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Slow and fast dynamics in coupled systems: A time series analysis view
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Abstract

We study the dynamics of systems with different timescales, when access only to the slow variables is allowed. We use
the concept of finite size Lyapunov exponent (FSLE) and consider both the cases when the equations of motion for the
slow components are known, and the situation when a scalar time series of one of the slow variables has been measured. A
discussion on the effects of parametrizing the fast dynamics is given. We show that, although the computation of the largest
Lyapunov exponent can be practically infeasible in complex dynamical systems, the computation of the FSLE allows to extract
information on the characteristic time and on the predictability of the large-scale, slow-time dynamics even with moderate
statistics and unresolved small scales. Copyright © 1998 Elsevier Science B.V.

1. Introduction

In the last two decades, the problem of extracting information from a measured time series has been studied
extensively, see e.g. [1–12]. Several attempts have been devoted to the issue of distinguishing between determin-
istic and stochastic behavior, where “deterministic” has to be interpreted as “dominated by a small number of
excited modes” and “stochastic” as “dominated by a large number of excited degrees of freedom”. Once the pres-
ence of low-dimensional chaotic dynamics is assessed, various methods have been devised for determining the
statistical properties of the attractor and to build appropriate models for either predicting or describing the system
evolution.

Most methods for determining dynamical properties from measured signals are based on a procedure of phase-
space reconstruction. Following the work of Packard et al. [6] and Takens [7], the so-called time-embedding
techniques have been developed to address this problem. Their use (e.g. via delay coordinates) allows, at least in
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principle, the determination of the dimensions [8], the Kolmogorov–Sinai entropy [9] and the Lyapunov exponents
[5,10] of the system by the analysis of a time series of just one scalar variable.

Unfortunately, this approach may have severe limitations in many practical situations. For example, the length
of the time series is a crucial point in order to obtain reliable estimates of the phase-space properties of the system
[11,12]. Further, there are simple stochastic processes that mimic a “false positive” answer to the search for low-
dimensional chaotic dynamics, providing a finite value of the dimension under time-embedding in most practical
cases [13–15]. Analogously, simple systems characterized by on/off intermittency require additional care in the
procedure of phase-space reconstruction and analysis [16,17].

Another problem is encountered in systems with many different timescales. In this case, it has been shown [18,19]
that the Lyapunov exponents may have a rather marginal role. The growth of a non-infinitesimal perturbation is
indeed ruled by a nonlinear mechanism which depends on the details of the system. For this reason, despite the
positiveness of the largest Lyapunov exponent, it is possible to have a long predictability time for some specific
degrees of freedom. A typical example of this type of behavior is provided by three-dimensional turbulence, that is
characterized by the contemporary presence of a hierarchy of eddy turnover times. In this case, large-scale motions
have a predictability time that is much larger than the one suggested by the value of the largest Lyapunov exponent.
In such a situation, the predictability time for realistic perturbations may thus have no relationship with the growth
rate of infinitesimal perturbations.

As an attempt to overcome this problem, the concept of maximum Lyapunov exponent has recently been gen-
eralized in [19] to the case of non-infinitesimal perturbations, introducing the notion of the finite size Lyapunov
exponent (FSLE). In this work, we further elaborate on this issue and apply this method to the detection of “large
scale” (“slow”) dynamical properties of measured systems characterized by the contemporary presence of differ-
ent timescales. In particular, we are concerned with systems that can be separated into a slow part,S, described
by the phase-space variablesxs, and a fast partF , described by the variablesxf . The two subsystems are cou-
pled through a term of typical strengthε. In the limit ε → 0, each of the two subsystems evolves indepen-
dently with its own (chaotic) dynamics. The Lyapunov exponents of the slow and fast subsystem areλs < λf ,
respectively.

As for the coupling, we can either have a situation where the fast subsystem drives the slow one without being
influenced by the latter, see e.g. [16,17], or a more generic coupling between the two parts [18,20]. For the specific
application we are concerned with here, the form of the coupling is not very important. Preliminary results on the
predictability of a slow systemS coupled with a faster systemF have been discussed in the case of two coupled
Lorenz models [20]. In that work, the dynamics of the fast system was supposed to be known with arbitrary accuracy,
and it was found that even if the value of the Lyapunov exponent is determined by the fast dynamics, the predictability
of the slow system is dominated by its own characteristic time and it is almost unaffected by a small coupling with
the fast dynamics.

Physically, we may think of the fast subsystem as representing small scales that, both in real experiments and
numerical simulations, are not resolved. Consistent with this interpretation, here we assume that the dynamics of the
fast subsystem is poorly known, and investigate the effects of parametrizing the fast dynamics when one has access
only to the slow dynamics. In this framework, we consider two different situations. In the first case, the equations
of motion of the slow system are given. In the second case, we consider the computation of the FSLE directly from
the measured time series. The study of systems with two characteristic timescales is the first necessary step for the
understanding of more realistic systems with several scales [21].

The remainder of this paper is organized as follows. In Section 2 we discuss the notion of FSLE introduced in
[19]. In Section 3 we study the case of two coupled systems having different timescales, when access to the whole
phase space of the slow system is allowed. In Section 4 we consider the same cases, but when just one scalar time
series is supposed to have been measured. Section 5 gives conclusions and perspectives.
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2. Extension of the Lyapunov exponent to finite perturbations

Here we recall the basic ingredients and the algorithm for computing the FSLE, referring to [19] for further details.
The definition of FSLE follows from that of error growing timeTr(δ) for a perturbation of sizeδ. By definition,
Tr(δ) is the time that a perturbation with initial sizeδ takes to grow by a factorr during the system evolution. In
general, the perturbation with sizeδ is supposed to be already aligned with the most unstable direction. The error
ratio r should not be taken too large, in order to avoid the growth through different scales. In many applications,
r = 2, so sometimes theTr is also called the error doubling time. The FSLE is defined from an ensemble average
of predictability time according to

λ(δ) = 1

〈Tr(δ)〉 ln r =
〈

1

Tr(δ)

〉
t

ln r, (1)

where〈· · ·〉t denotes the natural measure along the trajectory and〈· · ·〉 is the average over many realizations. The
second equality comes from the definition of the time average along a trajectory for a generic quantityA:

〈A〉t = 1

T

T∫
0

A(t)dt =
∑

i Ai τi∑
i τi

= 〈A τ 〉
〈τ 〉 . (2)

in the particular case ofA = 1/τ [19].
In the limit of infinitesimal perturbations,δ → 0, this definition reduces to that of the leading Lyapunov exponent

λmax. In practice,λ(δ) displays a plateau at the valueλmax for sufficiently smallδ.
In most systems, the smaller scales evolve faster, as in the classic example of three-dimensional turbulent flows, and

dominates the error growth for infinitesimal perturbations. When the sizeδ of the perturbation cannot be considered
any longer infinitesimal, all the scales whose typical size is smaller thanδ experience a diffusive separation and
do not contribute to the exponential divergence in phase space. At this stage, the behavior ofλ(δ) is governed
by the nonlinear evolution of the perturbation, and, in general,λ(δ) ≤ λmax. The decrease ofλ(δ) does follow a
system-dependent law. In some cases,λ(δ) can be predicted by dimensional considerations. For the fully developed
turbulence, e.g., dimensional considerations lead to the universal lawλ(δ) ∼ δ−2 in the inertial range [19].

Therefore, the behavior ofλ as a function ofδ contains important informations on the characteristic times
governing the system, and it is a powerful tool for investigating the behavior of high-dimensional dynamical
systems involving many characteristic scales in space and time.

To practically compute the FSLE, one has first to define a series of thresholdsδn = rnδ0, and to measure the
timeTr(δn) that a perturbation with sizeδn takes to grow up toδn+1. The timeTr(δn) is obtained by following the
evolution of the perturbation from its initial sizeδmin up to the largest thresholdδmax. This can be done, e.g., by
integrating two trajectories of the system that start at an initial distanceδmin. In general, one must takeδmin � δ0,
in order to allow the direction of the initial perturbation to align with the most unstable direction in the phase space.
The FSLE,λ(δn), is then computed by averaging the predictability times over several realizations, see Eq. (1).

Note that the FSLE has conceptual similarities with theε-entropy [22]. This latter measures the bandwidth that is
necessary for reproducing the trajectory of a system within a finite accuracyδ. Theε-entropy approach has already
been applied to the analysis of simple systems and experimental data [23], giving interesting results. The direct
calculation of theε-entropy, however, is much more expensive than that of the FSLE. This latter, in fact, is not more
expensive than that of the largest Lyapunov exponentλmax.
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3. FSLE and small-scale parametrization

In this section we study the case of a slow systemS, described by the variablesxs, coupled with a fast systemF
described by the variablesxf . The equations of motion governing the slow variables are supposed to be known, and
we study the effects of parametrizing the fast dynamics.

To study the evolution of the perturbation, we consider two trajectoriesx = (xs, xf ) (reference) andx′ (perturbed)
starting from two nearby locations in phase space. The perturbed trajectory is then made to evolve either according
to the same equations as the reference one, or to modified equations, where the fast dynamics is replaced by a
stochastic process, or simply neglected.

3.1. Coupled maps

The first example is provided by two coupled maps, namely

xs(n + 1) = (1 − ε) fs[xs(n)] + ε g[xs(n), xf (n)], mod 1,

xf (n + 1) = (1 − ε) ff [xf (n)] + ε g[xf (n), xs(n)], mod 1,
(3)

wherefs andff are maps of the unit interval [0, 1] into itself. Here we use

fs(xs) = eλs xs|mod 1, ff (xf ) = eλf xf |mod 1, g(xs, xf ) = cos(2π(xs + xf )) , (4)

with λs < λf . Eqs. (3) completely define the dynamics of the system. We assume, however, that we can have access
only to the slow variablexs(n). The FSLE has thus to be computed only from the time evolution ofxs(n).

Before discussing how this can be achieved, we note that Eq. (1) is inadequate in the case of maps. Definition
(1), in fact, tacitly assumes that we are able to determine the time when the size of the perturbation isexactly equal
to the fixed thresholdδ. In the case of maps, this may not be possible. The appropriate definition in this case thus
becomes (see [19])

λ(δ) = 1

〈nr 〉
〈
ln

(
δ(nr)

δ

)〉
, (5)

whereδ is the initial size of the perturbation andδ(nr) is its size at the (discrete) timenr . Herenr is the time at
which the size of the perturbation first gets larger than (or equal to)rδ, i.e.,δ(nr) ≥ rδ andδ(nr − 1) < rδ. The
average〈· · ·〉 is over an ensemble of many realizations, as in the original definition (1).

Let us now discuss how to computeλ(δ) from the knowledge ofxs(n). From a point(xs, xf ) on the system’s
attractor, we generate a new point representing the perturbed trajectory (δmin � 1)

x′
s = xs + δmin, x′

f = xf + δmin, (6)

and iterate the coupled maps for the original trajectory and the perturbed one. Note that, in this case, the perturbation
has been applied to both the slow and the fast variables. We then computeλ(δ) from Eq. (5).

Fig. 1 shows the value ofλ(δ) versusδ for the coupled maps system. The curve with filled triangles has been
obtained by defining the distance in phase space asδ = |xs(n)− x′

s(n)|. The curve denoted by the filled squares has
been obtained with a different definition of distance, namelyδ = {[xs(n) − x′

s(n)]2 + [xs(n − 1) − x′
s(n − 1)]2}1/2

(reminiscent of the time-embedding procedure, see Section 3.2). Both curves are obtained by an average over 104

samples for each value ofδ; analogous results are obtained with more limited statistics. For smallδ, the dynamics
of the perturbation is driven by the fast mode, andλ(δ) tends towardλmax ' λf = 0.5. For large values ofδ, the
growth of the perturbation is governed mainly by the slow dynamics andλ(δ) approachesλs = 0.1. The transition
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Fig. 1. The FSLE,λ(δ), as a function ofδ for the coupled maps (3) and (4) withλs = 0.1,λf = 0.5 andε = 2×10−3. The two curves refer
to the different definitions of distance discussed in the text. The parameters of the perturbation areδmin = 10−9, δ0 = 10−6, δmax = 0.1,
r = 2 and the average is over 104 realizations for each point in the FSLE curve. The horizontal lines indicate the values ofλs andλf .

between the two regimes takes place atδ ∼ ε = 2× 10−3; changing the strength of the coupling modifies only the
value ofδ where the transition takes place. It is worth noting that the two definitions of distance used in obtaining
Fig. 1 give almost coincident results. This indicates that, at least in this case, the definition of distance which is
employed is not crucial, at variance with what happens in other cases (e.g. for on/off intermittent systems [17]).

As discussed above, we have always usedδmin � δ0 in order to allow the direction of the initial perturbation to
align with the most unstable phase-space direction, and hence to be able to recover the largest Lyapunov exponent
in the limit of infinitesimal perturbations. In Fig. 2 (curve with filled triangles) we show what happens when this
prescription is relaxed. In this case, the value ofλ(δ) is underestimated forδ ∼ δmin. This is due to the fact that
the perturbation is not along the most unstable direction. The process of alignment of the perturbation along the
unstable direction may result in a decrease of the distance between the two trajectories at initial times (i.e., at small
δ), leading to a lower value ofλ(δ). The computation ofλ(δ) without relaxation can indeed be more appropriate for
characterizing short time predictability with large initial error, but we cannot expect, in this case, to asymptotically
recover the largest Lyapunov exponent.

From these results, it is apparent that the effects of the fastest dynamics are seen only when the size of the
perturbation is small enough. As a consequence, one has that the predictability for finite-size perturbations may be
unaffected by the particular parametrization of the faster scales. To confirm this inference, in Fig. 3 we showλ(δ)

for a case where in the evolution of the perturbed trajectory(x′
s, x

′
f ) the fast variablex′

f is replaced by a sequence
of random numbers uniformly distributed in the interval [0, 1] (curve with filled triangles). The fact thatx′

f is now
a random variable can be detected only for small enoughδ (whereλ(δ) is ruled by a logarithmic law, see [19]).
The charactrization of the large-scale dynamics, however, is unaffected by the incorrect parametrization of the fast
dynamics.
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Fig. 2. The FSLE,λ(δ), as a function ofδ for the coupled maps (3) and (4) with the same parameters as in Fig. 1. The filled squares refer
to the results obtained withδmin = 10−9 andδ0 = 10−6 (same curve as in Fig. 1). The filled triangles show the behavior ofλ(δ) when
δmin = δ0 = 10−5 and the perturbation did not start along the most expanding direction.

Note, also, an interesting point. The results in Fig. 1 indicate that the small-scale dynamics is correctly recovered
when a one-dimensional time series is used (xs(n)), even though the full dynamics is two-dimensional (xs(n), xf (n)).
This event, possibly surprising at first sight, is due to the fact that the perturbed trajectory has been obtained by
acting on the full phase space of the system; i.e., the perturbation has been made on bothxs(n) andxf (n). When
only xs(n) is perturbed, as in the curve shown in Fig. 3, it is not possible to recover the fast small-scale dynamics
without resorting to methods such as the time-embedding technique. In this case, however, other problems appear,
as discussed in section.

3.2. Coupled Lorenz models

To illustrate the application of the FSLE technique to the case of continuous-time dynamical systems, here we
consider a system obtained by coupling two Lorenz [24] models having time scales that differ by a factora.

The slow subsystem is coupled through the Rayleigh numberR to the fast one; for simplicity, the fast subsystem
does not feel any feedback from the slow one. More generic (small) couplings do not qualitatively change the results,
see [20]. The equations for the whole system are

dxs

dt
= −σxs + σys,

dys

dt
= −xsys + (R + εzf )xs − ys,

dzs

dt
= xsys − bzs,

dxf

dt
= (−σxf + σyf ) · a,

dyf

dt
= (−xf yf + Rxf − yf ) · a,

dzf

dt
= (xf yf − bzf ) · a,

(7)

where the parameterε controls the strength of the coupling anda is the relative timescale.
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Fig. 3. The FSLE,λ(δ), as a function ofδ for the coupled maps (3) and (4). The parameters are as in Fig. 1. The filled squares are as in
Fig. 1. The filled triangles refer to the case where the fast variables are replaced by a sequence of random numbers uniformly distributed
in [0, 1].

In the first type of simulations, both the reference and the perturbed trajectories evolve with the same equations
of motion (7). Again, we assume that only the slow variables are accessible; the norm is defined as the Euclidean
distance in the three-dimensional space(xs, ys, zs).

The parameters used in the numerical integrations areR = 45.92, σ = 16, b = 4; the Lyapunov exponent of
the slow subsystems isλs ' 1.5. The ratio of the timescales of the two systems isa = 5, henceλf ' λmax ' 7.5.
The results forε = 10−4 are shown in Fig. 4. As in the case of the coupled maps,λ(δ) displays two plateaus at
λ(δ) ' λf andλ(δ) ' λs, corresponding respectively to the fast and slow dynamics, and a transition region atδ ∼ ε.
Again, the small-scale dynamics (associated with the fast variables) can be recovered because we have perturbed
the trajectory in the full, six-dimensional, phase space.

To investigate the role of small-scale parametrization, also for this system we have considered a situation where
the “true” dynamics of the fast variablesx′

f , y
′
f , z

′
f in the perturbation is replaced by a stochastic process, i.e.

dx′
s

dt
= −σx′

s + σy′
s,

dy′
s

dt
= −x′

sy
′
s + (R + εη)x′

s − y′
s,

dz′
s

dt
= x′

sy
′
s − bz′

s (8)

whereη is a Gaussian white noise process with variance equal to that of the fast component in the original system
(7). Analogously, we have considered a case where the fast dynamics of the perturbation is simply neglected; this
corresponds to takingε = 0 in the evolution equations for the perturbationsx′

s, y
′
s, z

′
s. The two corresponding curves

of λ(δ) are shown in Fig. 4 (filled triangles and open diamonds).
The results shown in Fig. 4 confirm that the estimate ofλ(δ) for the slow variables is practically unaffected, for

large values ofδ, by the details of the fast dynamics. A similar result was obtained in [25] for the chaotic or stochastic
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Fig. 4. The FSLE,λ(δ), as a function ofδ for the coupled Lorenz systems (7) withR = 45.92,σ = 16,b = 4 and couplingε = 10−4

(filled squares). The filled triangles indicate the results obtained when the perturbed trajectory evolves according to the modified dynamics
(8) with ε = 10−4. The open diamonds represent the caseε = 0 in the perturbed trajectory (no fast dynamics).

resonance of a driven nonlinear oscillator. In the present situation, one may even neglect the fast dynamics, and still
obtain a reliable estimate of the slow evolution (and of the Lyapunov exponent associated with the slow variables).
In particular, the lack of knowledge of the fast dynamics has an effect which is similar to that associated with the
presence of noise. The inadequacy of the parametrization for scales smaller thanε is reflected, in both cases, in a
large value of the FSLE, i.e., in a poor predictability of the phase-space dynamics on small scales. At larger scales
and slower times, the FSLE coincides with the Lyapunov exponent of the (uncoupled) slow subsystem. This defines
the predictive skill of the “incomplete model” on those scales.

4. Computation of the FSLE from measured data

In the case of measured time series, it is not usually possible to have access to the whole set of variables describing
the system. Consistent with these limitations, here we suppose that only one time series of a scalar observable quantity
hn, function of the slow phase-space variables of the system, is given. Additionally, in most experimental situation,
the time series ofhn is characterized by limited statistics.

The first step is the procedure of phase-space reconstruction. The time-embedding method [6,7] allows to recon-
struct a pseudo-phase-space with dimensionM, by using time delay coordinates of the observed variable. A vector
in this phase space is then defined as

Xn = (hn, hn−τ , . . . , hn−(M−1)τ ), (9)
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Fig. 5. The FSLE,λ(δ), as a function ofδ for the time seriesx(n) obtained from the coupled maps (3) and (4) withδmin = 10−5, δ0 = 10−4

and couplingε = 0.02 (filled squares). The triangles indicate the results for an embedding dimensionM = 1 and the diamonds for
M = 2. The number of realizations used for each point in the FSLE is 104. The total number of point in the time series is 108 for the case
M = 1 and more than 1010 for M = 2.

whereτ is a suitably chosen time delay, see e.g. [2,3] for a discussion on the optimal choice ofτ . The method
for computing the experimental FSLE is then a simple modification of the standard algorithm for the Lyapunov
exponent [10] which measures the average separation between trajectories in the embedding space.

For each reconstructed vectorXn, its nearest neighborXm is determined. If the separationδ = |Xn − Xm| is
smaller that a given thresholdδmin, the trajectories starting fromXn andXm are used to compute the FSLE, according
to the algorithm discussed above. As in the case of maps, the trajectory is not continuous in time and one has to
adopt the definition (5).

Also in this case we requireδmin to be considerably smaller thanδ0, to allow the vector separating the two
trajectories to align with the maximally expanding direction. Clearly, this may severely limit the available statistics.
A trivial geometrical argument shows that the probability of finding two points at a given distance in the embedding
space becomes extremely small for high embedding dimensions. We have found this lack of statistics to be the
most important limitation that prevents from taking the limitδ → 0, and thus from estimating the largest Lyapunov
exponent. On the other hand, the statistics grows with the perturbation thresholdδj , we may thus expect to be able
to computeλ(δj ) for sufficiently large values ofδj . Another crucial point is related to the fact that the number
of degrees of freedom which participate in the slow dynamics is (usually much) smaller than the total number of
excited modes. Thus, the embedding dimension which is required for estimatingλ(δ) for moderate values ofδ is
smaller than that needed for estimating the largest Lyapunov exponent.

As a first example, we consider the case where the signalhn is generated by the componentxs(n) of the coupled
maps model (3). The coupling parameter is herein chosen to beε = 0.02 (larger than that used in Section 3), in
order to be able to study the small-scale behavior atδ < ε even with moderate statistics. The results are shown in
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Fig. 6. The FSLE,λ(δ), as a function ofδ for the time seriesxs(t) obtained from the coupled Lorenz models (7) with couplingε = 0.05
(filled squares). The filled triangles indicate the results for an embedding dimensionM = 3, time delayτ = 0.02 and a total number of
pointsN = 500 000.

Fig. 5. The three curves show the FSLE as obtained in Section 3 (filled squares), and that from the time-embedding
method with embedding dimensionsM = 1 (filled triangles) andM = 2 (open diamonds) with time delayτ = 1.
As expected [6,7], the computation of the Lyapunov exponent requires in this case an embedding dimensionM = 2
in order to resolve the fast dynamics. In fact, at variance with the results shown in Section 3, the one-dimensional
time series is not enough here because we have no control on the perturbation in the fast variable. It is interesting,
however, that one can obtainλ(δ) for largeδ already with an embedding dimension which reflects the dimensionality
of the slow system (M = 1).

Note that, in order to have good statistics, each point in Fig. 5 has been obtained by averaging (5) over 104

samples. This requires a time series of about 108 points forM = 1 and more than 1010 points in the caseM = 2
to resolve the small scales atδ ∼ 10−4. Thus, although it is in principle possible to extract information on the fast
dynamics and on the largest Lyapunov exponent from a measured time series, the statistics required is so prohibitive
that this procedure may be infeasible in realistic situations. On the other hand, it is possible to extract information on
the large-scale Lyapunov exponent with an embedding dimension of the order of the number of degrees of freedom
involved in the slow dynamics.

We observe that this result could not be obtained by simply neglecting the fast component as in a measured time
series one has no direct access to the equations of motion.

As a second example, we now apply the same machinery to the case of the two coupled Lorenz systems described
by Eq. (7). Fig. 6 shows the results obtained by using the variablexs of (7), with M = 3, τ = 0.02 and a total
number ofN = 500 000 points in the time series. The coupling constant between the models is nowε = 0.05.
The perturbation threshold is fixed asδmin = 0.005 andδ0 = 0.05. The plateau corresponding to the large scales
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is clearly visible, while, in spite of the large number of points, the contribution of the fast system is not resolved.
Clearly, this would require a larger embedding dimension and an increase of the smallest resolved value ofδ, at the
cost of an unrealistic increase of the number of points in the time series.

5. Conclusions

In this work we have discussed how to use the method of the finite size Lyapunov exponent (FSLE) for determining
the slow dynamics of systems with many different characteristic times. In particular, we have considered the case
when full access to the slow dynamics is allowed, and the more realistic case when just one scalar time series of a
slow variable has been measured. The basic idea is to compute the FSLE,λ(δ), as a function ofδ in the framework
of the embedding technique. In this case, the behavior ofλ(δ) at large values ofδ gives information on the Lyapunov
exponents associated with the slow dynamics.

By contrast, the behavior ofλ(δ) for small value ofδ gives information on the fast dynamics. By considering
the limit of λ(δ) for δ → 0, it is possible, at least in principle, to discriminate between “stochastic” systems and
“chaotic but deterministic” ones. For an accurate estimate ofλ(δ) at smallδ’s, however, it is necessary to use a
very large number of points in the time series. This fact makes practically infeasible, the calculation of the largest
Lyapunov exponent (associated with the fast dynamics) in most complex dynamical systems.

Nevertheless, very often the slow, large-scale dynamics is the most interesting one physically. The results obtained
here indicate that the slow dynamics may be satisfactorily detected even with a limited number of points and
a moderate embedding dimension. In these systems, one can thus obtain a satisfactory prediction for the slow,
physically interesting scales even when access to the (much more unpredictable) fast scales is not available. This
also indicates that, at least in the examples considered here, the parametrization of the fast timescales seems not to
be crucial, as the internal dynamics of the slow modes plays the dominant role.

One could wonder, then, how general the results presented in this paper are. Previous works on more complex
theoretical models [20] indicate that the crucial point is not the dimensionality of the system or the details of the
couplings, but rather the existence of well separated, weakly interacting, scales. In the present work we have shown
that the FSLE technique may be successfully applied also in the case of measured time series.
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