$\mathcal{N}=\mathbf{1} / \mathbf{2}$ gauge theory and its instantons from open strings in $R-R$ background

Marco Billò ${ }^{1,2}$

${ }^{1}$ Dipartimento di Fisca Teorica
Università di Torino

${ }^{2}$ Istituto Nazionale di Fisica Nucleare

Sezione di Torino
April 5, 2004

This talk is based on...

(R) M. Billo, M. Frau, I. Pesando, F. Fucito, A. Lerda and A. Liccardo, "Classical gauge instantons from open strings," JHEP 0302 (2003) 045 [arXiv:hep-th/0211250].
Ei M. Billo, M. Frau, I. Pesando and A. Lerda, " $N=1 / 2$ gauge theory and its instanton moduli space from open strings in R-R background," arXiv:hep-th/0402160.

Outline

Introduction
Gauge theories and String Theory
Deformations from closed string backgrounds
$\mathcal{N}=1 / 2$ theory from strings
$\mathcal{N}=1$ gauge theory from string amplitudes
The graviphoton deformation
ADHM moduli space
The ADHM moduli space of the $\mathcal{N}=1$ theory
The RR deformation of the moduli space
The instanton solution
Conclusions
Typeset with LATEX
using the beamer class

For a general introduction...

... see previous talk!
Gauge theories from String Theory

- String theory (which might well lead us to the T.O.E.) is anyhow, more modestly, a very precious tool to study gauge theories. For instance,
- perturbative amplitudes (may gluons, ...) via string techniques;
- AdS/CFT and its extensions;
- instantonic effects, (see previous talk).
- In the string framework, gauge d.o.f. arise from open strings suspended between D-branes in a well-suited limit
\square

Gauge theories from String Theory

－String theory（which might well lead us to the T．O．E．）is anyhow，more modestly，a very precious tool to study gauge theories．For instance，
－perturbative amplitudes（may gluons，．．．）via string techniques；
－AdS／CFT and its extensions；
－instantonic effects，（see previous talk）．
－In the string framework，gauge d．o．f．arise from open strings suspended between D－branes in a well－suited limit

$$
\alpha^{\prime} \rightarrow 0 \text { with gauge quantities fixed. }
$$

Gauge theories in closed string backgrounds

- Open strings interact with closed strings. We can turn on a closed string background and still look at the massless open string d.o.f..
- In this way, deformations of the gauge theory are naturally suggested by their string realization. Such deformations are characterized by

Gauge theories in closed string backgrounds

- Open strings interact with closed strings. We can turn on a closed string background and still look at the massless open string d.o.f..
- In this way, deformations of the gauge theory are naturally suggested by their string realization. Such deformations are characterized by
- new geometry in (super)space-time;
- new mathematical structures;
- new types of interactions and couplings.

Non-commutative field theories and NS-NS backgrounds
$B_{\mu \nu}$ background: new geometry

- The most famous example is that of (gauge) field theories in the background of the $B^{\mu \nu}$ field of the NS-NS sector of closed string.
- They are a stringy realization of non-commutative field theories, i.e. theories defined on a non commutative space-time:

Non-commutative field theories and NS-NS backgrounds
$B_{\mu \nu}$ background: new geometry

- The most famous example is that of (gauge) field theories in the background of the $B^{\mu \nu}$ field of the NS-NS sector of closed string.
- They are a stringy realization of non-commutative field theories, i.e. theories defined on a non commutative space-time:

$$
\left[x^{\mu}, x^{\nu}\right]=\theta^{\mu \nu}(B)
$$

Non-commutative field theories and NS-NS backgrounds
$B_{\mu \nu}$ background: new mathematical structure

- There arises a non-commutative associative algebra: ordinary product \rightarrow Moyal \star product:

$$
\begin{aligned}
& f(x) \star g(x)=f(x) \exp \left(\frac{i}{2} \frac{\overleftarrow{\partial}}{\partial x^{\mu}} \theta^{\mu \nu} \frac{\vec{\partial}}{\partial x^{\nu}}\right) g(x) \\
& =f(x) g(x)+\frac{i}{2} \partial_{\mu} f(x) \theta^{\mu \nu} \partial_{\nu} g(x)+\mathcal{O}\left(\theta^{2}\right)
\end{aligned}
$$

Non-commutative field theories and NS-NS backgrounds
$B_{\mu \nu}$ background: new interactions
There are new interactions and couplings.

Non－anticommutative theories and $R R$ backgrounds

$C_{\mu \nu}$ RR background：new geometry
－Another case，recently attracting attention，is that of gauge （and matter）fields in the background of a＂graviphoton＂field strength $C_{\mu \nu}$ from the Ramond－Ramond sector of closed strings．
－These turn out to be defined on a non－anticommutative superspace，where the，say，anti－chiral fermionic coordinates satisfy

Non-anticommutative theories and $R R$ backgrounds
$C_{\mu \nu}$ RR background: new geometry

- Another case, recently attracting attention, is that of gauge (and matter) fields in the background of a "graviphoton" field strength $C_{\mu \nu}$ from the Ramond-Ramond sector of closed strings.
- These turn out to be defined on a non-anticommutative superspace, where the, say, anti-chiral fermionic coordinates satisfy

$$
\left\{\theta^{\dot{\alpha}}, \theta^{\dot{\beta}}\right\} \propto C^{\dot{\alpha} \dot{\beta}} \propto\left(\sigma^{\mu \nu}\right)^{\dot{\alpha} \dot{\beta}} C_{\mu \nu}
$$

Non-anticommutative theories and $R R$ backgrounds
$C_{\mu \nu}$ RR background: new structure

- The superspace deformation can be rephrased as a modification of the product among functions, which now becomes

$$
f(\theta) \star g(\theta)=f(\theta) \exp \left(-\frac{1}{2} \frac{\partial^{\partial}}{\partial \theta^{\dot{\alpha}}} C^{\dot{\alpha} \dot{\beta}} \frac{\vec{\partial}}{\partial \theta^{\dot{\beta}}}\right) g(\theta)
$$

- There are also new interactions between the gauge and matter fields: see later in the talk.

Non-anticommutative theories and $R R$ backgrounds
$C_{\mu \nu}$ RR background: new structure

- The superspace deformation can be rephrased as a modification of the product among functions, which now becomes

$$
f(\theta) \star g(\theta)=f(\theta) \exp \left(-\frac{1}{2} \frac{\partial^{\partial \theta^{\dot{\alpha}}}}{} C^{\dot{\alpha} \dot{\beta}} \frac{\vec{\partial}}{\partial \theta^{\dot{\beta}}}\right) g(\theta)
$$

- There are also new interactions between the gauge and matter fields: see later in the talk.

The focus of the talk

- We shall analyze a particular deformation of a gauge theory induced by a RR background.
- This is the case where the $\mathcal{N}=1$ superspace becomes partly non-anticommutative because of the "graviphoton" $C_{\mu \nu}$ background and the pure $\mathcal{N}=1$ gauge theory is deformed to the so-called $\mathcal{N}=1 / 2$ theory of [Seiberg, 2003].
- We shall derive explicitely from string diagrams (in the traditional RNS formulation) the $\mathcal{N}=1 / 2$ theory.
- Moreover, along the lines of the previous talk, we will derive from string diagrams the instantonic solutions of this theory and their ADHM moduli space.

The $\mathcal{N}=\mathbf{1} / \mathbf{2}$ gauge theory from open strings

We will now proceed as follows.
Review the set-up to retrieve the action of pure $\mathcal{N}=1$ gauge
theory from open string disk amplitudes.
Retrieve the action of the so-called $\mathcal{N}=1 / 2$ gauge theory
[Seiberg, 2003] by inserting closed string vertices for a certain
constant $R R$ field strength.

Typeset with LATEX
using the beamer class

$$
\text { The } \mathcal{N}=1 / 2 \text { gauge theory from open strings }
$$

We will now proceed as follows.

- Review the set-up to retrieve the action of pure $\mathcal{N}=1$ gauge theory from open string disk amplitudes.

$$
\text { The } \mathcal{N}=\mathbf{1} / \mathbf{2} \text { gauge theory from open strings }
$$

We will now proceed as follows.

- Review the set-up to retrieve the action of pure $\mathcal{N}=1$ gauge theory from open string disk amplitudes.
- Retrieve the action of the so-called $\mathcal{N}=1 / 2$ gauge theory [Seiberg, 2003] by inserting closed string vertices for a certain constant RR field strength.
The set-up
- Type IIB string theory on target space

$$
\mathbb{R}^{4} \times \frac{\mathbb{R}^{6}}{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}
$$

Decompose $x^{M} \rightarrow\left(x^{\mu}, x^{a}\right),(\mu=1, \ldots 4, \quad a=5, \ldots, 10$.

- $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \subset \mathrm{SO}(6)$ is generated by
The set-up
- Type IIB string theory on target space

$$
\mathbb{R}^{4} \times \frac{\mathbb{R}^{6}}{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}
$$

Decompose $x^{M} \rightarrow\left(x^{\mu}, x^{a}\right),(\mu=1, \ldots 4, \quad a=5, \ldots, 10$.

- $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \subset \mathrm{SO}(6)$ is generated by
- g_{1} : a rotation by π in the $7-8$ and by $-\pi$ in the $9-10$ plane;
- g_{1} : a rotation by π in the 5-6 and by $-\pi$ in the $9-10$ plane.
- The origin is a fixed point \Rightarrow the orbifold is a singular,
non-compact, Calabi-Yau space.
The set-up
- Type IIB string theory on target space

$$
\mathbb{R}^{4} \times \frac{\mathbb{R}^{6}}{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}
$$

Decompose $x^{M} \rightarrow\left(x^{\mu}, x^{a}\right),(\mu=1, \ldots 4, \quad a=5, \ldots, 10$.

- $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \subset \mathrm{SO}(6)$ is generated by
- g_{1} : a rotation by π in the 7-8 and by $-\pi$ in the $9-10$ plane;
- g_{1} : a rotation by π in the 5-6 and by $-\pi$ in the 9-10 plane.
- The origin is a fixed point \Rightarrow the orbifold is a singular, non-compact, Calabi-Yau space.
The set-up: Killing spinors
- Of the 8 spinor weights of $\mathrm{SO}(6)$,

$$
\vec{\lambda}=\left(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}\right)
$$

it is easy to see that the only invariant ones w.r.t. the generators $g_{1,2}$ are

$$
\vec{\lambda}^{(+)}=\left(+\frac{1}{2},+\frac{1}{2},+\frac{1}{2}\right), \quad \vec{\lambda}^{(-)}=\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)
$$

(resp. chiral and anti-chiral). In this orbifold realization, they describe the $2(=8 / 4)$ Killing spinors of the CY.
The set-up: Killing spinors

- Of the 8 spinor weights of $\mathrm{SO}(6)$,

$$
\vec{\lambda}=\left(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}\right)
$$

it is easy to see that the only invariant ones w.r.t. the generators $g_{1,2}$ are

$$
\vec{\lambda}^{(+)}=\left(+\frac{1}{2},+\frac{1}{2},+\frac{1}{2}\right), \quad \vec{\lambda}^{(-)}=\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)
$$

(resp. chiral and anti-chiral). In this orbifold realization, they describe the $2(=8 / 4)$ Killing spinors of the CY.

- We remain with $8(=32 / 4)$ real susies in the bulk.
The set-up: internal spin fields
- Bosonizing the $\mathrm{SO}(6)$ current algebra by

$$
\mathrm{e}^{\mathrm{i} \varphi_{1}}=\frac{\psi^{5}+\mathrm{i} \psi^{6}}{\sqrt{2}}, \mathrm{e}^{\mathrm{i} \varphi_{2}}=\frac{\psi^{7}+\mathrm{i} \psi^{8}}{\sqrt{2}}, \mathrm{e}^{\mathrm{i} \varphi_{3}}=\frac{\psi^{9}+\mathrm{i} \psi^{10}}{\sqrt{2}} .
$$

(up to cocycles), the spin fields are $S^{\vec{\lambda}}=\mathrm{e}^{\mathrm{i} \lambda^{i} \varphi_{i}}$.
The correlators of spin fields are immediate upon use of

$$
\left\langle\varphi_{i}(z) \varphi_{j}(w)\right\rangle=\delta_{i j} \log (z-w)
$$

The set-up: internal spin fields

- Bosonizing the $\mathrm{SO}(6)$ current algebra by

$$
\mathrm{e}^{\mathrm{i} \varphi_{1}}=\frac{\psi^{5}+\mathrm{i} \psi^{6}}{\sqrt{2}}, \mathrm{e}^{\mathrm{i} \varphi_{2}}=\frac{\psi^{7}+\mathrm{i} \psi^{8}}{\sqrt{2}}, \mathrm{e}^{\mathrm{i} \varphi_{3}}=\frac{\psi^{9}+\mathrm{i} \psi^{10}}{\sqrt{2}}
$$

(up to cocycles), the spin fields are $S^{\vec{\lambda}}=\mathrm{e}^{\mathrm{i} \lambda^{i} \varphi_{i}}$.

- The correlators of spin fields are immediate upon use of

$$
\left\langle\varphi_{i}(z) \varphi_{j}(w)\right\rangle=\delta_{i j} \log (z-w)
$$

- Only two of these internal spin fields survive the orbifold projection:

The set-up: internal spin fields

- Bosonizing the $\mathrm{SO}(6)$ current algebra by

$$
\mathrm{e}^{\mathrm{i} \varphi_{1}}=\frac{\psi^{5}+\mathrm{i} \psi^{6}}{\sqrt{2}}, \quad \mathrm{e}^{\mathrm{i} \varphi_{2}}=\frac{\psi^{7}+\mathrm{i} \psi^{8}}{\sqrt{2}}, \mathrm{e}^{\mathrm{i} \varphi_{3}}=\frac{\psi^{9}+\mathrm{i} \psi^{10}}{\sqrt{2}} .
$$

(up to cocycles), the spin fields are $S^{\vec{\lambda}}=\mathrm{e}^{\mathrm{i} \lambda^{i} \varphi_{i}}$.

- The correlators of spin fields are immediate upon use of

$$
\left\langle\varphi_{i}(z) \varphi_{j}(w)\right\rangle=\delta_{i j} \log (z-w)
$$

- Only two of these internal spin fields survive the orbifold projection:

$$
S^{(\pm)}=\mathrm{e}^{\mathrm{i} \lambda(\pm) i} \varphi_{i}=\mathrm{e}^{ \pm \frac{\mathrm{i}}{2}\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)}
$$

Fractional D3 branes

- Place N fractional D3 branes, localized at the orbifold fixed point. The branes preserve $4=8 / 2$ real supercharges.

the reducible regular rep)

Fractional D3 branes

- Place N fractional D3 branes, localized at the orbifold fixed point. The branes preserve $4=8 / 2$ real supercharges.
- The Chan-Patons of open strings attached to fractional branes transform in an irrep of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
- The fractional branes must sit at the orbifold fixed point (otherwise would transform in the reducible regular rep)

Fractional D3 branes

- Place N fractional D3 branes, localized at the orbifold fixed point. The branes preserve $4=8 / 2$ real supercharges.
- The Chan-Patons of open strings attached to fractional branes transform in an irrep of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
- The fractional branes must sit at the orbifold fixed point (otherwise would transform in the reducible regular rep)

Fractional D3 branes and pure $\mathcal{N}=1$ gauge theory

- Spectrum of massless open strings attached to the N fractional D3's corresponds to $\mathcal{N}=1$ pure $\mathrm{U}(N)$ gauge theory. Schematically,

$$
\mathrm{NS}:\left\{\begin{array}{llll}
\psi^{\mu} & \rightarrow A_{\mu} \\
\psi^{a} & & \text { no scalars! }
\end{array} \quad \mathrm{R}:\left\{\begin{array}{lll}
S^{\alpha} S^{(+)} & \rightarrow \Lambda_{\alpha} \\
S^{\dot{\alpha}} S^{(-)} & \rightarrow & \Lambda_{\dot{\alpha}}
\end{array}\right.\right.
$$

limit, as described in Alberto's talk. One gets indeed

Fractional D3 branes and pure $\mathcal{N}=1$ gauge theory

- Spectrum of massless open strings attached to the N fractional D3's corresponds to $\mathcal{N}=1$ pure $\mathrm{U}(N)$ gauge theory. Schematically,

$$
\mathrm{NS}:\left\{\begin{array}{llll}
\psi^{\mu} & \rightarrow & A_{\mu} \\
\psi^{a} & & \text { no scalars! }
\end{array} \quad \mathrm{R}:\left\{\begin{array}{lll}
S^{\alpha} S^{(+)} & \rightarrow & \Lambda_{\alpha} \\
S^{\dot{\alpha}} S^{(-)} & \rightarrow & \Lambda_{\dot{\alpha}}
\end{array}\right.\right.
$$

- The action is retrieved from disk amplitudes in the $\alpha^{\prime} \rightarrow 0$ limit, as described in Alberto's talk. One gets indeed

$$
S=\frac{1}{g_{\mathrm{YM}}^{2}} \int d^{4} x \operatorname{Tr}\left(\frac{1}{2} F_{\mu \nu}^{2}-2 \bar{\Lambda}_{\dot{\alpha}} \bar{D}^{\dot{\alpha} \beta} \Lambda_{\beta}\right)
$$

Auxiliary fields

- The action can be obtained from cubic diagram only introducing the (anti-selfdual) auxiliary field $H_{\mu \nu} \equiv H_{c} \bar{\eta}_{\mu \nu}^{c}$:

$$
\begin{aligned}
S^{\prime}=\frac{1}{g_{\mathrm{YM}}^{2}} \int & d^{4} x \operatorname{Tr}\left\{\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) \partial^{\mu} A^{\nu}+2 \mathrm{i} \partial_{\mu} A_{\nu}\left[A^{\mu}, A^{\nu}\right]\right. \\
& \left.-2 \bar{\Lambda}_{\dot{\alpha}} \bar{D}^{\dot{\alpha} \beta} \Lambda_{\beta}+H_{c} H^{c}+H_{c} \bar{\eta}_{\mu \nu}^{c}\left[A^{\mu}, A^{\nu}\right]\right\}
\end{aligned}
$$

Auxiliary fields

- The action can be obtained from cubic diagram only introducing the (anti-selfdual) auxiliary field $H_{\mu \nu} \equiv H_{c} \bar{\eta}_{\mu \nu}^{c}$:

$$
\begin{aligned}
S^{\prime}=\frac{1}{g_{\mathrm{YM}}^{2}} \int & d^{4} x \operatorname{Tr}\left\{\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) \partial^{\mu} A^{\nu}+2 \mathrm{i} \partial_{\mu} A_{\nu}\left[A^{\mu}, A^{\nu}\right]\right. \\
& \left.-2 \bar{\Lambda}_{\dot{\alpha}} \bar{D}^{\dot{\alpha} \beta} \Lambda_{\beta}+H_{c} H^{c}+H_{c} \bar{\eta}_{\mu \nu}^{c}\left[A^{\mu}, A^{\nu}\right]\right\}
\end{aligned}
$$

- Integrating out H_{c} gives $H_{\mu \nu} \propto\left[A_{\mu}, A_{\nu}\right]$ and the usual action
\square because of $\mathrm{u}(N)$ Jacobi identities.

Auxiliary fields

- The action can be obtained from cubic diagram only introducing the (anti-selfdual) auxiliary field $H_{\mu \nu} \equiv H_{c} \bar{\eta}_{\mu \nu}^{c}$:

$$
\begin{aligned}
S^{\prime}=\frac{1}{g_{\mathrm{YM}}^{2}} \int & d^{4} x \operatorname{Tr}\left\{\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) \partial^{\mu} A^{\nu}+2 \mathrm{i} \partial_{\mu} A_{\nu}\left[A^{\mu}, A^{\nu}\right]\right. \\
& \left.-2 \bar{\Lambda}_{\dot{\alpha}} \bar{D}^{\dot{\alpha} \beta} \Lambda_{\beta}+H_{c} H^{c}+H_{c} \bar{\eta}_{\mu \nu}^{c}\left[A^{\mu}, A^{\nu}\right]\right\}
\end{aligned}
$$

- Integrating out H_{c} gives $H_{\mu \nu} \propto\left[A_{\mu}, A_{\nu}\right]$ and the usual action
- N.B. The 3 d.o.f of an (anti)-self-dual tensor are enough because of $\mathrm{u}(N)$ Jacobi identities.

Auxiliary fields in the open string set-up

- The auxiliary field $H_{\mu \nu}$ is associated to the (non-BRST invariant) vertex

$$
V_{H}(y ; p)=\left(2 \pi \alpha^{\prime}\right) \frac{H_{\mu \nu}(p)}{2} \psi^{\nu} \psi^{\mu}(y) \mathrm{e}^{i \sqrt{2 \pi \alpha^{\prime}} p \cdot X(y)} .
$$

Auxiliary fields in the open string set-up

- The auxiliary field $H_{\mu \nu}$ is associated to the (non-BRST invariant) vertex

$$
V_{H}(y ; p)=\left(2 \pi \alpha^{\prime}\right) \frac{H_{\mu \nu}(p)}{2} \psi^{\nu} \psi^{\mu}(y) \mathrm{e}^{i \sqrt{2 \pi \alpha^{\prime}} p \cdot X(y)} .
$$

We have then, for instance,

 + other ordering

Auxiliary fields in the open string set-up

- The auxiliary field $H_{\mu \nu}$ is associated to the (non-BRST invariant) vertex

$$
V_{H}(y ; p)=\left(2 \pi \alpha^{\prime}\right) \frac{H_{\mu \nu}(p)}{2} \psi^{\nu} \psi^{\mu}(y) \mathrm{e}^{i \sqrt{2 \pi \alpha^{\prime}} p \cdot X(y)} .
$$

We have then, for instance,

$$
\begin{aligned}
\frac{1}{2}\left\langle 《 V_{H} V_{A} V_{A}\right\rangle & =-\frac{1}{g_{\mathrm{YM}}^{2}} \operatorname{Tr}\left(H_{\mu \nu}\left(p_{1}\right) A^{\mu}\left(p_{2}\right) A^{\nu}\left(p_{3}\right)\right) \\
& + \text { other ordering }
\end{aligned}
$$

\rightsquigarrow last term in the previous action.

The graviphoton background

- RR vertex in 10D, in the symmetric superghost picture:

$$
\mathcal{F}_{\dot{A} \dot{B}} S^{\dot{A}} \mathrm{e}^{-\phi / 2}(z) \tilde{S}^{\dot{B}} \mathrm{e}^{-\tilde{\phi} / 2}(\bar{z})
$$

Bispinor $\mathcal{F}_{\dot{A} \dot{B}} \rightsquigarrow 1$-, 3- and a.s.d. 5-form field strengths.

with $\mathcal{F}_{\dot{\alpha} \dot{\beta}}=\mathcal{F}_{\dot{\beta} \dot{\alpha}}$

The graviphoton background

- RR vertex in 10D, in the symmetric superghost picture:

$$
\mathcal{F}_{\dot{A} \dot{B}} S^{\dot{A}} \mathrm{e}^{-\phi / 2}(z) \tilde{S}^{\dot{B}} \mathrm{e}^{-\tilde{\phi} / 2}(\bar{z})
$$

Bispinor $\mathcal{F}_{\dot{A} \dot{B}} \rightsquigarrow 1$-, 3- and a.s.d. 5-form field strengths.

- On $\mathbb{R}^{4} \times \frac{\mathbb{R}^{6}}{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}$, a surviving 4D bispinor vertex is

$$
\mathcal{F}_{\dot{\alpha} \dot{\beta}} S^{\dot{\alpha}} S^{(+)} \mathrm{e}^{-\phi / 2}(z) \tilde{S}^{\dot{\beta}} \tilde{S}^{(+)} \mathrm{e}^{-\tilde{\phi} / 2}(\bar{z})
$$

with $\mathcal{F}_{\dot{\alpha} \dot{\beta}}=\mathcal{F}_{\dot{\beta} \dot{\alpha}}$.

The graviphoton background

- RR vertex in 10D, in the symmetric superghost picture:

$$
\mathcal{F}_{\dot{A} \dot{B}} S^{\dot{A}} \mathrm{e}^{-\phi / 2}(z) \tilde{S}^{\dot{B}} \mathrm{e}^{-\tilde{\phi} / 2}(\bar{z})
$$

Bispinor $\mathcal{F}_{\dot{A} \dot{B}} \rightsquigarrow 1$-, 3- and a.s.d. 5-form field strengths.

- On $\mathbb{R}^{4} \times \frac{\mathbb{R}^{6}}{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}$, a surviving 4D bispinor vertex is

$$
\mathcal{F}_{\dot{\alpha} \dot{\beta}} S^{\dot{\alpha}} S^{(+)} \mathrm{e}^{-\phi / 2}(z) \tilde{S}^{\dot{\beta}} \tilde{S}^{(+)} \mathrm{e}^{-\tilde{\phi} / 2}(\bar{z})
$$

with $\mathcal{F}_{\dot{\alpha} \dot{\beta}}=\mathcal{F}_{\dot{\beta} \dot{\alpha}}$.

- This \sim decomposing the 5 -form along the holom. 3-form of the $\mathrm{CY} \rightsquigarrow$ an a.s.d. 2-form in 4D

$$
C_{\mu \nu} \propto \mathcal{F}_{\dot{\alpha} \dot{\beta}}\left(\bar{\sigma}^{\mu \nu}\right)^{\dot{\alpha} \dot{\beta}}
$$

the graviphoton f.s. of $\mathcal{N}=1 / 2$ theories.

Inserting graviphotons in disk amplitudes

- Conformally mapping the disk to the upper half z-plane, the D3 boundary conditions on spin fields read

$$
S^{\dot{\alpha}} S^{(+)}(z)=\left.\tilde{S}^{\dot{\alpha}} \tilde{S}^{(+)}(\bar{z})\right|_{z=\bar{z}}
$$

(opposite sign for $\tilde{S}^{\alpha} \tilde{S}^{(+)}(\bar{z})$).

Inserting graviphotons in disk amplitudes

- Conformally mapping the disk to the upper half z-plane, the D3 boundary conditions on spin fields read

$$
S^{\dot{\alpha}} S^{(+)}(z)=\left.\tilde{S}^{\dot{\alpha}} \tilde{S}^{(+)}(\bar{z})\right|_{z=\bar{z}}
$$

(opposite sign for $\tilde{S}^{\alpha} \tilde{S}^{(+)}(\bar{z})$).

- When closed string vertices are inserted in a D3 disk,

$$
\tilde{S}^{\dot{\alpha}} \tilde{S}^{(+)}(\bar{z}) \longrightarrow S^{\dot{\alpha}} S^{(+)}(\bar{z}) .
$$

Disk amplitudes with a graviphoton

Start inserting a graviphoton vertex:

$$
《\left\langle V_{\mathcal{F}}\right\rangle
$$

where

$$
V_{\mathcal{F}}(z, \bar{z})=\mathcal{F}_{\dot{\alpha} \dot{\beta}} S^{\dot{\alpha}} S^{(+)} \mathrm{e}^{-\phi / 2}(z) S^{\dot{\beta}} S^{(+)} \mathrm{e}^{-\phi / 2}(\bar{z})
$$

charge"

Disk amplitudes with a graviphoton

Start inserting a graviphoton vertex:

$$
\left\langle V_{A} V_{\Lambda} \quad V_{\mathcal{F}}\right\rangle
$$

where

$$
V_{\mathcal{F}}(z, \bar{z})=\mathcal{F}_{\dot{\alpha} \dot{\beta}} S^{\dot{\alpha}} S^{(+)} \mathrm{e}^{-\phi / 2}(z) S^{\dot{\beta}} S^{(+)} \mathrm{e}^{-\phi / 2}(\bar{z}) .
$$

\rightsquigarrow we need two $S^{(-)}$operators to "saturate the charge"

Disk amplitudes with a graviphoton

We insert therefore two chiral gauginos:

$$
\left\langle\left\langle V_{\Lambda} V_{\Lambda} \quad V_{\mathcal{F}}\right\rangle\right.
$$

with vertices

$$
\begin{aligned}
V_{\Lambda}(y ; p)= & \left(2 \pi \alpha^{\prime}\right)^{\frac{3}{4}} \Lambda^{\alpha}(p) S_{\alpha} S^{(-)} \mathrm{e}^{-\frac{1}{2} \phi(y)} \\
& \mathrm{e}^{i \sqrt{2 \pi \alpha^{\prime}} p \cdot X(y)}
\end{aligned}
$$

Without other insertions, however,

Disk amplitudes with a graviphoton

We insert therefore two chiral gauginos:

$$
\left\langle\left\langle V_{\Lambda} V_{\Lambda} V_{\Lambda} V_{\mathcal{F}}\right\rangle\right.
$$

with vertices

$$
\begin{aligned}
V_{\Lambda}(y ; p)= & \left(2 \pi \alpha^{\prime}\right)^{\frac{3}{4}} \Lambda^{\alpha}(p) S_{\alpha} S^{(-)} \mathrm{e}^{-\frac{1}{2} \phi(y)} \\
& \mathrm{e}^{i \sqrt{2 \pi \alpha^{\prime}} p \cdot X(y)} .
\end{aligned}
$$

Without other insertions, however,

$$
\left\langle S^{\dot{\alpha}} S^{\dot{\beta}} S_{\alpha} S_{\beta}\right\rangle \propto \epsilon^{\dot{\alpha} \dot{\beta}} \epsilon_{\alpha \beta}
$$

\rightsquigarrow vanishes when contracted with $\mathcal{F}_{\dot{\alpha} \dot{\beta}}$.

Disk amplitudes with a graviphoton

To this effect, insert a gauge field vertex:

$$
\left\langle V_{\Lambda} V_{\Lambda} V_{A} V_{\mathcal{F}}\right\rangle
$$

 that must be in the 0 picture:

$$
\begin{aligned}
V_{A}(y ; p)= & 2 \mathrm{i}\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} A_{\mu}(p) \\
& \left(\partial X^{\mu}(y)+\mathrm{i}\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} p \cdot \psi \psi^{\mu}(y)\right) \\
& \mathrm{e}^{\mathrm{i} \sqrt{2 \pi \alpha^{\prime}} p \cdot X(y)}
\end{aligned}
$$

\rightsquigarrow finally, we may get a non-zero result!

Disk amplitudes with a graviphoton

To this effect, insert a gauge field vertex:

$$
《\left\langle V_{\Lambda} V_{\Lambda} V_{A} V_{\mathcal{F}}\right\rangle
$$

 that must be in the 0 picture:

$$
\begin{aligned}
V_{A}(y ; p)= & 2 \mathrm{i}\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} A_{\mu}(p) \\
& \left(\partial X^{\mu}(y)+\mathrm{i}\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} p \cdot \psi \psi^{\mu}(y)\right) \\
& \mathrm{e}^{\mathrm{i} \sqrt{2 \pi \alpha^{\prime}} p \cdot X(y)}
\end{aligned}
$$

\rightsquigarrow finally, we may get a non-zero result!

Evaluation of the amplitude

- We have

$$
\begin{aligned}
\left\langle V_{\Lambda} V_{\Lambda} V_{A} V_{\mathcal{F}}\right\rangle \equiv & C_{4} \int \frac{\prod_{i} d y_{i} d z d \bar{z}}{d V_{\mathrm{CKG}}} \\
& \left\langle V_{\Lambda}\left(y_{1} ; p_{1}\right) V_{\Lambda}\left(y_{2} ; p_{2}\right) V_{A}\left(y_{3} ; p_{3}\right) V_{\mathcal{F}}(z, \bar{z})\right\rangle
\end{aligned}
$$

where the normalization for a D3 disk is

$$
C_{4}=\frac{1}{\pi^{2} \alpha^{\prime 2}} \frac{1}{g_{\mathrm{YM}}^{2}}
$$

and the $\mathrm{SL}(2, \mathbb{R})$-invariant volume is

$$
d V_{\mathrm{CGK}}=\frac{d y_{a} d y_{b} d y_{c}}{\left(y_{a}-y_{b}\right)\left(y_{b}-y_{c}\right)\left(y_{c}-y_{a}\right)}
$$

Explicit expression of the amplitude

- Altogether, the explicit expression is

$$
\begin{aligned}
& \left.《 V_{\Lambda} V_{\Lambda} V_{A} V_{\mathcal{F}}\right\rangle=\frac{8}{g_{\mathrm{YM}}^{2}}\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} \operatorname{Tr}\left(\Lambda^{\alpha}\left(p_{1}\right) \Lambda^{\beta}\left(p_{2}\right) p_{3}^{\nu} A^{\mu}\left(p_{3}\right)\right) \mathcal{F}_{\dot{\alpha} \dot{\beta}} \\
& \quad \times \int \frac{\prod_{i} d y_{i} d z d \bar{z}}{d V_{\mathrm{CKG}}}\left\{\left\langle S_{\alpha}\left(y_{1}\right) S_{\beta}\left(y_{2}\right): \psi^{\nu} \psi^{\mu}:\left(y_{3}\right) S^{\dot{\alpha}}(z) S^{\dot{\beta}}(\bar{z})\right\rangle\right. \\
& \quad \times\left\langle S^{(-)}\left(y_{1}\right) S^{(-)}\left(y_{2}\right) S^{(+)}(z) S^{(+)}(\bar{z})\right\rangle \\
& \quad \times\left\langle\mathrm{e}^{-\frac{1}{2} \phi\left(y_{1}\right)} \mathrm{e}^{-\frac{1}{2} \phi\left(y_{2}\right)} \mathrm{e}^{-\frac{1}{2} \phi(z)} \mathrm{e}^{-\frac{1}{2} \phi(\bar{z})}\right\rangle \\
& \left.\quad \times\left\langle\mathrm{e}^{\mathrm{i} \sqrt{2 \pi \alpha^{\prime}} p_{1} \cdot X\left(y_{1}\right)} \mathrm{e}^{\mathrm{i} \sqrt{2 \pi \alpha^{\prime}} p_{2} \cdot X\left(y_{2}\right)} \mathrm{e}^{\mathrm{i} \sqrt{2 \pi \alpha^{\prime}} p_{3} \cdot X\left(y_{3}\right)}\right\rangle\right\}
\end{aligned}
$$

Evaluation of the amplitude: correlators

- The relevant correlators are:

Evaluation of the amplitude: correlators

- The relevant correlators are:

1. Superghosts

$$
\begin{aligned}
& \left\langle\mathrm{e}^{-\frac{1}{2} \phi\left(y_{1}\right)} \mathrm{e}^{-\frac{1}{2} \phi\left(y_{2}\right)} \mathrm{e}^{-\frac{1}{2} \phi(z)} \mathrm{e}^{-\frac{1}{2} \phi(\bar{z})}\right\rangle \\
& \quad=\left[\left(y_{1}-y_{2}\right)\left(y_{1}-z\right)\left(y_{1}-\bar{z}\right)\left(y_{2}-z\right)\left(y_{2}-\bar{z}\right)(z-\bar{z})\right]^{-\frac{1}{4}} .
\end{aligned}
$$

Evaluation of the amplitude: correlators

- The relevant correlators are:

2. Internal spin fields

$$
\begin{aligned}
& \left\langle S^{(-)}\left(y_{1}\right) S^{(-)}\left(y_{2}\right) S^{(+)}(z) S^{(+)}(\bar{z})\right\rangle \\
& \quad=\left(y_{1}-y_{2}\right)^{\frac{3}{4}}\left(y_{1}-z\right)^{-\frac{3}{4}}\left(y_{1}-\bar{z}\right)^{-\frac{3}{4}}\left(y_{2}-z\right)^{-\frac{3}{4}}\left(y_{2}-\bar{z}\right)^{-\frac{3}{4}} \\
& \quad \times(z-\bar{z})^{\frac{3}{4}} .
\end{aligned}
$$

Evaluation of the amplitude: correlators

- The relevant correlators are:

3. 4 D spin fields

$$
\begin{aligned}
& \left\langle S_{\gamma}\left(y_{1}\right) S_{\delta}\left(y_{2}\right): \psi^{\mu} \psi^{\nu}:\left(y_{3}\right) S^{\dot{\alpha}}(z) S^{\dot{\beta}}(\bar{z})\right\rangle \\
& \quad=\frac{1}{2}\left(y_{1}-y_{2}\right)^{-\frac{1}{2}}(z-\bar{z})^{-\frac{1}{2}} \\
& \quad \times\left(\left(\sigma^{\mu \nu}\right)_{\gamma \delta} \varepsilon^{\dot{\alpha} \dot{\beta}} \frac{\left(y_{1}-y_{2}\right)}{\left(y_{1}-y_{3}\right)\left(y_{2}-y_{3}\right)}\right. \\
& \left.\quad+\varepsilon_{\gamma \delta}\left(\bar{\sigma}^{\mu \nu}\right)^{\dot{\alpha} \dot{\beta}} \frac{(z-\bar{z})}{\left(y_{3}-z\right)\left(y_{3}-\bar{z}\right)}\right) .
\end{aligned}
$$

Evaluation of the amplitude: correlators

- The relevant correlators are:

4. Momentum factors

$$
\left\langle\mathrm{e}^{\mathrm{i} \sqrt{2 \pi \alpha^{\prime}} p_{1} \cdot X\left(y_{1}\right)} \mathrm{e}^{\mathrm{i} \sqrt{2 \pi \alpha^{\prime}} p_{2} \cdot X\left(y_{2}\right)} \mathrm{e}^{\mathrm{i} \sqrt{2 \pi \alpha^{\prime}} p_{3} \cdot X\left(y_{3}\right)}\right\rangle \xrightarrow{\text { on shell }} 1 .
$$

Evaluation of the amplitude: $\mathrm{SL}(2, \mathbb{R})$ fixing

- We may, for instance, choose

$$
y_{1} \rightarrow \infty, \quad z \rightarrow \mathrm{i}, \quad \bar{z} \rightarrow-\mathrm{i} .
$$

- The remaining integrations turn out to be

Symmetry factor $1 / 2$ and other ordering compensate each other.

Typeset with LATEX
using the beamer class

Evaluation of the amplitude: $\mathrm{SL}(2, \mathbb{R})$ fixing

- We may, for instance, choose

$$
y_{1} \rightarrow \infty, \quad z \rightarrow \mathrm{i}, \quad \bar{z} \rightarrow-\mathrm{i} .
$$

- The remaining integrations turn out to be

$$
\int_{-\infty}^{+\infty} d y_{2} \int_{-\infty}^{y_{2}} d y_{3} \frac{1}{\left(y_{2}^{2}+1\right)\left(y_{3}^{2}+1\right)}=\frac{\pi^{2}}{2}
$$

Symmetry factor $1 / 2$ and other ordering compensate each other.

Final result for the amplitude

- We finally obtain for $\left\langle\left\langle V_{\Lambda} V_{\Lambda} V_{A} V_{\mathcal{F}}\right\rangle\right.$ the result

$$
\frac{8 \pi^{2}}{g_{\mathrm{YM}}^{2}}\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} \operatorname{Tr}\left(\Lambda\left(p_{1}\right) \cdot \Lambda\left(p_{2}\right) p_{3}^{\nu} A^{\mu}\left(p_{3}\right)\right) \mathcal{F}_{\dot{\alpha} \dot{\beta}}\left(\bar{\sigma}_{\nu \mu}\right)^{\dot{\alpha} \dot{\beta}}
$$

- This result is finite for $\alpha^{\prime} \rightarrow 0$ if we keep constant
\square
- $C_{\mu \nu}$, of dimension (length) will be exactly the one of $\mathcal{N}=1 / 2$ theory.
- We get an extra term in the gauge theory action:

Final result for the amplitude

- We finally obtain for $\left\langle\left\langle V_{\Lambda} V_{\Lambda} V_{A} V_{\mathcal{F}}\right\rangle\right.$ the result

$$
\frac{8 \pi^{2}}{g_{\mathrm{YM}}^{2}}\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} \operatorname{Tr}\left(\Lambda\left(p_{1}\right) \cdot \Lambda\left(p_{2}\right) p_{3}^{\nu} A^{\mu}\left(p_{3}\right)\right) \mathcal{F}_{\dot{\alpha} \dot{\beta}}\left(\bar{\sigma}_{\nu \mu}\right)^{\dot{\alpha} \dot{\beta}}
$$

- This result is finite for $\alpha^{\prime} \rightarrow 0$ if we keep constant

$$
C_{\mu \nu} \equiv 4 \pi^{2}\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} \mathcal{F}_{\dot{\alpha} \dot{\beta}}\left(\bar{\sigma}_{\mu \nu}\right)^{\dot{\alpha} \dot{\beta}}
$$

- $C_{\mu \nu}$, of dimension (length) will be exactly the one of $\mathcal{N}=1 / 2$ theory.
- We get an extra term in the gauge theory action:

Final result for the amplitude

- We finally obtain for $\left\langle\left\langle V_{\Lambda} V_{\Lambda} V_{A} V_{\mathcal{F}}\right\rangle\right.$ the result

$$
\frac{8 \pi^{2}}{g_{\mathrm{YM}}^{2}}\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} \operatorname{Tr}\left(\Lambda\left(p_{1}\right) \cdot \Lambda\left(p_{2}\right) p_{3}^{\nu} A^{\mu}\left(p_{3}\right)\right) \mathcal{F}_{\dot{\alpha} \dot{\beta}}\left(\bar{\sigma}_{\nu \mu}\right)^{\dot{\alpha} \dot{\beta}}
$$

- This result is finite for $\alpha^{\prime} \rightarrow 0$ if we keep constant

$$
C_{\mu \nu} \equiv 4 \pi^{2}\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} \mathcal{F}_{\dot{\alpha} \dot{\beta}}\left(\bar{\sigma}_{\mu \nu}\right)^{\dot{\alpha} \dot{\beta}}
$$

- $C_{\mu \nu}$, of dimension (length) will be exactly the one of $\mathcal{N}=1 / 2$ theory.
- We get an extra term in the gauge theory action:

$$
\frac{\mathrm{i}}{g_{\text {XMM }}^{2}} \int d^{4} x \operatorname{Tr}\left(\Lambda \cdot \Lambda\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)\right) C_{\mu \nu} .
$$

Another contribute

- Another possible diagram with a graviphoton insertion is

$$
\left\langle 《 V_{\Lambda} V_{\Lambda} V_{H} V_{\mathcal{F}}\right\rangle .
$$

Another contribute

- Another possible diagram with a graviphoton insertion is

$$
《\left\langle V_{\Lambda} V_{\Lambda} V_{H} V_{\mathcal{F}}\right\rangle .
$$

- Recall that the auxiliary field vertex in the 0 picture is

$$
\begin{aligned}
& V_{H}(y ; p)= \\
& \left(2 \pi \alpha^{\prime}\right) \frac{H_{\mu \nu}(p)}{2} \psi^{\nu} \psi^{\mu}(y) \mathrm{e}^{i \sqrt{2 \pi \alpha^{\prime}} p \cdot X(y)}
\end{aligned}
$$

Another contribute

- Another possible diagram with a graviphoton insertion is

$$
\left\langle\left\langle V_{\Lambda} V_{\Lambda} V_{H} V_{\mathcal{F}}\right\rangle .\right.
$$

- The evaluation of this amplitude paralles exactly the previous one and contributes to the field theory action the term:

$$
\frac{1}{2 g_{\mathrm{YM}}^{2}} \int d^{4} x \operatorname{Tr}\left(\Lambda \cdot \Lambda H^{\mu \nu}\right) C_{\mu \nu}
$$

having introduced $C_{\mu \nu}$ as above.

Another contribute

－Another possible diagram with a graviphoton insertion is

$$
\left\langle 《 V_{\Lambda} V_{\Lambda} V_{H} V_{\mathcal{F}}\right\rangle .
$$

－All other amplitudes involving \mathcal{F} vertices either
－vanish because of their tensor structure；
－vanish in the $\alpha^{\prime} \rightarrow 0$ limit，with $C_{\mu \nu}$ fixed．

The deformed gauge theory action

- From disk diagrams with RR insertions we obtain, in the field theory limit

$$
\alpha^{\prime} \rightarrow 0 \text { with } C_{\mu \nu} \text { fixed }
$$

the action

$$
\begin{aligned}
\tilde{S}^{\prime} & =\frac{1}{g_{\mathrm{YM}}^{2}} \int d^{4} x \operatorname{Tr}\left\{\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) \partial^{\mu} A^{\nu}+2 \mathrm{i} \partial_{\mu} A_{\nu}\left[A^{\mu}, A^{\nu}\right]\right. \\
& -2 \bar{\Lambda}_{\dot{\alpha}} \bar{D}^{\dot{\alpha} \beta} \Lambda_{\beta}+\mathrm{i}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right) \Lambda \cdot \Lambda C_{\mu \nu} \\
& \left.+H_{c} H^{c}+H_{c} \bar{\eta}_{\mu \nu}^{c}\left(\left[A^{\mu}, A^{\nu}\right]+\frac{1}{2} \Lambda \cdot \Lambda C^{\mu \nu}\right)\right\}
\end{aligned}
$$

The deformed gauge theory action

- Integrating on the auxiliary field H_{c}, we get

$$
\begin{aligned}
\tilde{S}= & \frac{1}{g_{\mathrm{YM}}^{2}} \int d^{4} x \operatorname{Tr}\left\{\frac{1}{2} F_{\mu \nu}^{2}-2 \bar{\Lambda}_{\dot{\alpha}} \bar{D}^{\dot{\alpha} \beta} \Lambda_{\beta}\right. \\
& \left.+\mathrm{i} F^{\mu \nu} \Lambda \cdot \Lambda C_{\mu \nu}-\frac{1}{4}\left(\Lambda \cdot \Lambda C_{\mu \nu}\right)^{2}\right\} \\
= & \frac{1}{g_{\mathrm{YM}}^{2}} \int d^{4} x \operatorname{Tr}\left\{\left(F_{\mu \nu}^{(-)}+\frac{\mathrm{i}}{2} \Lambda \cdot \Lambda C_{\mu \nu}\right)^{2}+\frac{1}{2} F_{\mu \nu} \widetilde{F}^{\mu \nu}\right. \\
& \left.-2 \bar{\Lambda}_{\dot{\alpha}} \bar{D}^{\dot{\alpha} \beta} \Lambda_{\beta}\right\}
\end{aligned}
$$

i.e., exactly the action of Seiberg's $\mathcal{N}=1 / 2$ gauge theory.

The deformed gauge theory action

- Integrating on the auxiliary field H_{c}, we get

$$
\begin{aligned}
\tilde{S}= & \frac{1}{g_{\mathrm{YM}}^{2}} \int d^{4} x \operatorname{Tr}\left\{\frac{1}{2} F_{\mu \nu}^{2}-2 \bar{\Lambda}_{\dot{\alpha}} \bar{D}^{\dot{\alpha} \beta} \Lambda_{\beta}\right. \\
& \left.+\mathrm{i} F^{\mu \nu} \Lambda \cdot \Lambda C_{\mu \nu}-\frac{1}{4}\left(\Lambda \cdot \Lambda C_{\mu \nu}\right)^{2}\right\} \\
= & \frac{1}{g_{\mathrm{YM}}^{2}} \int d^{4} x \operatorname{Tr}\left\{\left(F_{\mu \nu}^{(-)}+\frac{\mathrm{i}}{2} \Lambda \cdot \Lambda C_{\mu \nu}\right)^{2}+\frac{1}{2} F_{\mu \nu} \widetilde{F}^{\mu \nu}\right. \\
& \left.-2 \bar{\Lambda}_{\dot{\alpha}} \bar{D}^{\dot{\alpha} \beta} \Lambda_{\beta}\right\}
\end{aligned}
$$

\rightsquigarrow How is the instantonic sector affected?

Instantonic effects in the deformed theory

- As we saw in the previous talk, adding (fractional) D(-1) branes to the D3's \rightsquigarrow instantonic sectors in the gauge theory.

Instantonic effects in the deformed theory

- As we saw in the previous talk, adding (fractional) D(-1) branes to the D3's \rightsquigarrow instantonic sectors in the gauge theory.
- The open strings stretching
- between a $\mathrm{D}(-1)$ and another $\mathrm{D}(-1)$;
- between a D(-1) and a D3
carry no momentum \rightsquigarrow ADHM moduli in the gauge theory.
space

Instantonic effects in the deformed theory

- As we saw in the previous talk, adding (fractional) D(-1) branes to the D3's \rightsquigarrow instantonic sectors in the gauge theory.
- The open strings stretching
- between a $\mathrm{D}(-1)$ and another $\mathrm{D}(-1)$;
- between a D(-1) and a D3
carry no momentum \rightsquigarrow ADHM moduli in the gauge theory.
- Disks with $\mathrm{D}(-1)$ and mixed $\mathrm{D}(-1) / \mathrm{D} 3$ boundary \rightsquigarrow "measure" on moduli space

Instantonic effects in the deformed theory

- As we saw in the previous talk, adding (fractional) D(-1) branes to the D3's \rightsquigarrow instantonic sectors in the gauge theory.
- Mixed $\mathrm{D}(-1) / \mathrm{D} 3$ disks can emit gauge theory fields \rightsquigarrow produce the instantonic solutions of the gauge theory.

Instantonic effects in the deformed theory

- As we saw in the previous talk, adding (fractional) D(-1) branes to the D3's \rightsquigarrow instantonic sectors in the gauge theory.
- We shall now
- Review this in the $\mathcal{N}=1$ case;
- Deform it with the graviphoton.

Moduli spectrum in the $\mathcal{N}=1$ case

$D(-1) / D(-1)$ strings
With $k \mathrm{D}(-1)$'s, all vertices have Chan-Paton factors in the adjoint of $\mathrm{U}(k)$.

NS sector
The vertices surviving the orbifold projection are

$$
V_{a}(y)=\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} g_{0} a_{\mu} \psi^{\mu}(y) \mathrm{e}^{-\phi(y)} .
$$

Moduli spectrum in the $\mathcal{N}=1$ case

$D(-1) / D(-1)$ strings
With $k \mathrm{D}(-1)$'s, all vertices have Chan-Paton factors in the adjoint of $\mathrm{U}(k)$.

NS sector
The vertices surviving the orbifold projection are

$$
V_{a}(y)=\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} g_{0} a_{\mu} \psi^{\mu}(y) \mathrm{e}^{-\phi(y)} .
$$

- Here g_{0} is the coupling on the $\mathrm{D}(-1)$ theory:

$$
C_{0}=\frac{1}{2 \pi^{2} \alpha^{\prime 2}} \frac{1}{g_{0}^{2}}=\frac{8 \pi^{2}}{g_{\mathrm{YM}}^{2}}
$$

Moduli spectrum in the $\mathcal{N}=1$ case

$D(-1) / D(-1)$ strings
With $k \mathrm{D}(-1)$'s, all vertices have Chan-Paton factors in the adjoint of $\mathrm{U}(k)$.

NS sector
The vertices surviving the orbifold projection are

$$
V_{a}(y)=\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} g_{0} a_{\mu} \psi^{\mu}(y) \mathrm{e}^{-\phi(y)} .
$$

- $C_{0}=$ normaliz. of disks with (partly) $\mathrm{D}(-1)$ boundary. Since g_{YM} is fixed as $\alpha^{\prime} \rightarrow 0, g_{0}$ blows up.

Moduli spectrum in the $\mathcal{N}=1$ case

$D(-1) / D(-1)$ strings
With $k \mathrm{D}(-1)$'s, all vertices have Chan-Paton factors in the adjoint of $\mathrm{U}(k)$.

NS sector
The vertices surviving the orbifold projection are

$$
V_{a}(y)=\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} g_{0} a_{\mu} \psi^{\mu}(y) \mathrm{e}^{-\phi(y)} .
$$

- The moduli a_{μ} are rescaled with powers of g_{0} so that their interactions survive when $\alpha^{\prime} \rightarrow 0$ with g_{YM}^{2} fixed.

Moduli spectrum in the $\mathcal{N}=1$ case

$D(-1) / D(-1)$ strings
With $k \mathrm{D}(-1)$'s, all vertices have Chan-Paton factors in the adjoint of $\mathrm{U}(k)$.

NS sector
The vertices surviving the orbifold projection are

$$
V_{a}(y)=\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} g_{0} a_{\mu} \psi^{\mu}(y) \mathrm{e}^{-\phi(y)} .
$$

- The moduli a_{μ} have dimension (length) \sim positions of the (multi)center of the instanton

Moduli spectrum in the $\mathcal{N}=1$ case

$D(-1) / D(-1)$ strings
With $k \mathrm{D}(-1)$'s, all vertices have Chan-Paton factors in the adjoint of $\mathrm{U}(k)$.

NS sector
The vertices surviving the orbifold projection are

$$
V_{a}(y)=\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} g_{0} a_{\mu} \psi^{\mu}(y) \mathrm{e}^{-\phi(y)} .
$$

Moreover, we have the auxiliary vertex decoupling the quartic interactions

$$
V_{D}(y)=\left(2 \pi \alpha^{\prime}\right) \frac{D_{c} \bar{\eta}_{\mu \nu}^{c}}{2} \psi^{\nu} \psi^{\mu}(y),
$$

Moduli spectrum in the $\mathcal{N}=1$ case

$D(-1) / D(-1)$ strings
With $k \mathrm{D}(-1)$'s, all vertices have Chan-Paton factors in the adjoint of $\mathrm{U}(k)$.

Ramond sector

The vertices surviving the orbifold projection are

$$
\begin{aligned}
V_{M}(y) & =\left(2 \pi \alpha^{\prime}\right)^{\frac{3}{4}} \frac{g_{0}}{\sqrt{2}} M^{\prime \alpha} S_{\alpha}(y) S^{(-)}(y) \mathrm{e}^{-\frac{1}{2} \phi(y)}, \\
V_{\lambda}(y) & =\left(2 \pi \alpha^{\prime}\right)^{\frac{3}{4}} \lambda_{\dot{\alpha}} S^{\dot{\alpha}}(y) S^{(+)}(y) \mathrm{e}^{-\frac{1}{2} \phi(y)} .
\end{aligned}
$$

- $M^{\prime \alpha}$ has dimensions of (length $)^{\frac{1}{2}}$; $\lambda_{\dot{\alpha}}$ has dimensions of (length) ${ }^{-\frac{3}{2}}$.

Moduli spectrum in the $\mathcal{N}=1$ case

D(-1)/D3 strings
All vertices have Chan-Patons in the bifundamental of $\mathrm{U}(k) \times \mathrm{U}(N)$.

NS sector
The vertices surviving the orbifold projection are

$$
\begin{aligned}
& V_{w}(y)=\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} \frac{g_{0}}{\sqrt{2}} w_{\dot{\alpha}} \Delta(y) S^{\dot{\alpha}}(y) \mathrm{e}^{-\phi(y)}, \\
& V_{\bar{w}}(y)=\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} \frac{g_{0}}{\sqrt{2}} \bar{w}_{\dot{\alpha}} \bar{\Delta}(y) S^{\dot{\alpha}}(y) \mathrm{e}^{-\phi(y)},
\end{aligned}
$$

- The (anti-)twist fields $\Delta, \bar{\Delta}$ switch the b.c.'s on the X^{μ} string fields.

Moduli spectrum in the $\mathcal{N}=1$ case

D(-1)/D3 strings
All vertices have Chan-Patons in the bifundamental of $\mathrm{U}(k) \times \mathrm{U}(N)$.

NS sector
The vertices surviving the orbifold projection are

$$
\begin{aligned}
& V_{w}(y)=\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} \frac{g_{0}}{\sqrt{2}} w_{\dot{\alpha}} \Delta(y) S^{\dot{\alpha}}(y) \mathrm{e}^{-\phi(y)}, \\
& V_{\bar{w}}(y)=\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} \frac{g_{0}}{\sqrt{2}} \bar{w}_{\dot{\alpha}} \bar{\Delta}(y) S^{\dot{\alpha}}(y) \mathrm{e}^{-\phi(y)},
\end{aligned}
$$

- w and w have dimensions of (length) and are related to the size of the instanton solution.

Moduli spectrum in the $\mathcal{N}=1$ case

D(-1)/D3 strings
All vertices have Chan-Patons in the bifundamental of $\mathrm{U}(k) \times \mathrm{U}(N)$.

Ramond sector
The vertices surviving the orbifold projection are

$$
\begin{aligned}
& V_{\mu}(y)=\left(2 \pi \alpha^{\prime}\right)^{\frac{3}{4}} \frac{g_{0}}{\sqrt{2}} \mu \Delta(y) S^{(-)}(y) \mathrm{e}^{-\frac{1}{2} \phi(y)}, \\
& V_{\bar{\mu}}(y)=\left(2 \pi \alpha^{\prime}\right)^{\frac{3}{4}} \frac{g_{0}}{\sqrt{2}} \bar{\mu} \bar{\Delta}(y) S^{(-)}(y) \mathrm{e}^{-\frac{1}{2} \phi(y)} .
\end{aligned}
$$

- The fermionic moduli $\mu, \bar{\mu}$ have dimensions of (length) ${ }^{1 / 2}$.

The $\mathcal{N}=1$ moduli action

- (Mixed) disk diagrams with the above moduli, for $\alpha^{\prime} \rightarrow 0$ yield

$$
\begin{aligned}
S_{\mathrm{mod}}= & \operatorname{tr}\left\{-\mathrm{i} D_{c}\left(W^{c}+\mathrm{i} \bar{\eta}_{\mu \nu}^{c}\left[a^{\prime \mu}, a^{\prime \nu}\right]\right)\right. \\
& \left.-\mathrm{i} \lambda^{\dot{\alpha}}\left(w_{\dot{\alpha}}^{u} \bar{\mu}_{u}+\mu^{u} \bar{w}_{\dot{\alpha} u}+\left[a_{\alpha \dot{\alpha}}^{\prime}, M^{\prime \alpha}\right]\right)\right\}
\end{aligned}
$$

where

$$
\left(W^{c}\right)_{j}^{i}=w_{\dot{\alpha}}^{i u}\left(\tau^{c}\right)_{\dot{\beta}}^{\dot{\alpha}} \bar{w}_{u j}^{\dot{\beta}}
$$

$$
\text { The } \mathcal{N}=1 \text { moduli action }
$$

- (Mixed) disk diagrams with the above moduli, for $\alpha^{\prime} \rightarrow 0$ yield

$$
\begin{aligned}
S_{\mathrm{mod}}= & \operatorname{tr}\left\{-\mathrm{i} D_{c}\left(W^{c}+\mathrm{i} \bar{\eta}_{\mu \nu}^{c}\left[a^{\prime \mu}, a^{\prime \nu}\right]\right)\right. \\
& \left.-\mathrm{i} \lambda^{\dot{\alpha}}\left(w_{\dot{\alpha}}^{u} \bar{\mu}_{u}+\mu^{u} \bar{w}_{\dot{\alpha} u}+\left[a_{\alpha \dot{\alpha}}^{\prime}, M^{\prime \alpha}\right]\right)\right\}
\end{aligned}
$$

where

$$
\left(W^{c}\right)_{j}^{i}=w_{\dot{\alpha}}^{i u}\left(\tau^{c}\right)_{\dot{\beta}}^{\dot{\alpha}} \bar{w}_{u j}^{\dot{\beta}}
$$

- D_{c} and $\lambda^{\dot{\alpha}} \sim$ Lagrange multipliers for the (super)ADHM constraints.

The $\mathcal{N}=1$ ADHM constraints

- The ADHM constraints are three $k \times k$ matrix eq.s

$$
W^{c}+\mathrm{i} \bar{\eta}_{\mu \nu}^{c}\left[a^{\prime \mu}, a^{\prime \nu}\right]=\mathbf{0}
$$

- and their fermionic counterparts

$$
w_{\dot{\alpha}}^{u} \bar{\mu}_{u}+\mu^{u} \bar{w}_{\dot{\alpha} u}+\left[a_{\alpha \dot{\alpha}}^{\prime}, M^{\prime \alpha}\right]=\mathbf{0}
$$

- Once these constraints are satisfied, the moduli action vanishes.

The $\mathcal{N}=1$ ADHM constraints

- The ADHM constraints are three $k \times k$ matrix eq.s

$$
W^{c}+\mathrm{i} \bar{\eta}_{\mu \nu}^{c}\left[a^{\prime \mu}, a^{\prime \nu}\right]=\mathbf{0}
$$

- and their fermionic counterparts

$$
w_{\dot{\alpha}}^{u} \bar{\mu}_{u}+\mu^{u} \bar{w}_{\dot{\alpha} u}+\left[a_{\alpha \dot{\alpha}}^{\prime}, M^{\prime \alpha}\right]=\mathbf{0}
$$

- Once these constraints are satisfied, the moduli action vanishes.

$$
\text { The graviphoton in } D(-1) \text { disks }
$$

- Inserting $V_{\mathcal{F}}$ in a disk with all boundary on $\mathrm{D}(-1)$'s is perfectely analogous to the D3 case (but we have non momenta).
- The only possible diagram is

$\left\langle V_{M} V_{M} V_{D} V_{\mathcal{F}}\right\rangle$
where

Typeset with LATEX
using the beamer class

The graviphoton in $D(-1)$ disks

- Inserting $V_{\mathcal{F}}$ in a disk with all boundary on $\mathrm{D}(-1)$'s is perfectely analogous to the D3 case (but we have non momenta).
- The only possible diagram is

$$
\begin{aligned}
& \left\langle V_{M} V_{M} V_{D} V_{\mathcal{F}} 》\right. \\
& \left.\quad=\frac{\pi^{2}}{2} 2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} \operatorname{tr}\left(M^{\prime} \cdot M^{\prime} D_{c}\right) \bar{\eta}_{\mu \nu}^{c} \mathcal{F}_{\dot{\alpha} \dot{\beta}}\left(\bar{\sigma}_{\nu \mu}\right)^{\dot{\alpha} \dot{\beta}} \\
& \quad=-\frac{1}{2} \operatorname{tr}\left(M^{\prime} \cdot M^{\prime} D_{c}\right) C^{c}
\end{aligned}
$$

where

$$
C^{c}=\frac{1}{4} \bar{\eta}_{\mu \nu}^{c} C^{\mu \nu} .
$$

The graviphoton in mixed disks

- We can also insert $V_{\mathcal{F}}$ in a disk with mixed b.c.'s.
- There is a possible diagram

$$
\left\langle V_{\bar{\mu}} V_{\mu} V_{D} V_{\mathcal{F}}\right\rangle
$$

The graviphoton in mixed disks

- We can also insert $V_{\mathcal{F}}$ in a disk with mixed b.c.'s.
- There is a possible diagram

$$
\left\langle V_{\bar{\mu}} V_{\mu} V_{D} V_{\mathcal{F}}\right\rangle
$$

- We have different b.c.s on the two parts of the boundary, but the spin fields in the RR vertex $V_{\mathcal{F}}$ have the same identification on both:

$$
S^{\dot{\alpha}} S^{(+)}(z)=\left.\tilde{S}^{\dot{\alpha}} \tilde{S}^{(+)}(\bar{z})\right|_{z=\bar{z}}
$$

The graviphoton in mixed disks

- We can also insert $V_{\mathcal{F}}$ in a disk with mixed b.c.'s.
- There is a possible diagram

$$
\left\langle V_{\bar{\mu}} V_{\mu} V_{D} V_{\mathcal{F}}\right\rangle
$$

- This is because we chose $\mathrm{D}(-1)$'s to represent instantons with self-dual f.s. and $\mathcal{F}_{\mu \nu}$ to be anti-self-dual.

The graviphoton in mixed disks

- We can also insert $V_{\mathcal{F}}$ in a disk with mixed b.c.'s.
- There is a possible diagram

$$
\left\langle V_{\bar{\mu}} V_{\mu} V_{D} V_{\mathcal{F}}\right\rangle
$$

- The $\mu, \bar{\mu}$ vertices contain bosonic twist fields with correlator

$$
\Delta\left(y_{1}\right) \bar{\Delta}\left(y_{2}\right) \sim\left(y_{1}-y_{2}\right)^{-\frac{1}{2}}
$$

The graviphoton in mixed disks

- We can also insert $V_{\mathcal{F}}$ in a disk with mixed b.c.'s.
- There is a possible diagram

$$
\left\langle V_{\bar{\mu}} V_{\mu} V_{D} V_{\mathcal{F}}\right\rangle
$$

- Taking into account all correlators, the $\mathrm{SL}(2, \mathbb{R})$ gauge fixing, the integrations and the normalizations, we find the result

$$
\begin{aligned}
& -\frac{\pi^{2}}{2}\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}} \operatorname{tr}\left(\bar{\mu}_{u} \mu^{u} D_{c}\right) \bar{\eta}_{\mu \nu}^{c} \mathcal{F}_{\dot{\alpha} \dot{\beta}}\left(\bar{\sigma}^{\nu \mu}\right)^{\dot{\alpha} \dot{\beta}} \\
& =\frac{1}{2} \operatorname{tr}\left(\bar{\mu}_{u} \mu^{u} D_{c}\right) C^{c}
\end{aligned}
$$

Effects of the graviphoton on the moduli measure

- No other disk diagrams contribute in our $\alpha^{\prime} \rightarrow 0$ limit.
- The two terms above are linear in the auxiliary field D_{C} \rightsquigarrow deform the bosonic ADHM constraints to

Effects of the graviphoton on the moduli measure

- No other disk diagrams contribute in our $\alpha^{\prime} \rightarrow 0$ limit.
- The two terms above are linear in the auxiliary field D_{c} \rightsquigarrow deform the bosonic ADHM constraints to

$$
W^{c}+\mathrm{i} \bar{\eta}_{\mu \nu}^{c}\left[a^{\prime \mu}, a^{\prime \nu}\right]+\frac{\mathrm{i}}{2}\left(M^{\prime} \cdot M^{\prime}+\mu^{u} \bar{\mu}_{u}\right) C^{c}=\mathbf{0}
$$

This is the only effect of the chosen anti-self-dual. graviphoton bckg.

Effects of the graviphoton on the moduli measure

- No other disk diagrams contribute in our $\alpha^{\prime} \rightarrow 0$ limit.
- The two terms above are linear in the auxiliary field D_{c} \leadsto deform the bosonic ADHM constraints to

$$
W^{c}+\mathrm{i} \bar{\eta}_{\mu \nu}^{c}\left[a^{\prime \mu}, a^{\prime \nu}\right]+\frac{\mathrm{i}}{2}\left(M^{\prime} \cdot M^{\prime}+\mu^{u} \bar{\mu}_{u}\right) C^{c}=\mathbf{0}
$$

- This is the only effect of the chosen anti-self-dual. graviphoton bckg.
- Had we chosen a self-dual graviphoton, we would have no effect.

Effects of the graviphoton on the moduli measure

- No other disk diagrams contribute in our $\alpha^{\prime} \rightarrow 0$ limit.
- The two terms above are linear in the auxiliary field D_{c} \rightsquigarrow deform the bosonic ADHM constraints to

$$
W^{c}+\mathrm{i} \bar{\eta}_{\mu \nu}^{c}\left[a^{\prime \mu}, a^{\prime \nu}\right]+\frac{\mathrm{i}}{2}\left(M^{\prime} \cdot M^{\prime}+\mu^{u} \bar{\mu}_{u}\right) C^{c}=\mathbf{0} .
$$

- This is the only effect of the chosen anti-self-dual. graviphoton bckg.
- Had we chosen a self-dual graviphoton, we would have no effect.

The emitted gauge field

- Mixed disks represent sources for the gauge theory fields. In particular, the amplitude for the emission of a gauge field A_{μ}^{I} results in

$$
\begin{aligned}
& \left\langle 《 V_{\bar{w}} \mathcal{V}_{A_{\mu}^{I}}(-p) V_{w} 》\right. \\
& \quad=\mathrm{i}\left(T^{I}\right)^{v}{ }_{u} p^{\nu} \bar{\eta}_{\nu \mu}^{c}\left(w^{u}{ }_{\dot{\alpha}}\left(\tau^{c}\right)^{\dot{\alpha}}{ }_{\dot{\beta}} \bar{w}^{\dot{\beta}}{ }_{v}\right) \mathrm{e}^{-\mathrm{i} p \cdot x_{0}} .
\end{aligned}
$$

- The $\mathcal{V}_{A_{\mu}^{I}}(-p)$ has no polarization and outgoing momentum.
- N.B. From now on we set $k=1$, i.e. we
consider instanton number 1.

The emitted gauge field

- Mixed disks represent sources for the gauge theory fields. In particular, the amplitude for the emission of a gauge field A_{μ}^{I} results in

$$
\begin{aligned}
& 《 V_{\bar{w}} \mathcal{V}_{A_{\mu}^{I}}(-p) V_{w} 》 \\
& \quad=\mathrm{i}\left(T^{I}\right)^{v}{ }_{u} p^{\nu} \bar{\eta}_{\nu \mu}^{c}\left(w^{u}{ }_{\dot{\alpha}}\left(\tau^{c}\right)^{\dot{\alpha}} \overline{\dot{\beta}}^{\dot{\beta}}{ }^{\dot{\beta}}{ }_{v}\right) \mathrm{e}^{-\mathrm{i} p \cdot x_{0}} .
\end{aligned}
$$

- The $\mathcal{V}_{A_{\mu}^{I}}(-p)$ has no polarization and outgoing momentum.
- N.B. From now on we set $k=1$, i.e. we consider instanton number 1.

The emitted gauge field in presence of $C_{\mu \nu}$

- In the graviphoton background, we have the extra emission diagram

$$
\begin{aligned}
& \left\langle V_{\bar{\mu}} \mathcal{V}_{A_{\mu}^{I}}(-p) V_{\mu} V_{\mathcal{F}} 》\right. \\
& =2 \pi^{2}\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}}\left(T^{I}\right)^{v}{ }_{u} p^{\nu}\left(\bar{\sigma}_{\nu \mu}\right)^{\dot{\alpha} \dot{\beta}} \mathcal{F}_{\dot{\alpha} \dot{\beta}} \mu^{u} \bar{\mu}_{v} \mathrm{e}^{-\mathrm{i} p \cdot x_{0}} \\
& =\frac{1}{2}\left(T^{I}\right)^{v}{ }_{u} p^{\nu} \bar{\eta}_{\nu \mu}^{c} \mu^{u} \bar{\mu}_{v} C^{c} \mathrm{e}^{-\mathrm{i} p \cdot x_{0}},
\end{aligned}
$$

- No other diagrams with only two moduli contribute to the emission of a gauge field.

The emitted gauge field in presence of $C_{\mu \nu}$

- In the graviphoton background, we have the extra emission diagram

$$
\begin{aligned}
& \left\langle V_{\bar{\mu}} \mathcal{V}_{A_{\mu}^{I}}(-p) V_{\mu} V_{\mathcal{F}} 》\right. \\
& =2 \pi^{2}\left(2 \pi \alpha^{\prime}\right)^{\frac{1}{2}}\left(T^{I}\right)^{v}{ }_{u} p^{\nu}\left(\bar{\sigma}_{\nu \mu}\right)^{\dot{\alpha} \dot{\beta}} \mathcal{F}_{\dot{\alpha} \dot{\beta}} \mu^{u} \bar{\mu}_{v} \mathrm{e}^{-\mathrm{i} p \cdot x_{0}} \\
& =\frac{1}{2}\left(T^{I}\right)^{v}{ }_{u} p^{\nu} \bar{\eta}_{\nu \mu}^{c} \mu^{u} \bar{\mu}_{v} C^{c} \mathrm{e}^{-\mathrm{i} p \cdot x_{0}},
\end{aligned}
$$

- No other diagrams with only two moduli contribute to the emission of a gauge field.

The classical solution

- Altogether, the emission amplitude is

$$
A_{\mu}^{I}(p)=\mathrm{i}\left(T^{I}\right)^{v}{ }_{u} p^{\nu} \bar{\eta}_{\nu \mu}^{c}\left[\left(T^{c}\right)^{u}{ }_{v}+\left(S^{c}\right)^{u}{ }_{v}\right] \mathrm{e}^{-\mathrm{i} p \cdot x_{0}}
$$

where $\left(T^{I}\right){ }^{v}{ }_{u}$ are the $\mathrm{U}(N)$ generators and

$$
\left(T^{c}\right)^{u}{ }_{v}=w_{\dot{\alpha}}^{u}\left(\tau^{c}\right)^{\dot{\alpha}} \dot{\beta}^{\dot{w}}{ }_{v} \quad, \quad\left(S^{c}\right)^{u}{ }_{v}=-\frac{\mathrm{i}}{2} \mu^{u} \bar{\mu}_{v} C^{c} .
$$

- From this we obtain the profile of the classical solution

The classical solution

- Altogether, the emission amplitude is

$$
A_{\mu}^{I}(p)=\mathrm{i}\left(T^{I}\right)^{v}{ }_{u} p^{\nu} \bar{\eta}_{\nu \mu}^{c}\left[\left(T^{c}\right)^{u}{ }_{v}+\left(S^{c}\right)^{u}{ }_{v}\right] \mathrm{e}^{-\mathrm{i} p \cdot x_{0}}
$$

where $\left(T^{I}\right)^{v}{ }_{u}$ are the $\mathrm{U}(N)$ generators and

$$
\left(T^{c}\right)^{u}{ }_{v}=w_{\dot{\alpha}}^{u}\left(\tau^{c}\right)^{\dot{\alpha}}{ }_{\dot{\beta}} \bar{w}^{\dot{\beta}}{ }_{v}, \quad\left(S^{c}\right)^{u}{ }_{v}=-\frac{\mathrm{i}}{2} \mu^{u} \bar{\mu}_{v} C^{c} .
$$

- From this we obtain the profile of the classical solution

$$
\begin{aligned}
A_{\mu}^{I}(x) & =\int \frac{d^{4} p}{(2 \pi)^{2}} A_{\mu}^{I}(p) \frac{1}{p^{2}} \mathrm{e}^{\mathrm{i} p \cdot x} \\
& =2\left(T^{I}\right)^{v}{ }_{u}\left[\left(T^{c}\right)^{u}{ }_{v}+\left(S^{c}\right)^{u}{ }_{v}\right] \bar{\eta}_{\mu \nu}^{c} \frac{\left(x-x_{0}\right)^{\nu}}{\left(x-x_{0}\right)^{4}}
\end{aligned}
$$

The classical solution

- The above solution will represents the leading term at long distance of the deformed instanton solution in the singular gauge.
- However, above appeared the unconstrained moduli $\mu, \bar{\mu}, w, \bar{w}$.

The classical solution

- The above solution will represents the leading term at long distance of the deformed instanton solution in the singular gauge.
- However, above appeared the unconstrained moduli $\mu, \bar{\mu}, w, \bar{w}$.
- We need to enforce the deformed ADHM contraints, for $k=1$:

$$
\begin{aligned}
W^{c}+\frac{\mathrm{i}}{2}\left(M^{\prime} \cdot M^{\prime}+\mu^{u} \bar{\mu}_{u}\right) C^{c} & =\mathbf{0} \\
w_{\dot{\alpha}}^{u}, \bar{\mu}_{u}+\mu^{u} \bar{w}_{\dot{\alpha} u} & =\mathbf{0}
\end{aligned}
$$

The classical solution in the true moduli space

- Using the ADHM constraints, the solution can be written as

$$
\begin{aligned}
A_{\mu}^{I}(x) & =2\left(\mathcal{M}^{c b} \operatorname{Tr}\left(T^{I} t^{b}\right)+W^{c} \operatorname{Tr}\left(T^{I} t^{0}\right)+\operatorname{Tr}\left(T^{I} S^{c}\right)\right) \\
& \times \bar{\eta}_{\mu \nu}^{c} \frac{\left(x-x_{0}\right)^{\nu}}{\left(x-x_{0}\right)^{4}}
\end{aligned}
$$

The classical solution in the true moduli space

- Using the ADHM constraints, the solution can be written as

$$
\begin{aligned}
A_{\mu}^{I}(x) & =2\left(\mathcal{M}^{c b} \operatorname{Tr}\left(T^{I} t^{b}\right)+W^{c} \operatorname{Tr}\left(T^{I} t^{0}\right)+\operatorname{Tr}\left(T^{I} S^{c}\right)\right) \\
& \times \bar{\eta}_{\mu \nu}^{c} \frac{\left(x-x_{0}\right)^{\nu}}{\left(x-x_{0}\right)^{4}}
\end{aligned}
$$

- On the bosonic ADHM constraints,

$$
W^{c}=-\frac{\mathrm{i}}{2}\left(M^{\prime} \cdot M^{\prime}+\mu^{u} \bar{\mu}_{u}\right) C^{c} \equiv \hat{W}^{c} .
$$

Without the RR deformation, W^{c} would vanish.

The classical solution in the true moduli space

- Using the ADHM constraints, the solution can be written as

$$
\begin{aligned}
A_{\mu}^{I}(x) & =2\left(\mathcal{M}^{c b} \operatorname{Tr}\left(T^{I} t^{b}\right)+W^{c} \operatorname{Tr}\left(T^{I} t^{0}\right)+\operatorname{Tr}\left(T^{I} S^{c}\right)\right) \\
& \times \bar{\eta}_{\mu \nu}^{c} \frac{\left(x-x_{0}\right)^{\nu}}{\left(x-x_{0}\right)^{4}}
\end{aligned}
$$

- The matrix \mathcal{M} is $\mathcal{M}^{a b}=W^{0} \sqrt{W_{0}^{2}-|\vec{W}|^{2}}\left(\mathcal{R}^{-\frac{1}{2}}\right)^{a b}$, with $(\mathcal{R})^{a b}=W_{0}^{2} \delta^{a b}-W^{a} W^{b}$, where

$$
W^{0}=w^{u}{ }_{\dot{\alpha}} \bar{w}^{\dot{\alpha}}{ }_{u} .
$$

At $C_{c \in t}=0_{\mathrm{w}} W^{0}=2 \rho^{2}$, where $\rho=$ size of the instanton.

The classical solution in the true moduli space

- Using the ADHM constraints, the solution can be written as

$$
\begin{aligned}
A_{\mu}^{I}(x) & =2\left(\mathcal{M}^{c b} \operatorname{Tr}\left(T^{I} t^{b}\right)+W^{c} \operatorname{Tr}\left(T^{I} t^{0}\right)+\operatorname{Tr}\left(T^{I} S^{c}\right)\right) \\
& \times \bar{\eta}_{\mu \nu}^{c} \frac{\left(x-x_{0}\right)^{\nu}}{\left(x-x_{0}\right)^{4}}
\end{aligned}
$$

- The $N \times N$ matrices t^{a} and t^{0}, depending on the moduli w, \bar{w}, generate a $u(2)$ subalgebra
\rightsquigarrow the instanton field contains an abelian factor, beside su(2).

The classical solution in the true moduli space

- Using the ADHM constraints, the solution can be written as

$$
\begin{aligned}
A_{\mu}^{I}(x) & =2\left(\mathcal{M}^{c b} \operatorname{Tr}\left(T^{I} t^{b}\right)+W^{c} \operatorname{Tr}\left(T^{I} t^{0}\right)+\operatorname{Tr}\left(T^{I} S^{c}\right)\right) \\
& \times \bar{\eta}_{\mu \nu}^{c} \frac{\left(x-x_{0}\right)^{\nu}}{\left(x-x_{0}\right)^{4}}
\end{aligned}
$$

An explicit case of the solution

- We can write the above general expression choosing a particular solution to the ADHM constraints, to make contact with the literature [Grassi et al, 2003, Britto et al, 2003].
- Decomposing $u=(\dot{\alpha}, i)$ with $\dot{\alpha}=1,2$ and $i=3, \ldots, N$, the bosonic ADHM constraints are solved by

$$
\left\{\begin{array}{l}
w_{\dot{\alpha}}^{\dot{\beta}}=\rho \delta_{\dot{\alpha}}^{\dot{\beta}}+\frac{1}{4 \rho} \hat{W}_{c}\left(\tau^{c}\right)_{\dot{\alpha}}^{\dot{\beta}} \\
w_{\dot{\alpha}}^{i}=0
\end{array}\right.
$$

An explicit case of the solution

- We can write the above general expression choosing a particular solution to the ADHM constraints, to make contact with the literature [Grassi et al, 2003, Britto et al, 2003].
- Decomposing $u=(\dot{\alpha}, i)$ with $\dot{\alpha}=1,2$ and $i=3, \ldots, N$, the bosonic ADHM constraints are solved by

$$
\left\{\begin{array}{l}
w_{\dot{\alpha}}^{\dot{\beta}}=\rho \delta_{\dot{\alpha}}^{\dot{\beta}}+\frac{1}{4 \rho} \hat{W}_{c}\left(\tau^{c}\right)_{\dot{\alpha}}^{\dot{\beta}}, \\
w_{\dot{\alpha}}^{i}=0 .
\end{array}\right.
$$

- Having fixed w, \bar{w}, the fermionic constraints are solved by

$$
\mu^{\dot{\alpha}}=\bar{\mu}_{\dot{\alpha}}=0 .
$$

Moreover, up to a $\mathrm{U}(N-2)$ rotation, we can choose a single $\mu_{i, p}^{i}$, say ${ }^{3}{ }^{3}$ being $\neq 0$.

An explicit case of the solution

- The instanton gauge field $\left(A_{\mu}\right)^{u}{ }_{v}$ reduces then to

$$
\begin{aligned}
& \left(A_{\mu}\right)_{\dot{\beta}}^{\dot{\alpha}}=\left\{\rho^{2}\left(\tau_{c}\right)_{\dot{\beta}}^{\dot{\alpha}}-\frac{\mathrm{i}}{4}\left(M^{\prime} \cdot M^{\prime}+\mu^{3} \bar{\mu}_{3}\right) C_{c} \delta_{\dot{\beta}}^{\dot{\alpha}}\right. \\
& \left.+\frac{1}{32 \rho^{2}}\left(|\vec{C}|^{2}\left(\tau_{c}\right)_{\dot{\beta}}^{\dot{\alpha}}-2 C_{c} C^{b}\left(\tau_{b}\right)_{\dot{\beta}}^{\dot{\alpha}}\right) M^{\prime} \cdot M^{\prime} \mu^{3} \bar{\mu}_{3}\right\} \bar{\eta}_{\mu \nu}^{c} \frac{\left(x-x_{0}\right)^{\nu}}{\left(x-x_{0}\right)^{4}}
\end{aligned}
$$

and

$$
\left(A_{\mu}\right)^{3}{ }_{3}=-\frac{\mathrm{i}}{2} \mu^{3} \bar{\mu}_{3} C_{c} \bar{\eta}_{\mu \nu}^{c} \frac{\left(x-x_{0}\right)^{\nu}}{\left(x-x_{0}\right)^{4}} .
$$

This agrees with [Britto et al, 2003].

Additional remarks

- The mixed disks emit also a gaugino $\Lambda^{\alpha, I} \rightsquigarrow$ account for its leading profile in the super-instanton solution.
- Subleading terms in the long-distance expansion of the solution arise from emission diagrams with more moduli insertions.
- At the field theory level, they correspond to having more source terms.
- This, is exactly the field-theoretical procedure utilized in [Grassi et al, 2003, Britto et al, 2003] to determine the (deformed) super-instanton profile,

Conclusions

－The open string realization of gauge theories is a very powerful tool，also in discussing possible deformations （induced by closed string backgrounds）．
－In particular，the deformation of $\mathcal{N}=1$ gauge theory to $\mathcal{N}=1 / 2$ gauge theory is exactly described in the open string set－up by the inclusion of a particular Ramond－Ramond background．
\square moduli space by means of $D 3 / D(-1)$ systems extends to the deformed case，proving itself to be a valuable tool．

Conclusions

- The open string realization of gauge theories is a very powerful tool, also in discussing possible deformations (induced by closed string backgrounds).
- In particular, the deformation of $\mathcal{N}=1$ gauge theory to $\mathcal{N}=1 / 2$ gauge theory is exactly described in the open string set-up by the inclusion of a particular Ramond-Ramond background.

Conclusions

- The open string realization of gauge theories is a very powerful tool, also in discussing possible deformations (induced by closed string backgrounds).
- In particular, the deformation of $\mathcal{N}=1$ gauge theory to $\mathcal{N}=1 / 2$ gauge theory is exactly described in the open string set-up by the inclusion of a particular Ramond-Ramond background.
- The stringy description of gauge instantons and of their moduli space by means of $\mathrm{D} 3 / \mathrm{D}(-1)$ systems extends to the deformed case, proving itself to be a valuable tool.

Perspectives

- Deformations of $\mathcal{N}=2$ theories:
- deformations of $\mathcal{N}=2$ superspace by RR backgrounds (work in progress);
- stringy interpretation of the deformations leading to the localization á la Nekrasov of the integrals on instanton moduli space (under investigation, in collab. also with Tor Vergata).
- Derivation of the effects of constant Ramond-Ramond field strengths (gauge theory action, instantons, etc) using Berkovits' formalism instead of RNS (work in progress).
- Derivation of the instantonic sector of non-commutative gauge theory from the string realization with constant $B_{\mu \nu}$ background.
Very few references
(N. Seiberg, "Noncommutative superspace, $N=1 / 2$ supersymmetry, field theory and string theory," JHEP 0306 (2003) 010 [arXiv:hep-th/0305248].
P. A. Grassi, R. Ricci and D. Robles-Llana, "Instanton calculations for $\mathrm{N}=1 / 2$ super Yang-Mills theory," [arXiv:hep-th/0311155].
R. Britto, B. Feng, O. Lunin and S. J. Rey, " $U(N)$ instantons on $N=1 / 2$ superspace: Exact solution and geometry of moduli space," [arXiv:hep-th/0311275].

