Prolegomena

Master formula

gauge oo Schemes

THU Conclusions

Heavy Higgs Lineshape

Many Questions – Few Answers

Giampiero PASSARINO

Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino, Italy

□ > 4 課 > 4 課 > 4 課 > 1 里 9 Q (P)

Zurich, 27 March 2012

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
•••••••					

One might wonder why

considering an heavy SM Higgs boson. There are classic constraints on the Higgs boson mass coming from

- unitarity
- triviality

i II

Be rational

- vacuum stability
- precision electroweak data
- absence of fine-tuning

However, the search for a SM Higgs boson over a mass range from 80 GeV to 1 TeV is clearly indicated as a priority in many experimental papers.

Prolegomena o●○○○○○○○○○	Master formula	gauge oo	Schemes 00000000	THU 00000000000	Conclusions
Preludio					

From matrix elements to pseudo-observables

- Most of the people just want to use some well-defined recipe without having to dig any deeper;
- however, there is no alternative to a complete description of LHC processes which has to include the complete matrix elements for all relevant processes;
- **splitting** the whole *S*-matrix element into **components** is just conventional wisdom.
- However, the precise tone and degree of formality must be dictated by **gauge invariance**.

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
0000000000					

Heavy or light

the Higgs boson is an unstable particle; as such it is described by a **complex pole on the second Riemann sheet**

$${f s}_{
m H} - {m M}_{
m H}^2 + \, {m S}_{
m HH} \left({f s}_{
m H}, {m M}_{
m t}^2, {m M}_{
m H}^2, {m M}_{
m W}^2, {m M}_{
m Z}^2
ight) \ = \ 0,$$

To lowest order accuracy the Higgs propagator can be rewritten as

$$\Delta_{\rm H}^{-1} = s - s_{\rm H}.$$

The complex pole describing an unstable particle is conventionally parametrized as

$$\mathbf{s}_i = \mu_i^2 - \mathbf{i}\,\mu_i\,\gamma_i,$$

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
00000000000				0000000	

Example

A (gauge) meaningful definition of a nonexistent object. Take

$$\mathbf{H}(\boldsymbol{P}) \rightarrow \mathbf{Z}(\boldsymbol{p}_1, \mu) + \mathbf{Z}(\boldsymbol{p}_2, \nu).$$

Work in the R_{ξ} -gauge; for any quantity $f(\xi)$ write

$$f(\xi) = f(1) + \Delta f(\xi), \qquad \Delta f(1) = 0.$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
0000000000					

Given the Higgs self-energy,

$$\mathcal{S}_{\mathrm{HH}}(s) ~=~ \mathcal{S}_{\mathrm{HH}}^{(1)} + \mathcal{O}\left(g^{4}
ight) = rac{g^{2}}{16\,\pi^{2}}\Sigma_{\mathrm{HH}}(s) + \mathcal{O}\left(g^{4}
ight)$$

Let $M_{\rm H}$ be the renormalized Higgs mass, we obtain

$$\Delta \Sigma_{\rm HH}^{(1)}(\xi, s, M_{\rm H}^2) ~=~ \left(s - M_{\rm H}^2\right) \, \sigma_{\rm HH}^{(1)}(\xi, s, M_{\rm H}^2).$$

The main equation is the one for the Higgs complex pole,

$${f s}_{
m H} - {m M}_{
m H}^2 + {m S}_{
m HH}^{(1)} \left(\xi \, , \, {m s}_{
m H} \, , \, {m M}_{
m H}^2
ight) \;\; = \;\; {f 0},$$

from which we derive $\textit{M}_{\rm H}^2=\textit{s}_{\rm H}+\mathcal{O}\left(g^2\right)$

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
0000000000					

Easy to prove:

$$\frac{\partial}{\partial\xi}\,\,S^{(1)}_{HH}\left(\xi\,,\,\,s_{H}\,,\,\,s_{H}\right) \ = \ 0$$

Next consider the one-loop vertices contributing to $H \to Z Z$

and obtain an S-matrix element

$$A_{\rm V}^{(1)} = (V_d^{(1)} \,\delta_{\mu\nu} + V_{\rho}^{(1)} \,\rho_{2\mu} \,\rho_{1\nu}) \,e^{\mu} (\rho_1, \lambda_1) \,e^{\nu} (\rho_2, \lambda_2) \,.$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
0000000000					

Using the decomposition

$$V_{d,p}^{(1)}\left(\xi\,,\,s\,,\,M_{\rm H}^2\right) \ = \ V_{d,p}^{(1)}\left(1\,,\,s\,,\,M_{\rm H}^2\right) + \Delta V_{d,p}^{(1)}\left(\xi\,,\,s\,,\,M_{\rm H}^2\right)$$

we obtain the following results:

• after reduction to scalar form-factors there are no scalar vertices remaining in $\Delta V_d^{(1)}(\xi, s_{\rm H}, s_{\rm H})$.

2 Furthermore,
$$\Delta V^{(1)}_{
ho}\left(\xi\,,\,s_{
m H}\,,\,s_{
m H}
ight)=$$
 0.

Prolegomena ○○○○○○●○○○○	Master formula	gauge oo	Schemes 00000000	THU 00000000000	Conclusions

Compute renormalization Z -factors for the external legs

$$\begin{split} & s - M_{\mathrm{H}}^{2} + S_{\mathrm{HH}}^{(1)}\left(\xi \,, \, s \,, \, M_{\mathrm{H}}^{2}\right) = \\ & \left(s - s_{\mathrm{H}}\right) \, \left[1 + \frac{S_{\mathrm{HH}}^{(1)}\left(\xi \,, \, s \,, \, s_{\mathrm{H}}\right) - S_{\mathrm{HH}}^{(1)}\left(\xi \,, \, s_{\mathrm{H}} \,, \, s_{\mathrm{H}}\right)}{s - s_{\mathrm{H}}}\right] = \\ & \left(1 + \mathbf{Z}_{\mathrm{H}}\right) \, \left(s - s_{\mathrm{H}}\right) + \mathcal{O}\left(\left(s - s_{\mathrm{H}}\right)^{2}\right). \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
000000000000					

The main result follows:

$$\Delta V_d^{(1)}\left(\xi\,,\,s_{\rm H}\,,\,s_{\rm H}\right) - \begin{bmatrix} \frac{1}{2}\,\Delta Z_{\rm H}(\xi) + \Delta Z_{\rm Z}(\xi) \end{bmatrix} A^{(0)} = 0,$$

which gives to key to deal with processes where unstable particles play a role:

• Define them at the complex pole

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
00000000000					

dream/dimess of Higgsing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
00000000000				0000000000000000	

Table: The Higgs boson complex pole at fixed values of the W, t complex poles compared with the complete solution for s_H , s_W and s_t

$\mu_{ m H}$ [GeV]	$\gamma_{\mathbf{W}} $ [GeV] f	$\gamma_{ m t}~$ [GeV] f	$\gamma_{ m H}$ [GeV] d
200	2.088	1.481	1.355
250			3.865
300			8.137
350			14.886
400			26.598
$\mu_{ m H}$ [GeV]	$\gamma_{\mathbf{W}}$ [GeV] d	$\gamma_{ m t}~$ [GeV] d	$\gamma_{\rm H}$ [GeV] derived
μ _H [GeV] 200	γ _W [GeV] d 2.130	γ _t [GeV] d 1.085	$\gamma_{\rm H}$ [GeV] derived 1.356
μ _H [GeV] 200 250	γ _W [GeV] d 2.130 2.119	γ _t [GeV] d 1.085 0.962	$\gamma_{\rm H}$ [GeV] derived 1.356 3.823
μ _H [GeV] 200 250 300	 γ_W [GeV] d 2.130 2.119 2.193 	γ_t [GeV] d 1.085 0.962 0.836	 γ_H [GeV] derived 1.356 3.823 8.139
μ _H [GeV] 200 250 300 350	 γ_W [GeV] d 2.130 2.119 2.193 2.607 	γ _t [GeV] d 1.085 0.962 0.836 0.711	 γ_H [GeV] derived 1.356 3.823 8.139 14.653

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
00000000000				00000000000	

◆□ > ◆□ > ◆ □ > ● □ >

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
	•0000000000				

Define the Signal: Step 1

General structure of any process containing a Higgs boson intermediate state:

$$A(s) = rac{f(s)}{s-s_{
m H}} + N(s),$$

Signal (S) and background (B) are defined as follows:

$$\begin{aligned} A(s) &= S(s) + B(s) \\ S(s) &= \frac{f(s_{\rm H})}{s - s_{\rm H}} \\ B(s) &= \frac{f(s) - f(s_{\rm H})}{s - s_{\rm H}} + N(s) \end{aligned}$$

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
	0000000000				

Consider the process $ij \rightarrow H \rightarrow F$ where $i, j \in partons$ and F is a generic final state; the complete cross-section will be written as follows:

 $\sigma_{ij \rightarrow H \rightarrow F}(s) =$ $\Rightarrow \frac{1}{2s} \int d\Phi_{ij \to F}$ $\Rightarrow \times \left[\sum_{s,c} \left| A_{ij \to H} \right|^2 \right]$ $\Rightarrow \times \frac{1}{|s-s_{\rm H}|^2}$ $\Rightarrow \quad \times \quad \left[\sum \left|A_{H \to F}\right|^2\right]$

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
	00000000000				

Strictly speaking and for reasons of gauge invariance, one should consider only

• the **residue** of the Higgs-resonant amplitude at the complex pole

If we decide to keep the Higgs boson off-shell also in the resonant part of the amplitude (interference signal/background remains unaddressed) then we can write

$$\int d\Phi_{ij\to H} \sum_{s,c} |A_{ij\to H}|^2 = s \overline{A}_{ij}(s).$$

・ロット (雪) (日) (日)

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
	00000000000				

$$\Gamma_{\mathrm{H}\to\mathrm{F}}(s) \ = \ \frac{1}{2\sqrt{s}} \int d\Phi_{\mathrm{H}\to\mathrm{F}} \sum_{\mathrm{s},\mathrm{c}} \left|A_{\mathrm{H}\to\mathrm{F}}\right|^2,$$

which gives the partial decay width of a Higgs boson of virtuality *s* into a final state F.

$$\sigma_{ij\to H}=\frac{\overline{A}_{ij}(s)}{s},$$

which gives the production cross-section of a Higgs boson of virtuality *s*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Prolegomena	Master formula gai 0000●0000000 00	ıge	Schemes 00000000	THU 00000000	Conclusions
Step 5					
We can	write the final result i	n terr	ns of pseudo	-observa	ables
	$\sigma_{ij ightarrow \mathrm{H} ightarrow \mathrm{F}}(s)$) =	$\frac{1}{\pi}$		
	=	> ×	$\sigma_{ij \rightarrow H}$		
	=	> X	$\frac{s^2}{\left s-s_{\rm H}\right ^2}$		
	=	> X	$\frac{\Gamma_{H\to F}}{\sqrt{s}}.$		
	$\sigma_{ij ightarrow \mathrm{H} ightarrow \mathrm{F}}(\mathbf{s})$	=			

$$\Rightarrow \quad \times \quad \frac{\Gamma_{\rm H}^{\rm tot}}{\sqrt{s}} \, {\sf BR} \, ({\rm H} \to {\rm F})$$

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
	00000000000				

It is worth noting that

the introduction of complex poles does not imply complex kinematics. Only the residue of the propagator at the complex pole becomes complex, not any element of the phase-space integral.

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
	00000000000				

The complex-mass scheme

can be translated into a more familiar language by introducing the Bar – scheme.

$$\overline{M}_{\rm H}^2 = \mu_{\rm H}^2 + \gamma_{\rm H}^2 \quad \mu_{\rm H} \, \overline{\Gamma}_{\rm H} = \overline{M}_{\rm H} \, \gamma_{\rm H}$$

It follows a remarkable identity:

$$\frac{1}{s-s_{\rm H}} = \left(1+i\frac{\overline{\Gamma}_{\rm H}}{\overline{M}_{\rm H}}\right)\left(s-\overline{M}_{\rm H}^2+i\frac{\overline{\Gamma}_{\rm H}}{\overline{M}_{\rm H}}s\right)^{-1},$$

showing that the Bar-scheme is equivalent to introducing a running width in the propagator with parameters that are not the on-shell ones.

It is important to realize however, that

$$Im \Pi_{VV}(s) = 0, \quad s < 0,$$

since a space-like pair cannot appear as on-shell lines in a bubble.

To translate (4) to the full electroweak theory, we rewrite it

$$\frac{s}{s - m_H^2 + i\Gamma_H s/m_H} = \frac{s^2/m_H(1 + i\Gamma_H/m_H)}{s - m_H^2 + i\Gamma_H s/m_H} - \frac{s}{m_H^2}.$$
 (5)

The apparently higher order term in the numerator is essential for the high energy limit, and cannot be neglected. Equation (5) provides a calculational implementation of (4) that is equally valid in the full electroweak theory. Namely that one makes the replacement

$$\frac{i}{s-m_{H}^{2}}\rightarrow \frac{i\left(1+i\,\Gamma_{H}/m_{h}\right)}{s-m_{H}^{2}+i\,\Gamma_{H}s/m}$$

for the s-channel liggs boson propagator, leaving all other amplitudes unchanged. It would be extremely simple to make this substitution in computer programs that calculate the *amplitude* for $qq \rightarrow qqVV$ such as [6] and, with slightly more effort, in those that decively calculate the differential cross-section.

Unitarity requires that each partial wave of definite angular momentum and isospin, a_J^I , obeys

 $|a_J^I| \le 1$.

Since the condition a pixe to the exact amplitude one expects small violations at any given order in perturbation theory on glo to the transition of the series. However, goos violations changed be taken as an indication of the failure of the perturbation series. The I **become the integral Security Papper** $22/|\psi|$ to integra, and J = 0 to me the integral of the security $22/|\psi|$ to integral.

it's Bar - scheme !!! $d_{\theta}^{I} = \frac{1}{16\pi} \int_{-\pi}^{\theta} \frac{dt}{s} A_{I}.$

For a⁰_n, the only partial wave to which the Higgs resonance contributes, we obtain

$$a_{a}^{0} = -\frac{\Gamma_{H}}{m_{H}s - m_{H}^{2} + i\Gamma_{H}s/m_{H}} - \frac{2}{3}\frac{\Gamma_{H}}{m_{H}}\left(1 - \frac{m_{H}^{2}}{s}\log\left(1 + \frac{s}{m_{H}^{2}}\right)\right).$$

This is shown in Fig. 4, in comparison with various amplitudes that have been used in the past. Note that only the full amplitude satisfies unitarity both in the resonance region and well above it. Note also that it peaks very close to m_H , unlike the other cases.

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

 $m_W - m_Z \cos \theta_{\omega}$ and $\alpha_s(m_Z) = 0.120$, and use the MRS D-' parton distribution functions. Curves are as in Fig. 4.

model the Higgs bouns "ignal", and not the $O(q^2)$ "background" we compare it with the full result after subtraction of this background. As usually, we define the background to be the full result in the limit $m_H \to 0$, as this gives the lowest rate one could expect. It is done from (1) that this background is zero in the effective theory. The comparison is shown in Fig. 8, where it can be seen that the improved extannel approximation performs much better than the naive one.

To conclude, the principal result of this paper is shown in Fig. 3 and Eq. (4). It is that it is possible to require the sum of resonant and non-resonant diagrams to all orders, and the result smoothly extrapolates the well-known correct behaviour below, shows and on the resonance are implicible in the spectral properties of the prop

$$\frac{i}{s-m_{H}^{2}}\rightarrow \frac{i(1+i\Gamma_{H}/m_{H})}{s-m_{H}^{2}+i\Gamma_{H}s/m_{H}}$$

although it should be stressed that it includes effects that are not strictly associated with the propagation of a Higgs boson, namely the interference with non-resonan diagrams. In calculations that use the s-channel approximation, a better modification is

$$\frac{i}{s-m_{H}^{2}}\rightarrow \frac{im_{H}^{2}/s}{s-m_{H}^{2}+i\Gamma_{H}s/m_{H}}.$$

We have shown that the impact on the Higgs boson lines ape, and hence on the whole phenomenoogy of high energy vector boson pair production, is significant.

nothing to do with interference!!!

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
	000000000000				

Modified Seymour scheme?

$$\frac{m_{\rm H}^2}{s} \left[s - m_{\rm H}^2 + i \frac{\Gamma_{\rm H}}{m_{\rm H}} s\right]^{-1}$$

- not normalizable in $[0\,,\,\infty]$
- not derivable from first principles, not justifiable, not simulating interference

The Higgs propagator doesn't know about real and imaginary parts of boxes, e.g., $gg \to ZZ.$

$$= 2 \operatorname{Re} \Delta_{\mathrm{H}} \operatorname{Re} \left(\overline{A}_{\mathrm{H}} A_{\mathrm{B}}^{\dagger} \right)$$
$$+ 2 \operatorname{Im} \Delta_{\mathrm{H}} \operatorname{Im} \left(\overline{A}_{\mathrm{H}} A_{\mathrm{B}}^{\dagger} \right)$$

 $\overline{A}_{\mathrm{H}} = (s - s_{\mathrm{H}}) A_{\mathrm{H}}.$

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
	0000000000			0000000000000000	

Modified Seymour scheme?

Of course, the behavior for $s \to \infty$ is known and any correct treatment of PT (no mixing of different orders) will respect unitarity cancellations. The Higgs decays almost completely into longitudinals Zs, thus for $s \to \infty$

$$egin{array}{rcl} A_{
m H} &\sim& \displaystylerac{sm_q^2}{2M_Z^2}\,\Delta_{
m H}\,\ln^2rac{s}{m_q^2} \ A_{
m B} &\sim& \displaystyle-rac{m_q^2}{2M_Z^2}\,\ln^2rac{s}{m_q^2} \end{array}$$

- but the behavior for s → ∞ (unitarity) should not/cannot be used to simulate the interference for s < M_H².
- The only relevant message is: unitarity requires the interference to be destructive at large *s*.

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
		•0			

If the Higgs boson is off shell,

- in LO and NLO QCD in most cases the matrix element still respects gauge invariance,
- but in NLO EW gauge invariance is lost, unless the right scheme is used.

Technically speaking, we have a matrix element

$$\Gamma \left(\mathrm{H}
ightarrow \mathrm{F}
ight) \;\; = \;\; f \left(\mathbf{s} \, , \; \mu_{\mathrm{H}}^{\mathbf{2}}
ight) ,$$

where *s* is the virtuality of the external Higgs boson, $\mu_{\rm H}$ is the mass of internal Higgs lines and Higgs wave-function renormalization has been included.

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
		00			

The following happens:

- *f*(*s*_H, *s*_H) is gauge-parameter **independent** to all orders while
- f(µ_H², µ_H²) is gauge-parameter independent at one-loop but not beyond,
- $f(s, \mu_{\rm H}^2)$ is not.

 \wedge

In order to account for the off-shellness of the Higgs boson we can use (at one loop level) f(s, s), i.e.,

- we intuitively replace the on-shell decay of the Higgs boson of mass $\mu_{\rm H}$ with the *on-shell* decay of an Higgs boson of mass \sqrt{s} and
- not with the off-shell decay of an Higgs boson of mass $\mu_{\rm H}$.

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
000000000000	000000000000	00	0000000	0000000	0000000

▲ロ▶▲圖▶▲圖▶▲圖▶ ▲圖 のへで

00000	omena 00000000	Master formula	oo	oeoooooo	000000000	Conclusions
	Scheme	S				
	OFF	BW				
		$S(\zeta, \ldots) =$	$V_{\text{prod}}(\zeta, \ldots$.) $\Delta_{\rm BW}(\zeta) V_{\rm c}$	$lec(\zeta),$	
	OFF	Ρ				
		$S(\zeta, \ldots) =$	$V_{prod}(\zeta, \ldots$.) $\Delta_{prop}(\zeta) V$	$d_{\sf dec}(\zeta)$	
	• CPP	,				
	;	$S(\zeta,\ldots) = V$	$V_{prod}(s_{\mathrm{H}}, \ldots)$.) $\Delta_{prop}(\zeta)$ V	ά _{ec} (s _H)	

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
			0000000		

The proof that CPP-scheme

satisfies **gauge-parameter independence** can be sketched as follows:

$$\begin{split} S(s) &= \frac{V_{\text{prod}}(s_{\text{H}}) \, V_{\text{dec}}(s_{\text{H}})}{\left[1 - S'_{\text{HH}}(s_{\text{H}})\right](s - s_{\text{H}})},\\ &\frac{\partial}{\partial \, \xi} \, V_{\text{prod},\text{dec}}(s_{\text{H}}) \left[1 - S'_{\text{HH}}(s_{\text{H}})\right]^{-1/2} = 0, \end{split}$$

where ξ is an arbitrary gauge parameter and $S'_{\rm HH}(s_{\rm H})$ is the derivative of $S_{\rm HH}(s)$ computed at $s = s_{\rm H}$. Note that this equation follows from the use of Nielsen identities.

Figure: The normalized invariant mass distribution in the OFFP-scheme with running QCD scales for 600 *GeV* (black), 700 *GeV* (blue), 800 *GeV* (red).

Figure: The normalized invariant mass distribution in the OFFP-scheme (blue) and OFFBW-scheme (red) with running QCD scales at 800 *GeV*.

Figure: The normalized invariant mass distribution in the OFFP-scheme with running QCD scales for 600 *GeV*. The blue line refers to 8 *TeV*, the red one to 7 *TeV*.

Figure: The normalized invariant mass distribution in the OFFP-scheme with running QCD scales for 800 *GeV*. The blue line refers to 8 *TeV*, the red one to 7 *TeV*.

 $\mu_{\rm H} = 800 \ GeV$ with THU introduced by $\Gamma_{\rm H}^{\rm tot}(\zeta)$.

◆□→ ◆□→ ◆豆→ ◆豆→ □豆□

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
				•0000000000	0000

THU

It would we desirable to include two- and three-loop contributions as well in $\gamma_{\rm H}$ and for some of these contributions only on-shell results have been computed so far.

• Use the Higgs-Goldstone Lagrangian of the SM

$$S_{\rm HH}(s) = A M_{\rm H}^2 + B(s - M_{\rm H}^2) + \frac{C}{M_{\rm H}^2} (s - M_{\rm H}^2)^2 + \dots$$
$$A = \sum_{n=0}^{\infty} a_n \left(\frac{G_{\rm F} M_{\rm H}^2}{2\sqrt{2}\pi^2}\right)^n,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Prolegomena	Master formula	oo	Schemes 00000000	T HU ⊙●○○○○○○	Conclusions	
Derive						
	$\gamma_{ m H}$ =	$rac{G_{\rm F}M_{\rm H}^3}{2\sqrt{2}\pi^2}a_1$				

 $\times \left(1 + \frac{G_{\rm F} M_{\rm H}^2}{2\sqrt{2}\pi^2} \frac{a_2}{a_1} + \ldots\right).$ • The ratio a_2/a_1 can be used to **estimate that the first** correction to $\gamma_{\rm H}$ is roughly given by

$$\delta_{
m H} ~=~ 0.350119 \, rac{G_{
m F} \, \mu_{
m H}^2}{2 \sqrt{2} \pi^2}.$$

No large variations up to 1*TeV* with a **breakdown** of the perturbative expansion around 1.74 *TeV*.

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
				000000000000000000000000000000000000000	0000

in the Higgs-Goldstone model one has

$$\frac{\gamma_{\rm H}}{\mu_{\rm H}} = 1.1781 \, g_{\rm H} + 0.4125 \, g_{\rm H}^2 + 1.1445 \, g_{\rm H}^3$$

$$g_{\mathrm{H}} = rac{G_{\mathrm{F}}\mu_{\mathrm{H}}^2}{2\sqrt{2}\pi^2},$$

- $\gamma_{\rm H} =$ 168.84 GeV(LO), 180.94 GeV(NLO), 186.59 GeV(NLO) for $\mu_{\rm H} =$ 700 GeV.
- Using the three known terms in the series we estimate a 68% credible interval of $\gamma_{\rm H} =$ 186.59 \pm 1.93 GeV.
- The difference NNLO–LO is 17.8 GeV and in the full SM our estimate is $\gamma_{\rm H} = 163.26 \pm 11.75$ GeV.

Prolegomena	Master formula	gauge oo	Schemes 00000000	THU 000●0000000	Conclusions

It is better

to quantify the uncertainty at the level of those quantities that characterize the resonance.

total production cross-section

differential distribution

the maximum of the lineshape

the half-maxima of the lineshape

the area between half-maxima

where ζ is the Higgs virtuality.

 σ^{prod}

 $\Sigma = \frac{d\sigma^{\text{prod}}}{d\zeta}$

 $\{\zeta_{\max}, \Sigma_{\max}\}$

 $\{\zeta_{\pm}\,,\, {1\over 2}\Sigma_{\rm max}\}$

 $A = \int_{\zeta}^{\zeta_+} d\zeta \Sigma$

Prolegomena	Master formula	gauge oo	Schemes 00000000	THU ○○○○●○○○○○	Conclusions

Table: Theoretical uncertainty on the production cross-section, the height of the maximum, the position of the half-maxima and the area of the resonance.

$\mu_{\mathrm{H}}[\mathrm{GeV}]$	$\delta_{\rm H}[\%]$	$_{\delta\sigma}prod_{[\%]}$	$\delta \Sigma_{\rm max}[\%]$	$\Delta \zeta_{-} \;,\; \Delta \zeta_{+}$ [GeV]	$\delta A[\%]$
600	5.3	-6.0 + 6.3	-10.8 +11.4	(-2.5, +2.5) $(+2.5, -2.5)$	-4.8 +6.0
700	7.2	-8.0 + 8.6	-14.8 +16.0	(-9.0, +8.0) $(+4.0, -4.0)$	-7.0 +11.8
800	9.4	-9.7 +10.6	-19.3 +21.5	(-18.2, +18.2) $(+6.1, -6.1)$	-8.7 + 9.5

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ●

Figure: The invariant mass distribution in the OFFP-scheme with running QCD scales for $\mu_{\rm H} = 700 \ GeV$. The red lines give the associated theoretical uncertainty.

Prolegomena Master formula		Master formula	gauge oo	Schemes 00000000	THU ○○○○○○●○○	Conclusions
	The facto	or $\Gamma_{\rm H}^{\rm tot}(\zeta)$				
	it represer $\sqrt{\zeta}$ and w	nts the "on-she e have to quar	ell" decay on the co	of an Higgs bo prresponding u	oson of ma incertainty	ISS /.

$$\frac{\Gamma_{\rm H}}{\sqrt{\zeta}}\Big|_{HG} = \sum_{n=1}^{3} a_n \lambda^n = X_{HG},$$

$$\lambda = \frac{G_{\rm F}\zeta}{2\sqrt{2}\pi^2}.$$

Let $\Gamma_p = X_p \sqrt{\zeta}$ the width computed by PROPHECY4F, we redefine the total width as

$$\frac{\Gamma_{\text{tot}}}{\sqrt{\zeta}} = (X_p - X_{HG}) + X_{HG} = \sum_{n=0}^2 a_n \lambda^n,$$

where now $a_0 = X_p - X_{HG}$.

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
				000000000000000000000000000000000000000	00000

As long as λ is not too large

we can define a p% < 80% credible interval as

$$\begin{aligned} \Gamma_{\text{tot}}(\zeta) &= \Gamma_{\rho}(\zeta) \pm \Delta \Gamma \\ \Delta \Gamma &= \frac{5}{4} \max\{\mid a_0 \mid, a_1\} \, \rho \% \, \lambda^4 \, \sqrt{\zeta}. \end{aligned}$$

It is easily seen that

- for √ζ = 929 GeV the two-loop corrections are of the same size of the one-loop corrections
- for √ζ = 2.6 TeV one-loop and Born become of the same size.

Prolegomena	Master formula	gauge oo	Schemes 00000000	THU 00000000000000	Conclusions

Table: Theoretical uncertainty on the total decay width, Γ_{H}^{tot} . Γ_{ρ} is the total width computed by PROPHECY4F and $\Delta\Gamma$ gives the credible intervals.

$\sqrt{\zeta}$ [GeV]	Γ _ρ [GeV]	ΔΓ[68%]	ΔΓ[95%]
600	123	0.25	0.42
700	199	0.62	1.03
800	304	1.35	2.24
900	449	2.63	4.38
1000	647	4.72	7.85
1200	1205	13.1	21.7
1500	3380	34.7	57.8
2000	15800	98.9	165

Prolegomena	Master formula	gauge oo	Schemes 00000000	THU 000000000●C	Conclusions

Warning

- It is clear that it does not make much sense to have an error estimate beyond 1.3 TeV and, therefore, all results for the Higgs lineshape that have a sizable fraction of events in this high-mass region should not be taken too seriously. Here, once again, the only viable alternative to define the Higgs signal is the CPP-scheme.
- **above** 0.93 *TeV* perturbation theory becomes questionable since the two-loop corrections start be become larger than the one-loop ones
- above 1.3 TeV the error estimate also becomes questionable since the expansion parameter is λ = 0.7 and the 95% credible interval (after inclusion of the leading two-loop effects) is 32.2%.

Prolegomena 000000000000	Master formula	gauge oo	Schemes 00000000	THU 00000000000	Conclusions

Table: Total theoretical uncertainty on the production cross-section, the height of the maximum, the position of the half-maxima and the area of the resonance. The total is obtained by considering the THU on $\gamma_{\rm H}$ and on $\Gamma_{\rm tot}$ with a cut $\sqrt{\zeta} < 1.5~TeV$.

$\mu_{ m H}$ [GeV]	$\delta\sigma^{prod}$ [%]
600	-5.5 + 5.9
700	-7.0 + 7.5
800	-7.7 +8.8
900	-7.0 + 8.9

・ロト・日本・日本・日本・日本

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
				0000000000	0000

Leading K-factor for the decay width $H \rightarrow VV$:

$$\begin{array}{ll} \text{OS} & \quad {\cal K} \sim 1 + a_1 \, \frac{G_F M_H^2}{16 \sqrt{2} \pi^2} + a_2 \, \Big(\frac{G_F M_H^2}{16 \sqrt{2} \pi^2} \Big)^2 \\ \text{CPP} & \quad {\cal K} \sim 1 + a_1 \, \frac{G_F s_H}{16 \sqrt{2} \pi^2} \\ & \quad + \quad (a_2 + 3 i \pi \, a_1) \, \left(\frac{G_F s_H}{16 \sqrt{2} \pi^2} \right)^2, \end{array}$$

 $a_1 = 1.40 - 11.35 i$ $a_2 = -34.41 - 21.00 i$

Above 1 *TeV* the NNLO term dominates the K-factor $\sim 0.17 (M_{\rm H}/1 \text{ TeV})^4$.

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
00000000000	00000000000		0000000	0000000000	00000

Figure: The invariant mass distribution in the OFFP-scheme (black) and in the CPP-scheme (red) for $\mu_{\rm H} = 700 \text{ GeV}$ for the process $gg \rightarrow H \rightarrow Z^{c}Z^{c}$.

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions
				0000000000	00000

Figure: The invariant mass distribution in the OFFP-scheme (black) and in the CPP-scheme (red) for $\mu_{\rm H} = 800 \text{ GeV}$ for the process $gg \rightarrow H \rightarrow Z^{c}Z^{c}$.

Prolegomena	Master formula	gauge oo	Schemes 00000000	THU 00000000000	Conclusions

More on interference

- Consider $gg \rightarrow 4 f$, one would like to have the best prediction for signal, i.e., $\Gamma(H \rightarrow 4 f)$ at NLO+NNLO (NNLO dominates for large masses).
- Therefore the Signal is (at least) at two-loop level and is not gauge invariant for off-shell Higgs.
- One-loop (complete) Background(+ Interference) is under construction, two-loop Background seems out of reach for the foreseeable future.
- Dura lex sed lex . . .

Prolegomena	Master formula	gauge	Schemes	THU	Conclusions

・ロト ・部ト ・モト ・モト

3

Off-shell Pandora box

 $_{\star}$ F_H $_{\star}$ ^MH $_{\star}$ ^{ξ} $_{\star}$ _{σ prod}

	s
Conclusions	

- Many questions, few answers ... but
- aking the right questions takes as much skill as giving the right answers.
- Higgs signal is in a good shape
- Interference is not in a good shape

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○