When Higgs Production & Decay Met EW

Giampiero PASSARINO

Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino, Italy HEPTOOLS Network

HP2.2, Buenos Aires, October 2008

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Based on work done in collaboration with Stefano Actis, Christian Sturm and Sandro Uccirati

Outlines

Outlines

Outlines

(1, <mark>2</mark>,)

- From the analytical structure of EW NNLOs
- 2 to their numerical evaluation

what else, but the inevitable!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Part I

Preludio

▲ロト▲御▶▲臣▶▲臣▶ 三臣 めんゆ

QCD & K - factor(s)

QCD overview: from LO to NNLO and NNLL

EW

What about EW? NLO for $\gamma\gamma$

Synopsis

From PO to RO

from gg
ightarrow H to pp
ightarrow gg(
ightarrow H) + X

NLO K-fact. $\approx 1.7 - 1.9$ NNLO K-fact. $\approx 2.0 - 2.2$	 approximate incomplete divergent

Uncertainty

Remaining sources of large corrections?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Synopsis

From PO to RO

from gg
ightarrow H to pp
ightarrow gg(
ightarrow H) + X

QCD, light Higgs

 $\begin{array}{rcl} \mbox{NLO K-fact.} &\approx & 1.7-1.9 \\ \mbox{NNLO K-fact.} &\approx & 2.0-2.2 \end{array}$

EW < 2008

- approximate
- incomplete
- o divergent

Uncertainty

Remaining sources of large corrections?

Synopsis

From PO to RO

from gg
ightarrow H to pp
ightarrow gg(
ightarrow H) + X

QCD, light HiggsEW < 2008</th>NLO K-fact. $\approx 1.7 - 1.9$
NNLO K-fact. $\approx 2.0 - 2.2$ \circ approximate
 \circ incomplete
 \circ divergent

Uncertainty

Remaining sources of large corrections?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Synopsis

From PO to RO

from gg
ightarrow H to pp
ightarrow gg(
ightarrow H) + X

QCD, light HiggsEW < 2008</th>NLO K-fact. $\approx 1.7 - 1.9$
NNLO K-fact. $\approx 2.0 - 2.2$ \circ approximate
 \circ incomplete
 \circ divergent

Uncertainty

Remaining sources of large corrections?

Part II

Intermezzo

◆□ > ◆□ > ◆ □ > ● □ >

GraphShot package

A FORM code to generate and manipulate the amplitudes in the SM

• A link to FORTRAN libraries for numerical computation

 Authors: S. Actis, A. Ferroglia, G. Passarino, M. Passera, C. Sturm, S. Uccirati

The path to Feynman amplitudes ····

GraphShot package

A FORM code to generate and manipulate the amplitudes in the SM

• A link to FORTRAN libraries for numerical computation

 Authors: S. Actis, A. Ferroglia, G. Passarino, M. Passera, C. Sturm, S. Uccirati

The path to Feynman amplitudes ····

GraphShot package

- A FORM code to generate and manipulate the amplitudes in the SM
- A link to FORTRAN libraries for numerical computation
- Authors: S. Actis, A. Ferroglia, G. Passarino, M. Passera, C. Sturm, S. Uccirati

The path to Feynman amplitudes ····

Reduction

Generating the Amplitude: reduction

Generic child topologies of the V'' parent topology. The five-line V^{σ} diagram is obtained by removing one line of the V'' diagram; the second line contains the child topologies of V^{σ} (V^{ε} , S^{c} and $B \times B$). The third line contains the topologies S^{A} , $B \times A$ and T^{A} , obtained by removing one line from the diagrams above. The arrows indicate the correspondences between parent and child topologies.

Permutations

Generating the Ampitude

Strategy

group diagrams into families, paying attention to permutation of external legs

Loops

Strategy

mapping onto a standard rooting for loop momenta

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Identities

Strategy

apply symmetries to identify identical objects

MI

List-of-diagrams: all what is needed

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Poles & Logs

All-you-can-do-analytic

rule-of-the-game

Adelante Numerics, cum judicio

UV

UV poles, of course

 beware, overlapping divergencies

IR/Coll

IR poles, of course

Collinear logs, of course

upshot

Cancellations, if any, enforced analytically

Poles & Logs

All-you-can-do-analytic

rule-of-the-game

Adelante Numerics, cum judicio

UV

- UV poles, of course
- beware, overlapping divergencies

IR/Coll

- IR poles, of course
- Collinear logs, of course

upshot

Cancellations, if any, enforced analytically

Coll I

Extracting Collinear divergencies

Theorem

Coefficients of collinear logarithms are integrals of one-loop functions

Coll II

Extracting Collinear divergencies

Example

Sometimes the answer is explicit

$$\ln \frac{m^2}{s} \ln \frac{m'^2}{s} \operatorname{Li}_2\left(\frac{s}{M^2}\right) + \left(\ln \frac{m^2}{s} + \ln \frac{m'^2}{s}\right)$$
$$\left[\operatorname{Li}_3\left(\frac{s}{M^2}\right) + 2 S_{12}\left(\frac{s}{M^2}\right) - \ln \frac{M^2}{s} \operatorname{Li}_2\left(\frac{s}{M^2}\right)\right] + \text{ finite part}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem I

General results I

Coll. behavior of arbitrary two-loop q-scalar, UV-finite diagrams

Theorem II

General results II

Generalization to tensor integrals

_

$$\ln \frac{m^2}{s} \left[1 - \frac{\epsilon}{2} \Delta_{UV}(s) - \frac{\epsilon}{4} \ln \frac{m^2}{s} \right]$$

$$\times \int_{0}^{1} dz (-z)^{r} (q_{a}^{\mu_{1}} \dots q_{a}^{\mu_{m}}) p^{\nu_{1}} \dots p^{\nu_{r}} + \text{ c. f.}$$

▲ロト▲御ト▲画ト▲画ト 画 のQ@

Theorem III

General results III

$$\begin{split} \omega &= -P^2/M^2, \ l_{\omega} = \ln(1-\omega) \\ V_{dc}^{\mu} &= \left[P^2M^2 + 2P^2q_1 \cdot p_1 - 4(q_1 \cdot p_1)^2\right] \xrightarrow{-P} M_{M} m_{m'}^{m'} m_{m'}^{m'} \\ &= 2\left(1 - \frac{1+\omega}{\omega}l_{\omega}\right) LL' + 2\left[1 + \frac{1+\omega}{\omega}l_{\omega}\left(l_{\omega} - 1\right) + \text{Li}_2(\omega)\right](L+L') \\ &- 2\int_0^1 dz \left[(1-z)P^2L + (P^2 + 2q \cdot p_2)L'\right] \xrightarrow{-P} M_{M} m_{m'}^{m'} m_{m'}^{m'} + \frac{1+\omega}{\omega}l_{\omega}(l_{\omega} - 1) +$$

U٧

Extracting Ultraviolet divergencies

$$V' = -\frac{P}{m_1} \frac{m_2}{m_3} \frac{p_2}{p_1} = \frac{1}{\pi^4} \int \underbrace{\frac{d^n q_1 d^n q_2}{[1] [2] [3] [4] [5]}}_{y_1, y_2, y_3}, \qquad \begin{bmatrix} 1 \\ = q_1^2 + m_1^2 \\ [2] = (q_1 - q_2)^2 + m_2^2 \\ [3] = q_2^2 + m_3^2 \\ [4] = (q_2 + p_1)^2 + m_4^2 \\ [5] = (q_2 + P)^2 + m_5^2 \end{bmatrix}$$

$$= C_{\epsilon} \int_{0}^{\infty} dx \int dS_{3}(y_{1}, y_{2}, y_{3}) [x (1-x)]^{-\epsilon/2} (1-y_{1})^{\epsilon/2-1} V^{-1-\epsilon}$$

The single pole can always be expressed in terms of 1L.

$$V' = \underbrace{m_3^2}_{m_2} \underbrace{m_1}_{m_2} \xrightarrow{m_3^2} \times \underbrace{-P}_{m_3} \underbrace{m_5}_{p_1} \underbrace{m_4}_{p_1} + \text{ finite part.}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

WSTI

Checks

IPS

Finite Renormalization

$$\mathcal{A}^{\mu
u}=\mathcal{A}^{\mu
u}_{(1)}\,\otimes\,(\mathsf{1}+\mathrm{FR})+\mathcal{A}^{\mu
u}_{(2)}$$

$$\begin{split} m_B^2 &= M_B^2 \left[1 + \frac{G_F M_W^2}{2\sqrt{2}\pi^2} \operatorname{Re} \Sigma_{BB}^{(1)}(M_B^2) \right], \quad B = W, H, \\ m_t^2 &= M_t^2 \left[1 + \frac{G_F M_W^2}{\sqrt{2}\pi^2} \operatorname{Re} \Sigma_t^{(1)}(M_t^2) \right] \\ g^2 \, s_\theta^2 \, Z_A^{-1} &= 4 \pi \, \alpha, \\ g \, Z_H^{-1/2} &= 2 \left(\sqrt{2} \, G_F M_W^2 \right)^{1/2} \left[1 - \frac{G_F M_W^2}{4\sqrt{2}\pi^2} \, \Pi_H(M_H^2) \right], \end{split}$$

Part III

Andante

▲ロト▲御▶▲臣▶▲臣▶ 三臣 めんゆ

Around threshold

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

∞ s

Singularities

FD have a complicated analytical structure

- A frequently encountered singular behavior is associated with the so-called normal thresholds: the leading Landau singularities of self-energy-like diagrams
- which can appear, in more complicated diagrams, as sub-leading singularities.

 ∞s

• FD have a complicated analytical structure

 A frequently encountered singular behavior is associated with the so-called normal thresholds: the leading Landau singularities of self-energy-like diagrams

 which can appear, in more complicated diagrams, as sub-leading singularities.

 ∞s

• FD have a complicated analytical structure

 A frequently encountered singular behavior is associated with the so-called normal thresholds: the leading Landau singularities of self-energy-like diagrams

 which can appear, in more complicated diagrams, as sub-leading singularities.

Bubbles

Bubbles II

Origin of $1/\beta$

• (1-loop diagrams) \otimes (H wave-function FR)

Coulomb

Logarithmic singularities

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ○

Part IV

Impetuoso

Solutions

RM scheme - none

where masses are the real on-shell ones; it gives the extension of the generalized minimal subtraction scheme up to two loop level.

MCM scheme - minimal

- start by removing the Re label in those terms that, coming from finite renormalization, violate WSTIs.
- split the amplitude

$$\mathcal{A}^{\mathrm{NLO}} = \sum_{i=W,Z} \frac{\mathcal{A}_{\mathrm{SR},i}}{\beta_i} + \mathcal{A}_{\mathrm{LOG}} \ln \left(-\beta_W^2 - i0 \right) + \mathcal{A}_{\mathrm{REM}},$$

Solutions

RM scheme - none

where masses are the real on-shell ones; it gives the extension of the generalized minimal subtraction scheme up to two loop level.

MCM scheme - minimal

- start by removing the Re label in those terms that, coming from finite renormalization, violate WSTIs.
- split the amplitude

$$\mathcal{A}^{\text{NLO}} = \sum_{i=W,Z} \frac{\mathcal{A}_{\text{SR},i}}{\beta_i} + \mathcal{A}_{\text{LOG}} \ln \left(-\beta_W^2 - i0 \right) + \mathcal{A}_{\text{REM}},$$

MCM

Solutions

MCM scheme - minimal

 After proving that all coefficients, gauge-parameter independent by construction, satisfy the WST identities, we minimally modify the amplitude introducing the complex-mass scheme of for the divergent terms.

$$\begin{split} m_i^2 &= M_i^2 \left[1 + \frac{G_F M_W^2}{2\sqrt{2}\pi^2} \text{Re} \Sigma_i^{(1)}(M_i^2) \right] \quad \Rightarrow \\ m_i^2 &= s_i \left[1 + \frac{G_F s_W}{2\sqrt{2}\pi^2} \Sigma_i^{(1)}(s_i) \right], \end{split}$$

MCM II

Solutions

pitfalls

A nice feature of the MCM scheme is its simplicity

MCM scheme - minimal

The MCM, however, does not deal with cusps associated with the crossing of normal thresholds.

MCM scheme - minimal

- The large and artificial effects arising around normal thresholds in the MCM scheme (or in RM scheme) are aesthetically unattractive.
- In addition, they represent a concrete problem in assessing the impact of two-loop EW corrections on processes relevant for the LHC.

MCM II

Solutions

pitfalls

A nice feature of the MCM scheme is its simplicity

MCM scheme - minimal

The MCM, however, does not deal with cusps associated with the crossing of normal thresholds.

MCM scheme - minimal

- The large and artificial effects arising around normal thresholds in the MCM scheme (or in RM scheme) are aesthetically unattractive.
- In addition, they represent a concrete problem in assessing the impact of two-loop EW corrections on processes relevant for the LHC.

Solutions

CM scheme - complete

 The procedure described for the divergent terms has been extended to the remainder A_{REM}. In particular, all two-loop diagrams have been computed with complex masses for the internal vector bosons.

CM scheme - complete

 In the full CM setup, the real parts of the W and Z self-energies induced by one-loop renormalization of the masses and the couplings have to be traded for the associated complex expressions.

Solutions

CM scheme - complete

 The procedure described for the divergent terms has been extended to the remainder A_{REM}. In particular, all two-loop diagrams have been computed with complex masses for the internal vector bosons.

CM scheme - complete

 In the full CM setup, the real parts of the W and Z self-energies induced by one-loop renormalization of the masses and the couplings have to be traded for the associated complex expressions.

Part V

Allegro

◆□ > ◆□ > ◆ □ > ● □ >

EW on gluon-gluon fusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Results ●○○○○

Decay

EW on decay $(\gamma\gamma)$

Comparison I

Comparing

Comparison II

Comparing

æ

Part VI

Allegro Con Brio

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ のへで

EW on K-factors - uncertainty

We introduce two options for including NLO electroweak corrections

• CF (Complete Factorization):

$$\sigma^{(0)} \mathbf{G}_{ij} \rightarrow \sigma^{(0)} \left(\mathbf{1} + \delta_{\scriptscriptstyle \mathrm{EW}}(M_{\scriptscriptstyle H}^2) \right) \mathbf{G}_{ij};$$

• PF (Partial Factorization):

$$\sigma^{(0)} \mathbf{G}_{ij} \to \sigma^{(0)} \left[\mathbf{G}_{ij} + \alpha_{\mathcal{S}}^2 (\mu_{R}^2) \delta_{\text{EW}} (\mathbf{M}_{H}^2) \mathbf{G}_{ij}^{(0)} \right],$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

LHC

EW on K-factors - LHC

Tevatron

EW on K-factors - Tevatron

Conclusions

(1, 2, 3, 4, 5,)

- Towards a systematic QFT with unstable particles, $(\approx 10 \ kilohour project)$
 - When applied to $pp \rightarrow gg + X \rightarrow H + X$ results show that the EW scaling factor for the cross section is between -4% and +6%(100 GeV $< M_{\mu} < 500$ GeV),
- without incongruent large EW effects,
 - thereby showing that only a complete implementation of the computational scheme keeps two-loop corrections under control.
 - Se logra por repetición / meter el coso por dentro / en que está la cosa sagrata

Conclusions

(1, 2, 3, 4, 5,)

Towards a systematic QFT with unstable particles, (\approx 10 kilohour - project)

When applied to $pp \rightarrow gg + X \rightarrow H + X$ results show that the EW scaling factor for the cross section is between -4% and +6%(100 GeV $< M_{H} < 500$ GeV),

without incongruent large EW effects,

- thereby showing that only a complete implementation of the computational scheme keeps two-loop corrections under control.
- Se logra por repetición / meter el coso por dentro / en que está la cosa sagrata

2

Conclusions

(1, <mark>2</mark>, 3, 4, 5,)

- Towards a systematic QFT with unstable particles, (\approx 10 kilohour - project)
- When applied to $pp \rightarrow gg + X \rightarrow H + X$ results show that the EW scaling factor for the cross section is between -4% and +6%(100 GeV $< M_{H} < 500$ GeV),

without incongruent large EW effects,

- thereby showing that only a complete implementation of the computational scheme keeps two-loop corrections under control.
- Se logra por repetición / meter el coso por dentro / en que está la cosa sagrata

2

3

Conclusions

(1, 2, <mark>3</mark>, 4, 5,)

- Towards a systematic QFT with unstable particles, (\approx 10 kilohour - project)
 - When applied to $pp \rightarrow gg + X \rightarrow H + X$ results show that the EW scaling factor for the cross section is between -4% and +6%(100 GeV $< M_{H} < 500$ GeV),
 - without incongruent large EW effects,
 - thereby showing that only a complete implementation of the computational scheme keeps two-loop corrections under control.
 - Se logra por repetición / meter el coso por dentro / en que está la cosa sagrata

1

2

Conclusions

(1, 2, 3, **4**, 5,)

- Towards a systematic QFT with unstable particles, (\approx 10 kilohour - project)
 - When applied to $pp \rightarrow gg + X \rightarrow H + X$ results show that the EW scaling factor for the cross section is between -4% and +6%(100 GeV $< M_{H} < 500$ GeV),
 - without incongruent large EW effects,
 - thereby showing that only a complete implementation of the computational scheme keeps two-loop corrections under control.
 - Se logra por repetición / meter el coso por dentro / en que está la cosa sagrata

1

2

4

5

Conclusions

(1, 2, 3, 4, <mark>5</mark>,)

- Towards a systematic QFT with unstable particles, (\approx 10 kilohour - project)
 - When applied to $pp \rightarrow gg + X \rightarrow H + X$ results show that the EW scaling factor for the cross section is between -4% and +6%(100 GeV $< M_{H} < 500$ GeV),
- without incongruent large EW effects,
 - thereby showing that only a complete implementation of the computational scheme keeps two-loop corrections under control.
- Se logra por repetición / meter el coso por dentro / en que está la cosa sagrata