

P(~0) P(~R)

ξ1 = 0
ξ1 = π

ξ1

World-sheet parametrized by
I ξ1 ∈ [0, π] (open string)
I ξ0 (proper time)
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Polyakov loop correlators

First order formulation

Action (in conformal gauge)

S =
1

4πα′

∫
dξ0

∫ π

0
dξ1

[
(∂0X M)2 + (∂1X M)2

]
+ Sgh.

L

~r

~x

x0 ∼ x0 + L

P(~0) P(~R)

ξ1 = 0
ξ1 = π

ξ1

ξ0

X0(ξ0, ξ1), ~X(ξ0, ξ1)

The field X M (M = 0, . . . , d − 1) describe
the embedding of the world-sheet in the
target space
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Polyakov loop correlators

First order formulation

Action (in conformal gauge)

S =
1

4πα′

∫
dξ0

∫ π

0
dξ1

[
(∂0X M)2 + (∂1X M)2

]
+ Sgh.

L

~r

~x

x0 ∼ x0 + L

P(~0) P(~R)

ξ1 = 0
ξ1 = π

ξ1

ξ0

Boundary conditions:
I Neumann in “time” direction:

∂0X 0(ξ0, ξ1)
∣∣
ξ1=0,π

= 0

I Dirichlet in spatial directions:

~X (ξ0, 0) = 0 , ~X (ξ0, π) = ~R .

“open string between D0-branes”
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Polyakov loop correlators

First order formulation

Action (in conformal gauge)

S =
1

4πα′

∫
dξ0

∫ π

0
dξ1

[
(∂0X M)2 + (∂1X M)2

]
+ Sgh.

L

~r

~x

x0 ∼ x0 + L

P(~0) P(~R)

ξ1 = 0
ξ1 = π

ξ1

ξ0

The string fields have thus the expansion

X 0 = x̂0+
p̂0

πσ
+

i√
πσ

∑
n 6=0

α0

n
e−inξ0

cos nξ1

~X =
~R
π

ξ1 − 1√
πσ

∑
n 6=0

~α

n
e−inξ0

sin nξ1

I
[
αM

m , αN
n
]

= m δm+n,0 δMN
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Polyakov loop correlators

First order formulation

Action (in conformal gauge)

S =
1

4πα′

∫
dξ0

∫ π

0
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[
(∂0X M)2 + (∂1X M)2

]
+ Sgh.

L

~r

~x

x0 ∼ x0 + L

P(~0) P(~R)

ξ1 = 0
ξ1 = π

ξ1

ξ0

The target space has finite temperature:

x0 ∼ x0 + L

I The 0-th component of the momentum
is therefore discrete:

p0 → 2πn
L
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Polyakov loop correlators

The free energy

Interaction between the two Polyakov loops (the D0-branes) ↔
free energy of the open string

F = L
∫ ∞

0

dt
2t

TrqL0

q = e−2πt , and t is the only parameter of the
world-sheet cylinder (one loop of the open
string)

ξ10 π

t

ξ0
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Polyakov loop correlators

The free energy

Interaction between the two Polyakov loops (the D0-branes) ↔
free energy of the open string

F = L
∫ ∞

0

dt
2t

TrqL0

L is the “world-volume” of the D0-brane, i.e. the volume of the only
direction along which the excitations propagate, the Euclidean
time
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Polyakov loop correlators

The free energy

Interaction between the two Polyakov loops (the D0-branes) ↔
free energy of the open string

F = L
∫ ∞

0

dt
2t

TrqL0

Virasoro generator L0 (Hamiltonian)

L0 =
(p̂0)2

2πσ
+

σR2

2π
+

∞∑
n=1

N(d−2)
n − d − 2

24

I N(d−2)
n is the total occupation number for the oscillators appearing

in d − 2 bosonic fields (the -2 is due to the ghosts)

Marco Billò ( D.F.T., Univ. Torino ) Partition functions for the confining string Vietri, April 11, 2006 17 / 47



Polyakov loop correlators

The free energy

Interaction between the two Polyakov loops (the D0-branes) ↔
free energy of the open string

F = L
∫ ∞

0

dt
2t

TrqL0

Tracing over the oscillators and the discrete zero-mode
eigenvalues p0 = 2πn/L yields finally

F =

∫ ∞

0

dt
2t

∞∑
n=−∞

e
−2πt

„
2πn2

σL2 +σR2
2π

«(
1

η(it)

)d−2
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Polyakov loop correlators

Topological sectors
Poisson resum over the integer n getting

F = F (0) + 2
∞∑

m=1

F (m)

with Back

F (m) =

√
σL2

4π

∫ ∞

0

dt

2t
3
2

e−
σL2 m2

4t −σR2t
(

1
η(it)

)d−2

The integer m is the # of times the open string wraps the compact
time in its one loop evolution.
Each topological sector F (m) describes the fluctuations around an
“open world-wheet instanton”

X 0(ξ0 + t , ξ1) = X 0(ξ0, ξ1) + mL
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√
σL2

4π

∫ ∞

0
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2t
3
2

e−
σL2 m2

4t −σR2t
(

1
η(it)

)d−2

L

~x

An example with m = 0 (N.B. The
classical solution degenerates to a line)
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3
2

e−
σL2 m2
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(

1
η(it)
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L

~x

The case m = 1. The world-sheet exactly
maps to the cylinder connecting the two
Polyakov loops.
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Polyakov loop correlators

The case m = 1 and the NG result

The sector with m = 1 of our free energy should correspond to the
effective NG partition function

Expand in series the Dedekind functions:( ∞∏
r=1

1
1− qr

)d−2

=
∞∑

k=0

ckqk

Plug this into F (m) Recall and integrate over t using∫ ∞

0

dt

t
3
2

e−
α2
t −β2t =

√
π

|α|
e−2|α| |β|
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Polyakov loop correlators

The case m = 1 and the NG result

The sector with m = 1 of our free energy should correspond to the
effective NG partition function

The result is

F (m) =
1

2|m|
∑

k

ck e−|m|LEk (R) , (m 6= 0)

with

Ek (R) =
R

4πα′

√
1 +

4π2α′

R2

(
k − d − 2

24

)
This spectrum was derived long ago by Arvis by (formal)
quantization.
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Polyakov loop correlators

Recovering the perturbative result

The case m = 1 gives the NG partition function: Back

Z = 2F (1) =
∑

k

ck e−LEk (R) .

Expanding in inverse powers of the minimal area A = LR:

Z = e−σLR
∑

n

cne−π L
R (n− d−2

24 )+... = e−σLRη(i
L

2R
) (1 + . . .)

one reproduces the functional integral perturbative result
(Eisentein series and all ...) [Caselle et al] Recall
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Polyakov loop correlators

Closed string interpretation

Our first-order formulation is well-suited to give the direct closed
string channel description of the correlator:

F = 〈B;~0 |D|B; ~R 〉 =
1

4σ

∫ ∞

0
ds 〈B;~0 |e−2πs(L0+Lgh.

0 )|B; ~R 〉

I D is the closed string propagator
I The boundary states enforce on the closed string fields the b.c.’s

corresponding to the D-branes (the Polyakov loops)

∂0X 0(ξ0, ξ1)
∣∣
ξ0=0 |B; ~R〉 = 0 ,

(
X i(ξ0, ξ1)− R i)∣∣

ξ0=0 |B; ~R〉 = 0
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Polyakov loop correlators

The closed channel expression

The closed string channel tree level
exchange between boundary states
corresponds to the modular
transformation t → 1/t of the open string
channel 1-loop free energy
The result of the transformation is

F (m) = L
T 2

0
4

∑
k

ck G (R; M(m, k))
ξ0

ξ1

ξ0

ξ1
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Polyakov loop correlators

The closed channel expression

The closed string channel tree level
exchange between boundary states
corresponds to the modular
transformation t → 1/t of the open string
channel 1-loop free energy
The result of the transformation is

F (m) = L
T 2

0
4

∑
k

ck G (R; M(m, k))
ξ0

ξ1

ξ0

ξ1

G (R; M) = propagator of a scalar field of mass M over the spatial
distance ~R between the two D0-branes:

G(R; M) =

∫
dd−1p

(2π)d−1
ei~p·~R

p2 + M2 =
1

2π

(
M

2πR

) d−3
2

K d−3
2

(MR)
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Polyakov loop correlators

The closed channel expression

The closed string channel tree level
exchange between boundary states
corresponds to the modular
transformation t → 1/t of the open string
channel 1-loop free energy
The result of the transformation is

F (m) = L
T 2

0
4

∑
k

ck G (R; M(m, k))
ξ0

ξ1

ξ0

ξ1

The mass M(m, k) is that of a closed string state with k
representing the total oscillator number, and m the wrapping
number of the string around the compact time direction

M2(m, k) = (mσL)2
[
1 +

8π

σL2m2

(
k − d − 2

24

)]
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Polyakov loop correlators

The closed channel expression

The closed string channel tree level
exchange between boundary states
corresponds to the modular
transformation t → 1/t of the open string
channel 1-loop free energy
The result of the transformation is

F (m) = L
T 2

0
4

∑
k

ck G (R; M(m, k))
ξ0

ξ1

ξ0

ξ1

T0 = usual D0-brane tension in bosonic string theory:

T 2
0 = 8π

(π

σ

) d
2−2
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Interface partition function

Interface partition function
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Interface partition function

Interfaces

Interface

Spin up region

Spin down region

(via frustrated links)

L2

L1

anti-periodic b.c’s

Back

An interface separating regions with
different magnetization is observed in
simulations of spin models (Ising, etc.),
and its fluctuations are measured
A similar situation can be engineered and
studied in LGT, by considering the
so-called ’t Hooft loops

It is rather natural to try to describe the fluctuating interface by
means of some effective string theory

I Some string predictions (in particular, the universale effect of the
quantum fluctuations of the d − 2 transverse free fields) have
already been considered [De Forcrand, 2004]
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Interface partition function

The Nambu Goto model for interfaces

In the “physical gauge” approach, we consider a string whose
world-sheet is identified with the minimal interface, which has the
topology of a torus T2, of sides L1 and L2, i.e., area A = L1L2 and
modulus u = L2/L1 Recall

We are thus dealing with the one-loop partition function Z of a
closed string.
The functional integral approach [Dietz-Filk, 1982] gives the result up to
two loops:

Z ∝ e−σA 1

[η(iu)]2d−4

{
1 +

(d − 2)2

2σA

[π2

36
u2E2

2 (iu)

− π

6
uE2(iu) +

d
8(d − 2)

]}
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Interface partition function

The NG partition function?

The partition function for the NG interface string in the operatorial
formulation was not avaliable (to our knowledge) in the literature
This would play the same rôle of the partition function for the
Polyakov loop correlators based on Arvis’ spectrum Recall and
would resum the loop expansion.
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Interface partition function

The NG partition function?

The partition function for the NG interface string in the operatorial
formulation was not avaliable (to our knowledge) in the literature
This would play the same rôle of the partition function for the
Polyakov loop correlators based on Arvis’ spectrum Recall and
would resum the loop expansion.

I It is not too difficult to propose the analogue of Arvis formula for the
spectrum Ek based on canonical quantization [Drummond,Kuti,...]

E2
n,N+Ñ = σ2L2

1

{
1 +

4π

σL2
1

(
N + Ñ − d − 2

12

)
+

4π2

σ2L4
1

n2 + ~p2
T )

}
where N, Ñ = occupation #’s of left (right)-moving oscillators, n the
discretized momentum in the direction x1, ~pT the transverse
momentum

Marco Billò ( D.F.T., Univ. Torino ) Partition functions for the confining string Vietri, April 11, 2006 26 / 47



Interface partition function

The NG partition function?

The partition function for the NG interface string in the operatorial
formulation was not avaliable (to our knowledge) in the literature
This would play the same rôle of the partition function for the
Polyakov loop correlators based on Arvis’ spectrum Recall and
would resum the loop expansion.

I However, the “naive” form of a partition function based on
this spectrum: ∑

N,Ñ,n

δ(N − Ñ + n)cNcÑ e−L2EN+Ñ,n

(where cN , cÑ = multiplicities of left- and right-moving oscillator
states) does not reproduce the functional integral 2-loop result
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Interface partition function

The first order approach
We start from the Polyakov action in the conformal gauge, and do
not impose any physical gauge identifying world-sheet and target
space coordinates
We consider the closed string one loop partition function, and we
have thus a toroidal world-sheet
This world-sheet can be mapped in many topologically distinct
ways on the target space torus Td
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Interface partition function

String partition function

In the Polyakov formulation, the partition function includes an
integration over the modular parameter τ = τ1 + iτ2:

I(d) =

∫
d2τ

τ2
Z (d)(q, q̄) Z gh(q, q̄)

I Z (d)(q, q̄) is the CFT partition function of d compact bosons:

Z (d)(q, q̄) = Tr qL0− d
24 q̄L̃0− d

24

where q = exp 2πiτ , q̄ = exp(−2πiτ̄).
I The CFT partition function of the ghost system, Z gh(q, q̄) will cancel

the (non-zero modes of) two bosons
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Interface partition function

CFT partition function of a compact boson

Consider a compact boson field

X (ξ0, ξ1) ∼ X (ξ0, ξ1) + L

In the operatorial formulation, we find

Z (q, q̄) =
∑

n,w∈Z
q

1
8πσ ( 2πn

L +σwL)
2

q̄
1

8πσ ( 2πn
L −σwL)

2 1
η(q)

1
η(q̄)

I The Dedekind functions encode the non-zero mode contributions
I The 0-mode n denotes the discretized momentum p = 2πn/L
I The integer w is the winding around the compact target space:

X must be periodic in ξ1, but we can have

X (ξ0, ξ1 + 2π) = X (ξ0, ξ1) + wL
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Interface partition function

CFT partition function of a compact boson

Consider a compact boson field

X (ξ0, ξ1) ∼ X (ξ0, ξ1) + L

Upon Poisson resummation over the momentum n,

Z (q, q̄) = σL
∑

m,w∈Z
e−

σ L2
2τ2

|m−τw |2 1
√

τ2η(q)η(q̄)

I Sum over “world-sheet instantons”: classical solutions of the field X
with wrappings w (along ξ1) and m (along ξ0, loop geometry):

X (ξ0, ξ1 + 2π) = X (ξ0, ξ1) + wL

X (ξ0 + 2πτ2, ξ
1 + 2πτ1) = X (ξ0, ξ1) + mL .

Marco Billò ( D.F.T., Univ. Torino ) Partition functions for the confining string Vietri, April 11, 2006 29 / 47



Interface partition function

The interface sector

The partition function includes Z (d)(q, q̄), the product of partition
functions for the d compact bosons X M → contains the sum over
windings wM and discrete momenta nM

We can select the topological sector
corresponding to an interface in the
x1, x2 plane

I considering a string winding once in the
x1 direction:

w1 = 1 , w2 = w3 = . . . = wd = 0

I Poisson resumming over n2, . . . , nd and
then choosing

m2 = 1 , m3 = m4 = . . . = md = 0

m2 = 1

w1 = 1
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Interface partition function

The issue of modular invariance
There are many choices of winding numbers m1, m2, w1, w2 that
describe toroidal interfaces aligned along the x1, x2-plane in target
space.

The corresponding area is L1L2(w1m2 −m1w2):

ξ0

ξ12π

2πτ

x1

x2

L1

L2

~m = (m1L1, m2L2)

~w = (w1L1, w2L2)
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Interface partition function

The issue of modular invariance
There are many choices of winding numbers m1, m2, w1, w2 that
describe toroidal interfaces aligned along the x1, x2-plane in target
space.

The wrapping numbers w , m in each direction transform under the
modular group of the world-sheet torus:

S : τ → −1
τ

,

(
m
w

)
→
(

0 −1
1 0

)(
m
w

)
,

T : τ → τ + 1 ,

(
m
w

)
→
(

1 −1
0 1

)(
m
w

)
.

The possible values are arranged in modular orbits.
For the non-trivial wrappings along x1, x2, the area is preserved
under the modular action.
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Interface partition function

The issue of modular invariance
There are many choices of winding numbers m1, m2, w1, w2 that
describe toroidal interfaces aligned along the x1, x2-plane in target
space.

We are interested in the mappings with minimal area L1L2, such
as the ones chosen before

m1, m2 = 1, w1 = 1, w2 = 0 .
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Interface partition function

The issue of modular invariance
There are many choices of winding numbers m1, m2, w1, w2 that
describe toroidal interfaces aligned along the x1, x2-plane in target
space.

The numbers for area L1L2 belong to modular orbits:

(m1, w1) = (−1, 0)

(m2, w2) = (0, 1)

x2

L1

L2

x1

x2

L1

L2

x1

S

T

x2

L1

L2

x1

(m1, w1) = (−1, 1)

(m2, w2) = (1, 0)
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Interface partition function

The issue of modular invariance
There are many choices of winding numbers m1, m2, w1, w2 that
describe toroidal interfaces aligned along the x1, x2-plane in target
space.

In the partition function we can
I sum over all the equivalent mi , w i and integrate over the

fundamental modular cell for τ ;
I or sum over the particular choice m1, m2 = 1, w1 = 1, w2 = 0 and

integrate τ over the entire upper half plane.

The second choice is convenient, as it allows to perform easily the
integration.
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Interface partition function

The interface partition function

The expression for the partition function of the interface in the
first-order, covariant, bosonic string theory, is thus

I(d) =
d∏

i=2

(√
σ

2π
Li

) ∞∑
N,Ñ=0

∑
n1∈Z

cNcÑ

∫ ∞
−∞

dτ1e2πi(N−Ñ+n1)

∫ ∞
0

dτ2

(τ2)
d+1

2

× exp
{
−τ2

[
σL2

1
2

+
2π2n2

1

σL2
1

+ 2π(N + Ñ − d − 2
12

)

]
− 1

τ2

[
σL2

2
2

]}
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Interface partition function

The result
The integration over the parameters τ1, τ2 of the world-sheet torus
can be performed in terms of Bessel functions of the Kν(z) type.
The final result depends only on the geometry of the target space,
in particular on the area A = L1L2 and the modulus u = L2/L1 of
the interface plane: Back

I(d) = 2
( σ

2π

) d−2
2 VT

∞∑
m=0

m∑
k=0

ckcm−k

(
E
u

) d−1
2

K d−1
2

(σAE)

with VT the transverse volume and

E =

√
1 +

4πu
σA

(m − d − 2
12

) +
4πu2(2k −m)2

ξ2A2

This expression resums the loop expansion of the functional
integral
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Interface partition function

Check of the result (and new findings)

Expanding in powers of 1/(σA) we get

I(d) ∝ e−σA

η2d−4(iu)
·

·
{

1 +
(d − 2)2

2σA

[
π2

36
u2E2

2 (iu)− π

6
uE2(iu) +

d
8(d − 2)

]
+ . . .

}

Not too difficult to go to higher loops. For instance, the 3-rd loop is
reported in the paper.
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π2

36
u2E2

2 (iu)− π
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d
8(d − 2)

]
+ . . .

}
I Classical term

Not too difficult to go to higher loops. For instance, the 3-rd loop is
reported in the paper.
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Interface partition function

Check of the result (and new findings)

Expanding in powers of 1/(σA) we get

I(d) ∝ e−σA
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·
{

1 +
(d − 2)2

2σA

[
π2

36
u2E2

2 (iu)− π

6
uE2(iu) +

d
8(d − 2)

]
+ . . .

}
I One-loop, universal quantum fluctuations of the d − 2 transverse

directions
Not too difficult to go to higher loops. For instance, the 3-rd loop is
reported in the paper.
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Interface partition function

Check of the result (and new findings)

Expanding in powers of 1/(σA) we get
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π2
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}
I Two-loop correction: agrees with Dietz-Filk!

Not too difficult to go to higher loops. For instance, the 3-rd loop is
reported in the paper.
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Interface partition function

Comparison with existing simulations

There are very accurate (and very recent) MC data about the free
energy Fs of interfaces in the 3d Ising model

Caselle et al., 2006

Previous work has shown that (in certain ranges of parameters)
the 3d Ising model indeed has an effective string description.

I The string tension σ corresponding to certain specific Ising coupling
β is known with great accuracy

We can compare the Fs MC data with the free energy F obtained
from our partition function in d = 3:

F = − log

(
I(3)

VT

)
+N .

The constant N is the only free parameter to be fitted.
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Interface partition function

Fit to the Monte Carlo data (square lattices)

Fs − σA + 1
2 log σ

√
σA

β = 0.236025, σ = 0.044023 (data set 2)

β = 0.226102, σ = 0.0105241 (data set 1)
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Interface partition function

Fit to the Monte Carlo data (square lattices)

Lmin (
√

σA)min N χ2/(d.o.f)
Data set 1

19 1.949 0.91957(18) 4.22
20 2.051 0.91891(22) 1.84
21 2.154 0.91836(27) 0.63
22 2.257 0.91829(33) 0.70
23 2.359 0.91797(45) 0.63

Data set 2
9 1.888 0.91052(21) 7.22
10 2.098 0.90924(33) 2.71
11 2.308 0.90820(51) 1.12

The fit of our expression to the two best MC data set avaliable.
I In each row, only the data corresponding to lattice sizes L ≥ Lmin,

i.e., to
√

σA ≥ (
√

σA)min are used
I The reduced χ2 becomes of order unity for (

√
σA)min & 2.
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Interface partition function

Comparison to MC data for rectangular lattices

In the quoted reference also some data regarding rectangular
lattices (u 6= 1) are presented.
Our expression agrees with such data within the (small) error bars:

L1 L2
√

σA u Fs diff (N = 100)

10 12 2.29843 6/5 7.1670(6) 0.0016
10 15 2.56972 3/2 8.4449(12) −0.0004
10 18 2.81498 9/5 9.6976(17) −0.0009
10 20 2.96725 2 10.5235(25) −0.0012
10 22 3.11208 11/5 11.3466(36) 0.0017

No fitted parameters (the normaliz. N was already fixed by
previous fit).

Marco Billò ( D.F.T., Univ. Torino ) Partition functions for the confining string Vietri, April 11, 2006 38 / 47



Interface partition function

Some remarks

Any “naive” treatment of bosonic string in d 6= 26 suffers from the
breaking of conformal invariance (heavily used to solve the model)
at the quantum level. This applies to the 1st order treatment we
used as well.

I This manifests itself more and more as the area decreases
I Our explicit expression of the NG partition function should allow to

study the amount and the onset of the discrepancy of the NG model
with the “real” (= simulated) interfaces

There have been some recent attempts in the literature [see Kuti, Lattice

2005] to the inferface partition function using the
Polchinski-Strominger string

I No problems with quantum conformal invariance
I But non-local terms in the action
I Apparently (computations are not so detailed) it should agree with

NG up to two loops. Discrepancies should appear from then on.
Further study of such model is required.
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Wilson loops

Wilson loops
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Wilson loops

Rectangular Wilson Loops

Let us reconsider the Wilson loop (which is the typical test ground
for confinement) Recall

The effective string partition function for the
Wilson loop

I must be invariant under L ↔ R;
I must exhibit the area law;
I must contain the (1-loop universal)

transverse bosonic fluctuations responsible
of the Lüscher term q q̄

R

L
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Wilson loops

Rectangular Wilson Loops

Let us reconsider the Wilson loop (which is the typical test ground
for confinement) Recall

Its loop expansion starts as Back

Dietz-Filk, 1982

Z ∝ e−σA 1

[η(iu)]
d−2

2

{
1 +

1
σA

π2

576

[
−5u2E4(iu)

+ (d − 7)E2(iu)E2(
i
u

)
]

+ O
(

1
(σA)2

)}
with A = LR, u = L/R.
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Wilson loops

First-order formulation for the Wilson loop

We are working on the first-order, operatorial derivation of the
Wilson loop partition function.

I Analogously to the Polyakov loop and interface cases, we should
be able to get the exact expression resumming the loop expansion

At the moment we are facing some problems and we are unsure
about the result. Still, some ideas involved in this computation are
interesting.
Let’s sketch some points.

Marco Billò ( D.F.T., Univ. Torino ) Partition functions for the confining string Vietri, April 11, 2006 42 / 47



Wilson loops

Operatorial description

L

R x1

x⊥

An open string in this configuration
is created

x0

An open string in this configuration
is annihilated

- Neumann b.c. along x1
The open string propagates with

- Dirichlet b.c. along x0, x⊥σ0

σ1

XM (σ0, σ1)

t

〈Bop(0)|
∫

dt
tω

e−2πtL0 |Bop(R)〉
|Bop〉 is an open string boundary state: [Imamura et al, 2005]

X 0(ξ0, 0)|Bop(0)〉 =
ξ0L
π
|Bop(0)〉 , X 1(ξ0, 0)|Bop〉 = 0 .
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Wilson loops

Operatorial description

L

R x1

x⊥

An open string in this configuration
is created

x0

An open string in this configuration
is annihilated

- Neumann b.c. along x1
The open string propagates with

- Dirichlet b.c. along x0, x⊥σ0

σ1

XM (σ0, σ1)

t

〈Bop(0)|
∫

dt
tω

e−2πtL0 |Bop(R)〉
For ω = 0, usual parametriz. of the open string propagator;
however a different value has to be assumed for the result to be
invariant under L ↔ R. (Puzzling)
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Wilson loops

A puzzling result (for the moment)

The open boundary states can be given an explicit expression in
terms of oscillators (they correspond to states of definite position
or momentum for each harmonic oscillator an, a†n)
The matrix elements and the integration over t can be carried out.
The result can be expressed in terms of Bessel functions, similarly
to the cases already considered.
Expanding the result for large A

I we recover the functional integral result up to 1 loop; Recall

I the second loop has the same form, but with slightly different
coefficients...

It is not clear if this is due to errors in our computation, or to some
deeper reason like some difference between the different
approaches to the effective string which manifest themselves with
the Wilson loop bc’s only.
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Conclusions

Conclusions

The covariant quantization in 1st order formalism of the NG action
is a convenient way to derive partition functions of the string with
different b.c.s, related to different LGT observables

I It reproduces the partition function based on Arvis spectrum for the
Polyakov loop correlator case ∼ D0-brane interaction with compact
time

I It yields the partition function for the interfaces ∼ appropriate sector
of one loop closed strings

I The situation for the Wilson loops is not yet clear; in any case, ∼
propagation of open strings between suitable open boundary
states.

Our approach is “naïve”, as it neglects the breaking of conformal
invariance in d < 26. This is more and more manifest as the
minimal area A decreases.
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Conclusions

Outlook

Various developments are possible
I The most immediate:

F understand fully the Wilson loop case.
I Investigate if these techniques can be useful for considering

so-called k -strings instead of Polyakov loops.
I More ambitiously:

F Try to take into account the conformal anomaly for d < 26, for
instance introducing the effects of the Liouville field and making
contacts with (non-conformal versions of) AdS/CFT.
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