Exotic instantons in d=8 and the heterotic/type I' duality

Marco Billò

Dip. di Fisica Teorica, Università di Torino and I.N.FN., sez. di Torino

Problemi attuali di Fisica teorica Vietri sul Mare - April 8, 2009

Foreword

Mostly based on
䍰 M. Billo, M. Frau, L. Gallot, A. Lerda and I. Pesando, "Classical solutions for exotic instantons?,", JHEP 03 (2009) 056, arXiv:0901.1666 [hep-th].

Re Same authors + L. Ferro, in preparation.
It builds over a vast literature

- I apologize for missing references...

Plan of the talk

(1) Motivations
(2) "Exotic" instantons in type I'
(3) Interpretation as 8 d instanton solutions
(4) Rôle in type $I^{\prime} / H e t e r o t i c ~ d u a l i t y ~$
(5) Conclusions and perspectives

Motivations

Non-perturbative sectors

in brane-worlds

- (Susy) gauge and matter sectors on the uncompactified part of (partially wrapped) D-branes
- chiral matter, families from multiple intersections, tuning different coupling constants...

Non-perturbative sectors

- (Susy) gauge and matter sectors on the uncompactified part of (partially wrapped) D-branes
- chiral matter, families from multiple intersections, tuning different coupling constants...
- Non-perturbative sectors from partially wrapped E(uclidean)-branes
- Pointlike in the $\mathbb{R}^{1,3}$ space-time: "instanton configurations"

Ordinary vs. exotic

- E-branes identical to D-branes in the internal directions: gauge instantons
- ADHM from strings attached to the instantonic branes

Witten, 1995; Douglas, 1995-1996; ...

- non-trivial instanton profile of the gauge field

Billo et al, 2001

- E-branes different from D-branes in internal directions do not represent gauge instantons
- They are called exotic or stringy instantons
- in certain cases can give important contributions to the effective action, .e.g. Majorana masses for neutrinos, moduli stabilizing terms, ...
Blumenhagen et al 0609191; Ibanez and Uranga, 0609213; (long list)... ; Petersson 0711.1837

World-sheet properties

- Consider the strings stretching between the gauge D-branes and the E-branes
- NS sector (lowest KK level) physicity condition

$$
L_{0}-\frac{1}{2}=N_{X}+N_{\psi}+\sum_{i=1}^{3} \frac{\theta_{i}}{2}=0
$$

- Ordinary case: internal twists $\theta_{i}=0$. There are bosonic moduli $w_{\dot{\alpha}}$ typical of ADHM construction, related to the size
- Exotic case: $\theta_{i}>0$, i.e., there are "more than 4 ND directions" . The moduli $w_{\dot{\alpha}}$ are absent. Hints at zero-size limit of some gauge field configuration.

World-sheet properties

- Consider the strings stretching between the gauge D-branes and the E-branes
- In the R sector, the ground states always: fermionic anti-chiral moduli $\lambda_{\dot{\alpha}}$
- Ordinary case: Lagrange multipl. of fermionic ADHM constraints
- Exotic case: the the abelian component of the λ 's is a true fermionic zero-mode since the abelian part of ADHM constraint vanishes (would cointain the $w_{\dot{\alpha}}$)

World-sheet properties

- Consider the strings stretching between the gauge D-branes and the E-branes
- Exotic case: need to remove the fermionic zero-mode to get non-zero correlators
- orientifold projections Argurio et al, 2007; ...,
- lift with closed string fluxes

Blumenhagen et al, 2007; Billo et al, 2008;

- other mechanisms Petersson, 2007;

World-sheet properties

- Consider the strings stretching between the gauge D-branes and the E-branes
- These w.s. properies of the exotic systems must be taken into account when trying to answer the question:
- Do exotic instantonic branes correspond to some classical configuration of gauge/matter fields?

World-sheet properties

- Consider the strings stretching between the gauge D-branes and the E-branes

- We will consider this problem in a simplified setting: D(-1)/D7 in type I' on T^{2}
- It has more than 4 ND directions (eight, in fact): exotic
- Built-in orientifod projection that eliminates the $\lambda_{\dot{\alpha}}$ ferm. 0-modes
- However, the gauge theory part lives in 8 dimensions

Instanton counting and dualities

- Beside providing (new) non-perturbative couplings in the effective actions see Alberto's talk instantons (also exotic ones?) play a key rôle in duality statements, both at the field theory and the string theory level

Instanton counting and dualities

- Beside providing (new) non-perturbative couplings in the effective actions see Alberto's talk instantons (also exotic ones?) play a key rôle in duality statements, both at the field theory and the string theory level
- In theories with higher susy, sum over all instanton \# needed to check dualities and exact results
- D-instanton partition function from matrix integrals Moore et al, 1998 checks against expression derived by self-duality of type IIB Green-Gutperle, 1997
- Seiberg-Witten sol. by instanton counting nekrasov, 2002

Instanton counting and dualities

- Beside providing (new) non-perturbative couplings in the effective actions see Alberto's talk instantons (also exotic ones?) play a key rôle in duality statements, both at the field theory and the string theory level
- In theories with higher susy, sum over all instanton \# needed to check dualities and exact results
- D-instanton partition function from matrix integrals moore et al, 1998 checks against expression derived by self-duality of type IIB Green-Gutperle, 1997
- Seiberg-Witten sol. by instanton counting nekrasov, 2002
- Effective action at $O\left(F^{4}\right)$ summing over $D(-1)$'s in type I' must match by string duality the Het SO(4) ${ }^{4}$ one: $\rightarrow 2$ nd part of this talk
"Exotic" instantons in type I'

A D(-1)/D7 system in type I'

- Type I' is type IIB on T_{2} modded out by

$$
\Omega=\omega(-1)^{F_{L}} \mathcal{I}_{2}
$$

where $\omega=$ w.s. parity, $F_{L}=$ left-moving w.s. fermion $\#, I_{2}=$ inversion on T_{2}

- Ω has four fixed-points on T_{2} where four O7-planes are placed

A D(-1)/D7 system in type I'

- Type I' is type IIB on T_{2} modded out by

$$
\Omega=\omega(-1)^{F_{L}} \mathcal{I}_{2}
$$

where $\omega=$ w.s. parity, $F_{L}=$ left-moving w.s. fermion $\#, I_{2}=$ inversion on T_{2}

- Ω has four fixed-points on T_{2} where four O7-planes are placed
- Admits D(-1), D3 and D7's transverse to T_{2}

A D(-1)/D7 system in type I'

- Type I' is type IIB on T_{2} modded out by

$$
\Omega=\omega(-1)^{F_{L}} \mathcal{I}_{2}
$$

where $\omega=$ w.s. parity, $F_{L}=$ left-moving w.s. fermion $\#, I_{2}=$ inversion on T_{2}

- Ω has four fixed-points on T_{2} where four O7-planes are placed
- Admits D(-1), D3 and D7's transverse to T_{2}
- Local RR tadpole cancellation requires 8 D7-branes at each fix
 point

A D(-1)/D7 system in type I'

- Type I' is type IIB on T_{2} modded out by

$$
\Omega=\omega(-1)^{F_{L}} \mathcal{I}_{2}
$$

where $\omega=$ w.s. parity, $F_{L}=$ left-moving w.s. fermion $\#, I_{2}=$ inversion on T_{2}

- Ω has four fixed-points on T_{2} where four O7-planes are placed
- Admits D(-1), D3 and D7's transverse to T_{2}
- Local RR tadpole cancellation requires 8 D7-branes at each fix
 point

The gauge theory on the D7's

- From the D7/D7 strings we get $\mathcal{N}=1$ vector multiplet in $d=8$ in the adjoint of SO(8):

$$
\left\{A_{\mu}, \wedge^{\alpha}, \phi_{m}\right\}, \quad \mu=1, \ldots 8, \quad m=8,9
$$

- Can be assembled into a "chiral" superfield

$$
\Phi(x, \theta)=\phi(x)+\sqrt{2} \theta \wedge(x)+\frac{1}{2} \theta \gamma^{\mu \nu} \theta F_{\mu \nu}(x)+\ldots
$$

where $\phi=\left(\phi_{9}+i \phi_{10}\right) / \sqrt{2}$.

- Formally very similar to $\mathcal{N}=2$ in $d=4$

Effective action on the D7's

Effective action in $F_{\mu \nu}$ an its derivatives: NABI

$$
\begin{aligned}
S_{D 7}= & \frac{1}{8 \pi g_{s}} \int d^{8} \times \operatorname{Tr}\left[\frac{F_{\mu \nu} F^{\mu \nu}}{\left(2 \pi \sqrt{\alpha^{\prime}}\right)^{4}}-\frac{1}{3(2 \pi)^{2}} t_{8} F^{4}\right] \\
& +\frac{\alpha^{\prime}}{g_{s}} \int d^{8} \times \mathcal{L}_{(5)}(F, D F)+\cdots \\
= & S_{Y M}+S_{(4)}+S_{(5)}+\cdots,
\end{aligned}
$$

- The Yang-Mills action $S_{Y m}$ has a dimensionful coupling $g_{\mathrm{YM}}^{2} \equiv 4 \pi g_{s}\left(2 \pi \sqrt{\alpha^{\prime}}\right)^{4}$

Effective action on the D7's

Effective action in $F_{\mu \nu}$ an its derivatives: NABI

$$
\begin{aligned}
S_{D 7}= & \frac{1}{8 \pi g_{s}} \int d^{8} \times \operatorname{Tr}\left[\frac{F_{\mu \nu} F^{\mu \nu}}{\left(2 \pi \sqrt{\alpha^{\prime}}\right)^{4}}-\frac{1}{3(2 \pi)^{2}} t_{8} F^{4}\right] \\
& +\frac{\alpha^{\prime}}{g_{s}} \int d^{8} \times \mathcal{L}_{(5)}(F, D F)+\cdots \\
= & S_{\mathrm{YM}}+S_{(4)}+S_{(5)}+\cdots,
\end{aligned}
$$

- The quartic action Detail has a dimensionless coupling $\lambda^{4} \equiv 4 \pi^{3} g_{s}$:

$$
S_{(4)}=-\frac{1}{4!\lambda^{4}} \int d^{8} x \operatorname{Tr}\left(t_{8} F^{4}\right)
$$

Effective action on the D7's

Effective action in $F_{\mu \nu}$ an its derivatives: NABI

$$
\begin{aligned}
S_{D 7}= & \frac{1}{8 \pi g_{s}} \int d^{8} \times \operatorname{Tr}\left[\frac{F_{\mu \nu} F^{\mu \nu}}{\left(2 \pi \sqrt{\alpha^{\prime}}\right)^{4}}-\frac{1}{3(2 \pi)^{2}} t_{8} F^{4}\right] \\
& +\frac{\alpha^{\prime}}{g_{s}} \int d^{8} \times \mathcal{L}_{(5)}(F, D F)+\cdots \\
= & S_{Y M}+S_{(4)}+S_{(5)}+\cdots,
\end{aligned}
$$

- Adding the WZ term, we can write

$$
S_{(4)}=-\frac{1}{4!4 \pi^{3} g_{s}} \int d^{8} x \operatorname{Tr}\left(t_{8} F^{4}\right)-2 \pi i C_{0} C_{(4)}
$$

where $c_{(4)}$ is the fourth Chern number

Effective action on the D7's

Effective action in $F_{\mu \nu}$ an its derivatives: NABI

$$
\begin{aligned}
S_{D 7}= & \frac{1}{8 \pi g_{s}} \int d^{8} x \operatorname{Tr}\left[\frac{F_{\mu \nu} F^{\mu \nu}}{\left(2 \pi \sqrt{\alpha^{\prime}}\right)^{4}}-\frac{1}{3(2 \pi)^{2}} t_{8} F^{4}\right] \\
& +\frac{\alpha^{\prime}}{g_{s}} \int d^{8} \times \mathcal{L}_{(5)}(F, D F)+\cdots \\
= & S_{\mathrm{YM}}+S_{(4)}+S_{(5)}+\cdots,
\end{aligned}
$$

- Contributions of higher order in (α^{\prime}): rôle to be discussed later

Adding D-instantons

- Add k D-instantons.
- D7/D(-1) form a 1/2 BPS system with 8 ND directions
- $\mathrm{D}(-1)$ classical action

$$
\mathcal{S}_{C l}=k\left(\frac{2 \pi}{g_{s}}-2 \pi i C_{0}\right) \equiv-2 \pi i k \tau
$$

- Coincides with the quartic action Recall on the D7 for gauge fields F with $c_{(4)}=k$ and

$$
\int d^{8} x \operatorname{Tr}\left(t_{8} F^{4}\right)=-\frac{1}{2} \int d^{8} x \operatorname{Tr}\left(\epsilon_{8} F^{4}\right)=-\frac{4!}{2}(2 \pi)^{4} c_{(4)}
$$

Adding D-instantons

- Add k D-instantons.
- D7/D(-1) form a 1/2 BPS system with 8 ND directions
- $\mathrm{D}(-1)$ classical action

$$
\mathcal{S}_{C l}=k\left(\frac{2 \pi}{g_{s}}-2 \pi i C_{0}\right) \equiv-2 \pi i k \tau
$$

- Analogous to relation with self-dual YM config.s in D3/D(-1)
- Suggests relation to some 8d instanton of the quartic action

The moduli spectrum

- Besides the classical action, we must consider the spectrum and interactions of strings ending on a D(-1).

The moduli spectrum

Spectrum:

Sector		Name	Meaning	Chan-Paton	Dimension
$-1 /-1$	NS	a_{μ}	centers	symm SO (k)	(length)
		$\chi, \bar{\chi}$		$\operatorname{adj} \mathrm{SO}(k)$	(length) ${ }^{-1}$
		D_{m}	Lagr. mult.	\vdots	(length) $^{-2}$
	R	M^{α}	partners	symm SO (k)	(length) ${ }^{\frac{1}{2}}$
		$\lambda_{\dot{\alpha}}$	Lagr. mult.	$\operatorname{adj} \mathrm{SO}(k)$	(length) ${ }^{-\frac{3}{2}}$
$-1 / 7$	R	μ		$\mathbf{8 \times k}$	(length)

The moduli spectrum

Spectrum:

Sector		Name	Meaning	Chan-Paton	Dimension
-1/-1	NS	a_{μ}	centers	symm SO(k)	(length)
		$\chi, \bar{\chi}$		adj SO(k)	(length) $^{-1}$
		D_{m}	Lagr. mult.		(length) $^{-2}$
	R	M^{α}	partners	symm SO(k)	(length) ${ }^{\frac{1}{2}}$
		$\lambda_{\dot{\alpha}}$	Lagr. mult.	adj SO(k)	(length) ${ }^{-\frac{3}{2}}$
-1/7	R	μ		$\mathbf{8 \times k}$	(length)

- The SO(k) rep. is determined by the orientifold projection Ω

The moduli spectrum

Spectrum:

Sector		Name	Meaning	Chan-Paton	Dimension
$-1 /-1$	NS	a_{μ}	centers	symm SO (k)	(length)
		$\chi, \bar{\chi}$		$\operatorname{adj} \mathrm{SO}(k)$	(length) $^{-1}$
		D_{m}	Lagr. mult.	\vdots	(length) $^{-2}$
	R	M^{α}	partners	symm SO (k)	(length)
		$\lambda_{\dot{\alpha}}^{2}$	Lagr. mult.	$\operatorname{adj} \mathrm{SO}(k)$	(length)
$-1 / 7$	R	μ		$\mathbf{8 \times k}$	(length)

- Abelian part of $a_{\mu}, M_{\alpha} \sim$ Goldstone modes of the (super)translations on the D7 broken by $\mathrm{D}(-1)$'s
- Identified with coordinates x_{μ}, θ_{α}

The moduli spectrum

Spectrum:

Sector		Name	Meaning	Chan-Paton	Dimension
-1/-1	NS	${ }^{\mu}$	centers	symm SO(k)	(length)
		$\chi, \bar{\chi}$		adj SO(k)	(length) $^{-1}$
		D_{m}	Lagr. mult.		(length) $^{-2}$
	R	M^{α}	partners	symm SO(k)	(length) ${ }^{\frac{1}{2}}$
		$\lambda_{\dot{\alpha}}$	Lagr. mult.	adj SO(k)	(length) ${ }^{-\frac{3}{2}}$
-1/7	R	μ		$\mathbf{8 \times k}$	(length)

- Abelian part of $\lambda_{\dot{\alpha}}$ would be a dangerous 0-mode
- Removed by the orientifold projection

The moduli spectrum

Spectrum:

Sector		Name	Meaning	Chan-Paton	Dimension
-1/-1	NS	${ }^{\mu}$	centers	symm SO(k)	(length)
		$\chi, \bar{\chi}$		adj SO(k)	(length) $^{-1}$
		D_{m}	Lagr. mult.		(length) $^{-2}$
	R	M^{α}	partners	symm SO(k)	(length) ${ }^{\frac{1}{2}}$
		$\lambda_{\dot{\alpha}}$	Lagr. mult.	adj SO(k)	(length) ${ }^{-\frac{3}{2}}$
-1/7	R	μ		$\mathbf{8 \times k}$	(length)

- One needs auxiliary fields $D_{m}, m=1, \ldots 7$ to disentangle the quartic interaction $\left[a_{\mu}, a_{\nu}\right]\left[a^{\mu}, a^{\nu}\right]$.
- "Octonionic" analogue of the fact that for D(-1)/D3 systems one needs $D_{c}, c=1,2,3$

The moduli spectrum

Spectrum:

Sector		Name	Meaning	Chan-Paton	Dimension
-1/-1	NS	${ }^{\mu}$	centers	symm SO(k)	(length)
		$\chi, \bar{\chi}$		adj SO(k)	(length) $^{-1}$
		D_{m}	Lagr. mult.		(length) $^{-2}$
	R	M^{α}	partners	symm SO(k)	(length) ${ }^{\frac{1}{2}}$
		$\lambda_{\dot{\alpha}}$	Lagr. mult.	adj SO(k)	(length) ${ }^{-\frac{3}{2}}$
-1/7	R	μ		$8 \times \mathrm{k}$	(length)

- For "mixed" strings, no bosonic moduli from the NS sector
- This is a characteristic of "exotic" instantons

The moduli action

Beside the classical action

Recall we have

$$
\mathcal{S}=\mathcal{S}_{\text {quartic }}+\mathcal{S}_{\text {cubic }}+\mathcal{S}_{\text {mixed }}
$$

The moduli action

Beside the classical action
recall we have

$$
\mathcal{S}=\mathcal{S}_{\text {quartic }}+\mathcal{S}_{\text {cubic }}+\mathcal{S}_{\text {mixed }}
$$

- The quartic part can be (partly) disentangled with auxiliary fields D_{m} :

$$
\begin{aligned}
\mathcal{S}_{\text {quartic }} & =\frac{1}{g_{0}^{2}} \operatorname{tr}\left\{\frac{1}{2} D_{m} D^{m}+\frac{1}{2} D_{m}\left(\tau^{m}\right)_{\mu \nu}\left[a^{\mu}, a^{\nu}\right]\right. \\
& \left.-\left[a_{\mu}, \bar{\chi}\right]\left[a^{\mu}, \chi\right]+\frac{1}{2}[\bar{\chi}, \chi]^{2}\right\}
\end{aligned}
$$

The moduli action

Beside the classical action

- Recall we have

$$
\mathcal{S}=\mathcal{S}_{\text {quartic }}+\mathcal{S}_{\text {cubic }}+\mathcal{S}_{\text {mixed }}
$$

- The cubic part reads:

$$
\begin{aligned}
\mathcal{S}_{\text {cubic }}= & \frac{1}{g_{0}^{2}} \operatorname{tr}\left\{i \lambda_{\dot{\alpha}}\left(\gamma^{\mu}\right)^{\dot{\alpha} \beta}\left[a_{\mu}, M_{\beta}\right]-i \lambda_{\dot{\alpha}}\left[\chi, \lambda^{\dot{\alpha}}\right]\right. \\
& \left.-i M_{\alpha}\left[\bar{\chi}, M^{\alpha}\right]\right\}
\end{aligned}
$$

The moduli action

Beside the classical action

, Recall we have

$$
\mathcal{S}=\mathcal{S}_{\text {quartic }}+\mathcal{S}_{\text {cubic }}+\mathcal{S}_{\text {mixed }}
$$

- From diagrams with mixed b.c.'s

$$
\mathcal{S}_{\text {mixed }}=\frac{1}{g_{0}^{2}} \operatorname{tr}\left\{-i \mu^{\top} \chi \mu\right\} ;
$$

The moduli action

Beside the classical action recall we have

$$
\mathcal{S}=\mathcal{S}_{\text {quartic }}+\mathcal{S}_{\text {cubic }}+\mathcal{S}_{\text {mixed }}
$$

- In the case $k=1$ all of these contributes vanish (no adjoint moduli!). We are left with the classical part only

$$
\mathcal{S}_{C l}=-2 \pi i \tau
$$

- Coincides with the quartic action on the D7 for gauge fields F s.t.
- $C_{(4)}=1$
- $\operatorname{Tr}\left(t_{8} F^{4}\right)=-1 / 2 \operatorname{Tr}\left(\epsilon_{8} F^{4}\right)$
- Suggests interpretation as "instantons" but ...

No gauge field emission

- Ordinary" instantonic brane systems (such as D(-1)/D3): classical instanton profile due to the emission of gauge field from mixed disks billo et al, 2001

$$
A_{\mu}^{i}=2 \rho^{2} \bar{\eta}_{\mu \nu}^{i} \frac{x^{\nu}}{|x|^{4}}+\ldots
$$

$\left(S U(2)\right.$, sing. gauge, large- $\left.|x|, 2 \rho^{2}=\operatorname{tr} \bar{w}_{\dot{\alpha}} w^{\dot{\alpha}}\right)$

No gauge field emission

- Ordinary" instantonic brane systems (such as D(-1)/D3): classical instanton profile due to the emission of gauge field from mixed disks billo et al, 2001

$$
A_{\mu}^{i}=2 \rho^{2} \bar{\eta}_{\mu \nu}^{i} \frac{x^{\nu}}{|x|^{4}}+\ldots
$$

(SU(2), sing. gauge, large- $\left.|x|, 2 \rho^{2}=\operatorname{tr} \bar{w}_{\dot{\alpha}} w^{\dot{\alpha}}\right)$

- In the "exotic" $\mathrm{D}(-1) / \mathrm{D} 7$ system there is no emission diagram for A_{μ} because there are no bosonic mixed moduli w

No gauge field emission

- Ordinary" instantonic brane systems (such as D(-1)/D3): classical instanton profile due to the emission of gauge field from mixed disks billo et al, 2001

$$
A_{\mu}^{i}=2 \rho^{2} \bar{\eta}_{\mu \nu}^{i} \frac{x^{\nu}}{|x|^{4}}+\ldots
$$

$\left(S U(2)\right.$, sing. gauge, large $\left.-|x|, 2 \rho^{2}=\operatorname{tr} \bar{w}_{\dot{\alpha}} w^{\dot{\alpha}}\right)$

- In the "exotic" $\mathrm{D}(-1) / \mathrm{D} 7$ system there is no emission diagram for A_{μ} because there are no bosonic mixed moduli w
- The classical profile vanishes outside the location of the $\mathrm{D}(-1)$

Interpretation as 8d instanton solutions

Expected features

- A D(-1) inside the D7's should correspond to the zero-size limit of some "instantonic" configuration of the $\mathrm{SO}(8)$ gauge field such that
- has 4-th Chern number $c_{(4)}=1$
- the quartic action reduces to the $\mathrm{D}(-1)$ action
- preserves SO(8) "Lorentz" invariance
- corresponds to a 1/2 BPS config. in susy case

Expected features

- A D(-1) inside the D7's should correspond to the zero-size limit of some "instantonic" configuration of the $\mathrm{SO}(8)$ gauge field such that
- has 4-th Chern number $c_{(4)}=1$
- the quartic action reduces to the $\mathrm{D}(-1)$ action
- preserves SO(8) "Lorentz" invariance
- corresponds to a 1/2 BPS config. in susy case
- Many generalizations of 4d instantons to 8d In particular "linear" instantons [Corrigan, 1982; Fubini-Nicolai, 1985;...]

$$
F_{\mu \nu}+\frac{1}{2} T_{[\mu \nu \rho \sigma]} F^{\rho \sigma}=0
$$

- Bianchis imply YM e.o.m $D^{\mu} F_{\mu \nu}=0$
- do not fully preserve the $\mathrm{SO}(8)$ Lorentz group, and are less than 1/2 BPS

The SO(8) instanton

- All our requirements met by the $\mathrm{SO}(8)$ instanton
[Grossmann e al, 1985]

$$
\left[A_{\mu}(x)\right]^{\alpha \beta}=\frac{\left(\gamma_{\mu \nu}\right)^{\alpha \beta} x^{\nu}}{r^{2}+\rho^{2}}
$$

with $\rho=$ instanton size and $r^{2}=x_{\mu} x^{\mu}$, while $\alpha \beta \in$ adjoint of the SO(8) gauge group.

- is "self-dual" in the sense that $F \wedge F=(F \wedge F)^{*}$
- satisfies $t_{8} F^{4}=-1 / 2 \epsilon_{8} F^{4}$ from Clifford Algebra
- has $C_{(4)}=1$ and $S_{(4)}=-2 \pi i \tau$

The SO(8) instanton

- All our requirements met by the $\mathrm{SO}(8)$ instanton
[Grossmann e al, 1985]

$$
\left[A_{\mu}(x)\right]^{\alpha \beta}=\frac{\left(\gamma_{\mu \nu}\right)^{\alpha \beta} x^{\nu}}{r^{2}+\rho^{2}}
$$

with $\rho=$ instanton size and $r^{2}=x_{\mu} x^{\mu}$, while $\alpha \beta \in$ adjoint of the SO(8) gauge group.

- is "self-dual" in the sense that $F \wedge F=(F \wedge F)^{*}$
- satisfies $t_{8} F^{4}=-1 / 2 \epsilon_{8} F^{4}$ from Clifford Algebra
- has $C_{(4)}=1$ and $S_{(4)}=-2 \pi i \tau$
- However, it is not a solution of Y.M. e.o.m. in $d=8$:

$$
D^{\mu} F_{\mu \nu}(x)=\frac{4(d-4) \rho^{2}}{\left(r^{2}+\rho^{2}\right)^{3}} \gamma_{\mu \nu} x^{\nu}
$$

Consistency conditions

- Eff. action on the D7 is the NABI action
- To keep the quartic action and the instanton effects the field-theory limit must be

$$
\alpha^{\prime} \rightarrow 0, \quad g_{s} \text { fixed }
$$

Consistency conditions

- Eff. action on the D7 is the NABI action
- To keep the quartic action and the instanton effects the field-theory limit must be

$$
\alpha^{\prime} \rightarrow 0, \quad g_{s} \text { fixed }
$$

- This limit is dangerous on the YM action $S_{Y M}$ since $g_{Y M}^{2} \propto g_{s} \alpha^{\prime 2}$. On the SO(8) instanton, however, we have (R regulates the volume):

$$
S_{Y M} \rightarrow \frac{\rho^{4}}{\alpha^{\prime 2} g_{s}} \log (\rho / R)
$$

which vanishes in the zero-size limit $\rho \rightarrow 0$ if $\rho^{2} / \alpha^{\prime 2} \rightarrow 0$ (done before removing R)

Consistency conditions

- Eff. action on the D7 is the NABI action
- To keep the quartic action and the instanton effects the field-theory limit must be

$$
\alpha^{\prime} \rightarrow 0, \quad g_{s} \text { fixed }
$$

- Consider the higher order α^{\prime} corrections to the NABI action. On the SO(8) instanton, by dimensional reasons, must be

$$
\rho^{d-8} \sum_{n=1}^{\infty} a_{n}\left(\frac{\alpha^{\prime}}{\rho^{2}}\right)^{n}
$$

- The coefficients a_{n} should vanish for consistency!

$O\left(F^{5}\right)$ terms in the NABI

- The first coefficient a_{1} arises from the integral of $\mathcal{L}^{(5)}(F, D F)$, i.e.the term of order $\alpha^{\prime 3}$ w.r.t to the YM action.
- We would like to check that it vanishes. Crucial point: which is the form of $\mathcal{L}^{(5)}(F, D F)$?

$O\left(F^{5}\right)$ terms in the NABI

- The first coefficient a_{1} arises from the integral of $\mathcal{L}^{(5)}(F, D F)$, i.e.the term of order α^{3} w.r.t to the YM action.
- We would like to check that it vanishes. Crucial point: which is the form of $\mathcal{L}^{(5)}(F, D F)$?
- Various proposals in the literature

Refolli et al, Koerber-Sevrin, Grasso, Barreiro-Medina, ...
,

- obtained by different methods
- differing by terms which vanish "on-shell", i.e. upon use of the YM e.o.m.

$O\left(F^{5}\right)$ terms in the NABI

- The first coefficient a_{1} arises from the integral of $\mathcal{L}^{(5)}(F, D F)$, i.e.the term of order α^{3} w.r.t to the YM action.
- We would like to check that it vanishes. Crucial point: which is the form of $\mathcal{L}^{(5)}(F, D F)$?
- Various proposals in the literature

Refolli et al, Koerber-Sevrin, Grasso, Barreiro-Medina, ...
,

- obtained by different methods
- differing by terms which vanish "on-shell", i.e. upon use of the YM e.o.m.
- One proposal is singled out by admitting a susy extension collinucci et al, 2002

Check at $O\left(F^{5}\right)$ in the NABI

- The bosonic part of the supersimmetrizable $O\left(\alpha^{13}\right)$ lagrangian is

$$
\begin{aligned}
\mathcal{L}^{(5)} & =\frac{\zeta(3)}{2} \operatorname{Tr}\left\{4\left[F_{\mu_{1} \mu_{2}}, F_{\mu_{3} \mu_{4}}\right]\left[\left[F_{\mu_{1} \mu_{3}}, F_{\mu_{2} \mu_{5}}\right], F_{\mu_{4} \mu_{5}}\right]\right. \\
& +2\left[F_{\mu_{1} \mu_{2}}, F_{\mu_{3} \mu_{4}}\right]\left[\left[F_{\mu_{1} \mu_{2}}, F_{\mu_{3} \mu_{5}}\right], F_{\mu_{4} \mu_{5}}\right] \\
& +2\left[F_{\mu_{1} \mu_{2}}, D_{\mu_{5}} F_{\mu_{1} \mu_{4}}\right]\left[D_{\mu_{5}} F_{\mu_{2} \mu_{3}}, F_{\mu_{3} \mu_{4}}\right] \\
& -2\left[F_{\mu_{1} \mu_{2}}, D_{\mu_{4}} F_{\mu_{3} \mu_{5}}\right]\left[D_{\mu_{4}} F_{\mu_{2} \mu_{5}}, F_{\mu_{1} \mu_{3}}\right] \\
& \left.+\left[F_{\mu_{1} \mu_{2}}, D_{\mu_{5}} F_{\mu_{3} \mu_{4}}\right]\left[D_{\mu_{5}} F_{\mu_{1} \mu_{2}}, F_{\mu_{3} \mu_{4}}\right]\right\}
\end{aligned}
$$

Check at $O\left(F^{5}\right)$ in the NABI

- Plugging the instanton profile into $\frac{\alpha^{\prime}}{g_{s}} \int d^{8} x \mathcal{L}^{(5)}$ we get [Using the CADABRA program by Kasper Peeters]

$$
\begin{aligned}
& \frac{\alpha^{\prime} \zeta(3)}{g_{s}} 2^{d / 2+9} \frac{\pi^{d / 2} \Gamma(9-d / 2)}{9!\rho^{10-d}} \\
& \times(d-1)(d-2)(d-4)\left(-d\left(9-\frac{d}{2}\right)+(d+2) \frac{d}{2}\right)
\end{aligned}
$$

namely a result proportional to

$$
d(d-1)(d-2)(d-4)(d-8)
$$

- The quintic action vanishes on the SO(8) instanton! The check is successful

$D(-1)$'s and type I'/Heterotic duality

Type I'/Heterotic duality

- In the web of string dualities, the S-duality between Het. SO(32) and Type I plays a fundamental rôle
- Upon compactification (e.g. on T_{2}), other dualities follow from it

- The Type I' theory is S-dual to Het SO(8) ${ }^{4}$ (obtained with Wilson lines on T_{2})
- The mapping of parameters involve the relation

$$
\tau \leftrightarrow T
$$

- τ : (complexified) string coupling in type I'
- T : the Kähler param. of the torus in the Het.

The heterotic F^{4} effective action

- Het SO(8) ${ }^{4}$ is a theory of closed strings. Focus on the effective action for one of the $\mathrm{SO}(8)$ gauge factors
- The BPS-saturated $t_{8} F^{4}$ terms arise just at 1-loop. Threshold corrections organize as a series in $q \equiv \mathrm{e}^{2 \pi i T}$

The heterotic F^{4} effective action

- Het $\mathrm{SO}(8)^{4}$ is a theory of closed strings. Focus on the effective action for one of the SO(8) gauge factors
- The BPS-saturated $t_{8} F^{4}$ terms arise just at 1-loop. Threshold corrections organize as a series in $q \equiv \mathrm{e}^{2 \pi i T}$

- At even powers in q one gets contributions to the following structures: Lerche-Stieberger, Gutperle....

$$
\begin{aligned}
& t_{8} \operatorname{Tr} F^{4}\left[\frac{1}{2} \sum_{k}\left(\sum_{\| k} \frac{1}{l}\right) q^{2 k}-\frac{1}{2}\left(\sum_{\| k} \frac{1}{l}\right) q^{4 k}\right] \\
& \left.-t_{8}(\operatorname{Tr} F)\right)^{2}\left[\frac{1}{4} \sum_{k}\left(\sum_{\| \mid k} \frac{1}{l}\right) q^{2 k}-\frac{1}{8}\left(\sum_{\| k} \frac{1}{l}\right) q^{4 k}\right]
\end{aligned}
$$

The heterotic F^{4} effective action

- Het $\mathrm{SO}(8)^{4}$ is a theory of closed strings. Focus on the effective action for one of the $\mathrm{SO}(8)$ gauge factors
- The BPS-saturated $t_{8} F^{4}$ terms arise just at 1-loop. Threshold corrections organize as a series in $q \equiv \mathrm{e}^{2 \pi i T}$

- For $\mathrm{SO}(8)$ there is another quartic gauge invariant, $P f(F)=\epsilon_{a_{1} \ldots a_{8}} F^{a_{1} a_{2}} \ldots F^{a_{7} a_{8}}$ (Lorentz indices omitted). Gets contributions at odd powers in q

$$
8 t_{8} P f(F) \sum_{\text {kodd } d}\left(\sum_{\| k} \frac{1}{l}\right) q^{k}
$$

The type I' F^{4} effective action

- Under the Het/type I' duality,

$$
q=\mathrm{e}^{2 \pi i T} \leftrightarrow q=\mathrm{e}^{2 \pi i \tau}
$$

- The series of threshold corrections maps to a series of non-perturbative corrections
- These corrections can be provided by D-instantons: indeed q^{k} is the weight $\mathrm{e}^{-\mathcal{S}_{c l}}$ for $k \mathrm{D}(-1)$
- The explicit check that the coefficients of the expansion agree would represent a direct, highly non-trivial, test of this string duality

The type $I^{\prime} F^{4}$ effective action

- Under the Het/type I' duality,

$$
q=\mathrm{e}^{2 \pi i T} \leftrightarrow q=\mathrm{e}^{2 \pi i \tau}
$$

- The series of threshold corrections maps to a series of non-perturbative corrections
- These corrections can be provided by D-instantons: indeed q^{k} is the weight $\mathrm{e}^{-\mathcal{S}_{c l}}$ for $k \mathrm{D}(-1)$
- The explicit check that the coefficients of the expansion agree would represent a direct, highly non-trivial, test of this string duality
- Much discussed in this setting Gutperle, 1999 or in the T-dual one (D1/D9 systems in Type I)

The type I' F^{4} effective action

- Under the Het/type I' duality,

$$
q=\mathrm{e}^{2 \pi i T} \leftrightarrow q=\mathrm{e}^{2 \pi i \tau}
$$

- The series of threshold corrections maps to a series of non-perturbative corrections
- These corrections can be provided by D-instantons: indeed q^{k} is the weight $\mathrm{e}^{-\mathcal{S}_{c l}}$ for $k \mathrm{D}(-1)$
- The explicit check that the coefficients of the expansion agree would represent a direct, highly non-trivial, test of this string duality
- The explicit derivation of the coefficients in the type I' side has never been performed (to our knowledge)

Interaction with the multiplet Φ

How can $D(-1)$ contribute to the F^{4} effective action?

- There's no emission diagram leading to a classical profile, but there are mixed disks (related by SUSY) involving D7/D7 fields

- Net effect: moduli action ©Recall dependence on the superfield $\Phi(x, \theta)$ Recall

$$
\mathcal{S}_{(k)}[\Phi]=-2 \pi i \tau k+\mathcal{S}_{\text {quartic }}+\mathcal{S}_{\text {cubic }}+\mathcal{S}_{\text {mixed }}+\operatorname{Tr} \mu^{t} \Phi \mu
$$

The moduli integration

- The effective action for the gauge fields is obtained integrating, for each k, over the D-instanton moduli $\mathcal{M}_{(k)}=\left(x, \theta, \widehat{\mathcal{M}}_{(k)}\right):$

$$
\begin{aligned}
Z[\phi, \wedge, F] & =\int d^{8} x d^{8} \theta \sum_{k} \int d \widehat{\mathcal{M}}_{(k)} \mathrm{e}^{-\mathcal{S}_{(k)}[\phi(x, \theta)]} \\
& =\int d^{8} x d^{8} \theta \text { quartic inv. }(\phi(x, \theta))
\end{aligned}
$$

Second step from dimensionality: $\left[d \widehat{\mathcal{M}_{(k)}}\right]=I^{-4}$

- The integration over θ yields then a $t_{8} F^{4}$ term:

$$
\int d^{8} \theta\left(\theta \gamma^{\mu_{1} v_{1}} \theta\right) F_{\mu_{1} v_{1}} \ldots\left(\theta \gamma^{\mu_{4} v_{4}} \theta\right) F_{\mu_{4} v_{4}}=t_{8} F^{4}
$$

Integration at $k=1$

- At $k=1$ spectrum of moduli is extremely reduced

$$
Z_{1}=\mathrm{e}^{-2 \pi i \tau} \int d^{8} x d^{8} \theta d^{8} \mu \mathrm{e}^{-T r \mu^{t} \Phi \mu}=\mathrm{e}^{-2 \pi i \tau} \int d^{8} x d^{8} \theta \operatorname{Pf}(\Phi)
$$

- To go to higher k, exploit the susy of the moduli action leading to
- an (equivariant) cohomological BRS structure
- localization of the integrals (upon suitable deformations from closed string backgrounds)
- Similar kind of techniques to those used for
- $\mathrm{D}(-1)$ partition function in type IIB moore et al
- resummation of instantons in $\mathcal{N}=2$ SYM leading to the SW solution nekrasov, 2002 re-obtained by D3/D(-1) on orbifold Billo et al, 2006

BRS reformulation

- Single out one of the supercharges $Q_{\dot{\alpha}}$, say $Q=Q_{8}$.
- After relabeling some of the moduli:

$$
M_{\alpha} \rightarrow M_{\mu} \equiv\left(M_{m},-M_{8}\right), \quad \lambda_{\dot{\alpha}} \rightarrow\left(\lambda_{m}, \eta\right) \equiv\left(\lambda_{m}, \lambda_{8}\right)
$$

one has

$$
Q a^{\mu}=M^{\mu}, Q \lambda_{m}=-D_{m}, Q \bar{\chi}=-i \sqrt{2} \eta, Q \chi=0, Q \mu=W
$$

BRS reformulation

- Single out one of the supercharges $Q_{\dot{\alpha}}$, say $Q=Q_{8}$.
- After relabeling some of the moduli:

$$
M_{\alpha} \rightarrow M_{\mu} \equiv\left(M_{m},-M_{8}\right), \quad \lambda_{\dot{\alpha}} \rightarrow\left(\lambda_{m}, \eta\right) \equiv\left(\lambda_{m}, \lambda_{8}\right)
$$

one has
$Q a^{\mu}=M^{\mu}, Q \lambda_{m}=-D_{m}, Q \bar{\chi}=-i \sqrt{2} \eta, Q \chi=0, Q \mu=W$

- On any modulus, $Q^{2} \bullet=T(\chi) \bullet+R(\phi) \bullet$
- $T(\chi)=\mathrm{SO}(k)$ rotation in the appropriate rep
- $R(\phi)$ a gauge $\mathrm{SO}(8)$ rot.

BRS reformulation

- Single out one of the supercharges $Q_{\dot{\alpha}}$, say $Q=Q_{8}$.
- After relabeling some of the moduli:

$$
M_{\alpha} \rightarrow M_{\mu} \equiv\left(M_{m},-M_{8}\right), \quad \lambda_{\dot{\alpha}} \rightarrow\left(\lambda_{m}, \eta\right) \equiv\left(\lambda_{m}, \lambda_{8}\right)
$$

one has

$$
Q a^{\mu}=M^{\mu}, Q \lambda_{m}=-D_{m}, Q \bar{X}=-i \sqrt{2} \eta, Q \chi=0, Q \mu=W
$$

- On any modulus, $Q^{2} \bullet=T(\chi) \bullet+R(\phi) \bullet$
- $T(\chi)=\mathrm{SO}(k)$ rotation in the appropriate rep
- $R(\phi)$ a gauge SO(8) rot.
- The complete moduli action is Q -exact

$$
\mathcal{S}=Q \equiv
$$

Deformations from RR background

- To perform the computation, it is convenient to simply cosider the part. function with $\phi(x, \theta) \rightarrow \phi=\langle\phi\rangle$.
- Integration over the moduli x, θ would then diverge
- Introduce suitable deformations that
- regulate the divergence
- help to fully localize the integral
- Arise from RR field-strengths 3-form with one index on T_{2}

$$
\mathcal{F}_{\mu \nu} \equiv F_{\mu \nu z}, \quad \overline{\mathcal{F}}_{\mu \nu} \equiv F_{\mu \nu z}
$$

- Disk diagrams RR insertions modify the moduli action

BRS deformation

- Let us parametrize the RR backround as follows:

$$
\mathcal{F}_{\mu \nu}=\frac{1}{2} f_{m n}\left(\tau^{m n}\right) \mu \nu+h_{m}\left(\tau^{m}\right) \mu \nu \quad, \quad \overline{\mathcal{F}}_{\mu \nu}=\frac{1}{2} \bar{f}_{m n}\left(\tau^{m n}\right) \mu \nu,
$$

- The moduli action is modified to

$$
\mathcal{S}^{\prime}=Q \Xi^{\prime}
$$

- $\bar{f}_{m n}$ only appear in the "gauge fermion" \equiv^{\prime} : the final result does not depende on them
- $f_{m n}, h_{m}$ parametrize SO(7)С SO(8) (Lorentz) with spinorial embedding and modify the action of Q

$$
Q^{\prime 2} \bullet=T(\chi) \bullet+R(\phi) \bullet+G(\mathcal{F}) \bullet
$$

where G is the appropriate $\mathrm{SO}(7)$ action

Symmetries of the moduli

- The Action of the BRS charge Q is determined by the symmetry properties of the moduli

	$\mathrm{SO}(k)$	$\mathrm{SO}(7)$	$\mathrm{SO}(8)$
a^{μ}	Symm	$\mathbf{8}_{s}$	$\mathbf{1}$
M^{μ}	symm	$\mathbf{8}_{s}$	$\mathbf{1}$
D_{m}	adj	$\mathbf{7}$	$\mathbf{1}$
λ_{m}	adj	$\mathbf{7}$	$\mathbf{1}$
$\bar{\chi}$	adj	$\mathbf{1}$	$\mathbf{1}$
η	adj	$\mathbf{1}$	$\mathbf{1}$
χ	adj	$\mathbf{1}$	$\mathbf{1}$
μ	\mathbf{k}	$\mathbf{1}$	$\mathbf{8}_{v}$

Scaling to localization

- The BRS structure allows to suitably rescale the bosonic and fermionic moduli in such a way that
- the (super)Jacobian of the rescaling is one (the measure is unaffected)
- one can take a limit in which the exponent reduces to a quadratic expression
- The integration over some moduli is trivially done, and one is left with (at inst. \# k)

$$
\begin{aligned}
Z_{k} & =\mathcal{N}_{k} \mathrm{e}^{2 \pi i \tau k} \int\left\{d \chi d a^{\mu} d M^{\mu} d D_{\hat{m}} d \lambda_{\hat{m}} d \mu\right\} \\
& \times \mathrm{e}^{-\operatorname{tr}\left(\frac{g}{2} D_{\hat{m}} D^{\hat{m}}-\frac{g}{2} \lambda_{\hat{m}} Q^{\prime 2} \lambda^{\hat{m}}+\frac{t}{4} a_{\mu} \overline{\mathcal{F}}^{\mu \nu} Q^{\prime 2} a_{\nu}^{\prime}+\frac{t}{4} M_{\mu} \overline{\mathcal{F}}^{\mu \nu} M_{\nu}-\operatorname{tr} \mu^{t} Q^{\prime 2} \mu\right)} \\
& =\mathcal{N}_{k} \mathrm{e}^{2 \pi i \tau k} \int\{d \chi\} \frac{P f_{(a d j, 6 \subset 7, \mathbf{1})}\left(Q^{\prime 2}\right) P f_{\left(\mathbf{k}, \mathbf{1}, \mathbf{8}_{v}\right)}\left(Q^{\prime 2}\right)}{\operatorname{det}_{\left(\text {symm }, \mathbf{8}_{s}, \mathbf{1}\right)}^{1 / 2}\left(Q^{\prime 2}\right)}
\end{aligned}
$$

General expressions

- Considering ϕ in the Cartan of SO(8), f in the Cartan of $\mathrm{SO}(7)$ and bringing χ to the Cartan of SO(k) one gets (here for $k=2 n+1$) Back

$$
\begin{aligned}
& z_{2 n+1}=\tilde{\mathcal{N}}_{2 n+1} \mathrm{e}^{2 \pi i \tau(2 n+1)} \frac{\left(f_{1} f_{2} f_{3}\right)^{n}}{\mathcal{E}^{(n+1)}} \int \prod_{l=1}^{n} \frac{d \chi^{\prime}}{2 \pi i} \\
& \times \frac{\prod_{k} \chi_{k}^{2} R_{\phi}\left(\chi_{k}\right) R_{f}\left(\chi_{k}\right) \prod_{i<j}\left(\chi_{i j}^{-}\right)^{2}\left(\chi_{i j}^{+}\right)^{2} R_{f}\left(\chi_{i j}^{-}\right) R_{f}\left(\chi_{i j}^{+}\right)}{\prod_{m} R_{E}\left(2 \chi_{m}\right) R_{E}\left(\chi_{m}\right) \prod_{p<q} R_{E}\left(\chi_{p q}^{-}\right) R_{E}\left(\chi_{p q}^{+}\right)}
\end{aligned}
$$

General expressions

- Considering ϕ in the Cartan of SO(8), f in the Cartan of $\mathrm{SO}(7)$ and bringing χ to the Cartan of SO(k) one gets (here for $k=2 n+1$)

$$
\begin{aligned}
& z_{2 n+1}=\tilde{\mathcal{N}}_{2 n+1} \mathrm{e}^{2 \pi i \tau(2 n+1)} \frac{\left(f_{1} f_{2} f_{3}\right)^{n}}{\mathcal{E}^{(n+1)}} \int \prod_{l=1}^{n} \frac{d \chi^{l}}{2 \pi i} \\
& \times \frac{\prod_{k} \chi_{k}^{2} R_{\phi}\left(\chi_{k}\right) R_{f}\left(\chi_{k}\right) \prod_{i<j}\left(\chi_{i j}^{-}\right)^{2}\left(\chi_{i j}^{+}\right)^{2} R_{f}\left(\chi_{i j}^{-}\right) R_{f}\left(\chi_{i j}^{+}\right)}{\prod_{m} R_{E}\left(2 \chi_{m}\right) R_{E}\left(\chi_{m}\right) \prod_{p<q} R_{E}\left(\chi_{p q}^{-}\right) R_{E}\left(\chi_{p q}^{+}\right)}
\end{aligned}
$$

Here $\chi_{i j}^{ \pm}=\chi_{i} \pm \chi_{j}, E_{1}=1 / 2\left(-f_{1}+f_{2}+f_{3}\right), \ldots, \mathcal{E}=E_{1} E_{2} E_{3} E_{4}$ and

$$
\begin{aligned}
& R_{\phi}(x) \equiv \prod_{u=1}^{4}\left(x^{2}-\phi_{u}^{2}\right), \\
& R_{f}(x) \equiv \prod_{a=1}^{3}\left(x^{2}-f_{a}^{2}\right), \quad R_{E}(x) \equiv \prod_{A=1}^{4}\left(x^{2}-E_{A}^{2}\right)
\end{aligned}
$$

General expressions

- Considering ϕ in the Cartan of SO(8), f in the Cartan of $\mathrm{SO}(7)$ and bringing χ to the Cartan of $\mathrm{SO}(\mathrm{k})$ one gets (here for $k=2 n+1$) Back

$$
\begin{aligned}
& z_{2 n+1}=\tilde{\mathcal{N}}_{2 n+1} \mathrm{e}^{2 \pi i \tau(2 n+1)} \frac{\left(f_{1} f_{2} f_{3}\right)^{n}}{\mathcal{E}^{(n+1)}} \int \prod_{l=1}^{n} \frac{d \chi^{\prime}}{2 \pi i} \\
& \times \frac{\prod_{k} \chi_{k}^{2} R_{\phi}\left(\chi_{k}\right) R_{f}\left(\chi_{k}\right) \prod_{i<j}\left(\chi_{i j}^{-}\right)^{2}\left(\chi_{i j}^{+}\right)^{2} R_{f}\left(\chi_{i j}^{-}\right) R_{f}\left(\chi_{i j}^{+}\right)}{\prod_{m} R_{E}\left(2 \chi_{m}\right) R_{E}\left(\chi_{m}\right) \prod_{p<q} R_{E}\left(\chi_{p q}^{-}\right) R_{E}\left(\chi_{p q}^{+}\right)}
\end{aligned}
$$

Analogous expression for $k=2 n$

General expressions

- Considering ϕ in the Cartan of SO(8), f in the Cartan of $\mathrm{SO}(7)$ and bringing χ to the Cartan of SO(k) one gets (here for $k=2 n+1$) Back

$$
\begin{aligned}
& z_{2 n+1}=\tilde{\mathcal{N}}_{2 n+1} \mathrm{e}^{2 \pi i \tau(2 n+1)} \frac{\left(f_{1} f_{2} f_{3}\right)^{n}}{\mathcal{E}^{(n+1)}} \int \prod_{l=1}^{n} \frac{d \chi^{\prime}}{2 \pi i} \\
& \times \frac{\prod_{k} \chi_{k}^{2} R_{\phi}\left(\chi_{k}\right) R_{f}\left(\chi_{k}\right) \prod_{i<j}\left(\chi_{i j}^{-}\right)^{2}\left(\chi_{i j}^{+}\right)^{2} R_{f}\left(\chi_{i j}^{-}\right) R_{f}\left(\chi_{i j}^{+}\right)}{\prod_{m} R_{E}\left(2 \chi_{m}\right) R_{E}\left(\chi_{m}\right) \prod_{p<q} R_{E}\left(\chi_{p q}^{-}\right) R_{E}\left(\chi_{p q}^{+}\right)}
\end{aligned}
$$

The χ integration are actually contour integrals to be done with certain prescriptions on the Im parts of the poles moore etal,... (follows from BRS structure)

The prepotential

- Cosider the complete part. function

$$
Z(\phi, f)=\sum_{k} \int d \mathcal{M}_{(k)} \mathrm{e}^{-\mathcal{S}_{(k)}(\phi, f)}=\sum_{k} \hat{z}_{k} \mathrm{e}^{2 \pi i \tau k}=\sum_{k} \hat{z}_{k} q^{k}
$$

- To a given order in q, contribute also "disconnected" configurations (instantons of lower numbers k_{i}, with $\left.\sum k_{i}=k\right)$.
- To isolate the connected components, take the logarithm

The prepotential

- Cosider the complete part. function

$$
Z(\phi, f)=\sum_{k} \int d \mathcal{M}_{(k)} \mathrm{e}^{-\mathcal{S}_{(k)}(\phi, f)}=\sum_{k} \hat{z}_{k} \mathrm{e}^{2 \pi i \tau k}=\sum_{k} \hat{z}_{k} q^{k}
$$

- In $d \mathcal{M}_{(k)}$ we have included the "center of mass" $d x^{\mu}$ and $d \theta$ integrals.
- Without deformations these would diverge (with ϕ constant), now they give $\frac{1}{\varepsilon}$

The prepotential

- Cosider the complete part. function

$$
Z(\phi, f)=\sum_{k} \int d \mathcal{M}_{(k)} \mathrm{e}^{-\mathcal{S}_{(k)}(\phi, f)}=\sum_{k} \hat{Z}_{k} \mathrm{e}^{2 \pi i \tau k}=\sum_{k} \hat{Z}_{k} q^{k}
$$

- The effective action for $\Phi(x, \theta)$ is written as

$$
\int d^{8} x d^{8} \theta F(\Phi(x, \theta), f=0)
$$

where

$$
\begin{aligned}
& F(\phi, f)=\mathcal{E} \log (1+Z(\phi, f)) \\
& F(\phi, f)=\sum_{k} F_{k}(\phi, f) q^{k}
\end{aligned}
$$

Explicit results at low k

By direct integration of the expression of Z_{k} ®Recall and taking the log we get

$$
\begin{aligned}
F & =\operatorname{Tr} \Phi^{4}\left(\frac{1}{2} q^{2}+\frac{1}{4} q^{4}+\ldots\right)-\left(\operatorname{Tr} \Phi^{2}\right)^{2}\left(\frac{1}{4} q^{2}+\frac{1}{4} q^{4}+\ldots\right) \\
& +8 \operatorname{Pf} \Phi\left(q+\frac{4}{3} q^{3}+\frac{6}{5} q^{5}+\ldots\right)
\end{aligned}
$$

in perfect agreement with the Heterotic results!

- The fact that for F is finite in the $f \rightarrow 0$ limit is highly non-trivial, requires very delicate cancellations

Explicit results at low k

By direct integration of the expression of Z_{k} (Recall and taking the log we get

$$
\begin{aligned}
F & =\operatorname{Tr} \phi^{4}\left(\frac{1}{2} q^{2}+\frac{1}{4} q^{4}+\ldots\right)-\left(\operatorname{Tr} \phi^{2}\right)^{2}\left(\frac{1}{4} q^{2}+\frac{1}{4} q^{4}+\ldots\right) \\
& +8 \operatorname{Pf} \phi\left(q+\frac{4}{3} q^{3}+\frac{6}{5} q^{5}+\ldots\right)
\end{aligned}
$$

in perfect agreement with the Heterotic results!

- The fact that for F is finite in the $f \rightarrow 0$ limit is highly non-trivial, requires very delicate cancellations
- If we keep the RR background turned on to the prepotential, we compute also gravitational corrections of the form $t_{8} \operatorname{tr} R^{4}$ and $t_{8}\left(\operatorname{tr} R^{2}\right)^{2}$

Conclusions and perspectives

Conclusions and perspectives

- D(-1)'s on D7, exotic from the w.s. point of view, seen as zero-size limit of a 8d instanton solution
- Does such an interpretation carry on, and is it useful, to compactified cases relevant to 4d eff. theories?
- Is there some similar interpretation for other exotic instantons (wrapped E-branes at angles, ...)?

Conclusions and perspectives

- D(-1)'s on D7, exotic from the w.s. point of view, seen as zero-size limit of a 8d instanton solution
- Does such an interpretation carry on, and is it useful, to compactified cases relevant to 4d eff. theories?
- Is there some similar interpretation for other exotic instantons (wrapped E-branes at angles, ...)?
- Consistency condition: the SO(8) instanton must be a solution of the full NABI action
- check at $O\left(F^{5}\right)$ singles out the supersimmetrizable action of collinucci et al, 2002

Conclusions and perspectives

- $D(-1)$'s on $D 7$, exotic from the w.s. point of view, seen as zero-size limit of a 8d instanton solution
- Does such an interpretation carry on, and is it useful, to compactified cases relevant to 4d eff. theories?
- Is there some similar interpretation for other exotic instantons (wrapped E-branes at angles, ...)?
- Consistency condition: the SO(8) instanton must be a solution of the full NABI action
- check at $O\left(F^{5}\right)$ singles out the supersimmetrizable action of collinucci et al, 2002
- Integrating over the $\mathrm{D}(-1)$ moduli reproduces the F^{4} effective action of the dual Het SO(8) ${ }^{4}$ theory
- Checked up to $k=5$ (next step: all k proof)
- Gravitational corrections to be checked against Heterotic

The tensor t_{8}

- We have

```
Back
```

$$
\begin{aligned}
& \operatorname{Tr}\left(t_{8} F^{4}\right) \equiv \frac{1}{16} t_{8}^{\mu_{1} \mu_{2} \cdots \mu_{7} \mu_{8}} \operatorname{Tr}\left(F_{\mu_{1} \mu_{2}} \cdots F_{\mu_{7} \mu_{8}}\right) \\
= & \operatorname{Tr}\left(F_{\mu \nu} F^{\nu \rho} F^{\lambda \mu} F_{\rho \lambda}+\frac{1}{2} F_{\mu \nu} F^{\rho \nu} F_{\rho \lambda} F^{\mu \lambda}\right. \\
- & \left.\frac{1}{4} F_{\mu \nu} F^{\mu \nu} F_{\rho \lambda} F^{\rho \lambda}-\frac{1}{8} F_{\mu \nu} F_{\rho \lambda} F^{\mu \nu} F^{\rho \lambda}\right)
\end{aligned}
$$

