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Practices that define hep at this point in time

A set of constructs, definitions, and propositions that present

a systematic view of SMEFT1

. . .. . .. . . while attempting to provide a consistency proof2

of quasi-renormalization in SMEFT

Theory deals with the well founded theoretical results obtained from first
principles, while phenomenology deals with not so well founded effective

models with a smaller domain of application.

1how the influence of higher energy processes is localizable in a few structural properties which can be captured
by a handful of Wilson coefficients

2Not only power counting, but a proof that proves that there are enough Wilson coefficients
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Mathematics suffers from some of the same inherent difficulties as theoretical
physics: great successes during the 20th century, increasing difficulties to do

better, as the easier problems get solved3.

3 Conventional vision : some very different physics occurs at Plank
scale, SM is just an effective field theory. What about the next SM? A
new weakly coupled renormalizable model? A tower of EFTs?

3 A different vision : is the SM close to a fundamental theory?

3The lesson of experiments 1973 - today: extremely difficult to find a flaw in the SM: maybe the SM includes
elements of a truly fundamental theory. But then how can one hope to make progress without experimental
guidance? One should pay close attention to what we don’t understand precisely about the SM even if the standard
prejudice is
“that’s a hard technical problem, and solving it won’t change anything”
Should we try to better understand links between SM and mathematics?
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* The naive version: for a theory or hypothesis to count as scientific it
ought to be falsifiable in principle

3 SM is in. The reason is that SM has withstood risky tests
that it could have easily failed

* The non-empirical confirmation, where the value of a theory is judged in
conjunction with empirical confirmation elsewhere in the same field,
assuming that a long term perspective of empirical confirmation exists
for the given theory4

4A mature science, according to Kuhn, experiences alternating phases of normal science and revolutions. In
normal science the key theories, instruments and values that comprise the disciplinary matrix are kept fixed,
permitting the cumulative generation of puzzle-solutions, whereas in a scientific revolution the disciplinary matrix
undergoes revision, in order to permit the solution of the more serious anomalous puzzles that disturbed the
preceding period of normal science
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Ann Inst Henn Pomcaré, Section A

Vol XX, n° 1, 1974, p 69 94 Physique theonque

One-loop divergencies
in the theory of gravitation

par

G. 't HOOFT (*) and M. VELTMA N (*)

C E R N , Geneva

ABSTRACT. — Al l one-loop divergencies of pure gravity and all those
of gravitation interacting with a scalar particle are calculated. In the case
of pure gravity, no physically relevant divergencies remain; they can all
be absorbed in a field renormalization. In case of gravitation interacting
with scalar particles, divergencies in physical quantities remain, even
when employing the socalled improved energy-momentum tensor.

1. INTRODUCTIO N

The recent advances in the understanding of gauge theories make a
fresh approach to the quantum theory of gravitation possible. First, we
now know precisely how to obtain Feynman rules for a gauge theory [1];
secondly, the dimensional regularization scheme provides a powerful tool
to handle divergencies [2]. In fact, several authors have already published
work using these methods [3], [4].

One may ask why one would be interested in quantum gravity. The
foremost reason is that gravitation undeniably exists; but in addition
we may hope that study of this gauge theory, apparantly realized in nature,
gives insight that can be useful in other areas of field theory. Of course,
one may entertain all kinds of speculative ideas about the role of gravi-
tation in elementary particle physics, and several authors have amused
themselves imagining elementary particles as littl e black holes etc. It
may well be true that gravitation functions as a cut-off for other interac-
tions; in view of the fact that it seems possible to formulate all known

(* ) On leave from the University of Utrecht, Netherlands
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It is possible that at some very large energy scale, all nonrenormalizable
interactions disappear. This seems unlikely, given the difficulty with gravity. It

is possible that the rules change drastically, it may even be possible that
there is no end, simply more and more scales (Georgi).

This prompts the important question whether there is a last fundamental theory in this
tower of EFTs which supersede each other with rising energies. Some people

conjecture that this deeper theory could be a string theory, i.e. a theory which is not a
field theory any more. Or should one ultimately expect from physics theories that they

are only valid as approximations and in a limited domain? (Hartmann, Castellani)

Or . . . one should not resort to arguments involving gravity: let us banish
further thoughts about gravity and the damage it could do to the weak scale

(J. D. Wells)
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? spin partners
45 spin 1/2

13 spin 1

1 spin 0 ?
more ? Hierarchy of VEVs?

serious fine-tuning
small mixings
accidental?
systematic (i.e. symmetry)?

banishing scalars?
extra dimensions?
warped extra dimensions?

Thinking UV . . .
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Back to the “more and more scales” scenario. Let’s undergo
revision (SMEFT) but it is an error to believe that rigour is the
enemy of simplicity. On the contrary we find it confirmed by
numerous examples that the rigorous method is at the same

time the simpler and the more easily comprehended.

The very effort for rigor forces us to find out simpler
methods of proof

D. Hilbert
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Executive summary (so far) After the LHC Run 1, the SM has been completed, raising its

status to that of a full theory. Despite its successes, this SM has shortcomings vis-à-vis cosmological observations.

At the same time, there is presently a lack of direct evidence for new physics phenomena at the accelerator energy

frontier. From this state of affairs arises the need for a consistent theoretical framework in which deviations from the

SM predictions can be calculated. Such a framework should be applicable to comprehensively describe

measurements in all sectors of particle physics: LHC Higgs measurements, past electroweak precision data, etc.

By simultaneously describing all existing measurements, this framework then
becomes an intermediate step toward the next SM, hopefully revealing the

underlying symmetries
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SMEFT is needed

HEFT at the LHC
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+ EWPD

It is manifestly of interest to formulate joint analysis where all of
the data is fit simultaneously
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¶ SM augmented with the inclusion of higher dimensional operators (T1T1T1);
not strictly renormalizable. Although workable to all orders, T1T1T1 fails
above a certain scale, Λ1Λ1Λ1.

· Consider any BSM model that is strictly renormalizable and respects
unitarity (T2T2T2); its parameters can be fixed by comparison with data,
while masses of heavy states are presently unknown. T1 6= T2T1 6= T2T1 6= T2 in the UV
but must have the same IR behavior.

¸ Consider now the whole set of data below Λ1Λ1Λ1.

T1T1T1 should be able to explain them by fitting Wilson
coefficients,
T2T2T2 adjusting the masses of heavy states (as SM did with
the Higgs mass at LEP) should be able to explain the data.

Goodness of both explanations are crucial in understanding how well
they match and how reasonable is to use T1T1T1 instead of the full T2T2T2

¹ Does T2T2T2 explain everything? Certainly not, but it should be able to
explain something more than T1T1T1.

º We could now define T3T3T3 as T2T2T2 augmented with (its own) higher
dimensional operators; it is valid up to a scale Λ2Λ2Λ2.
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SMEFT rulebook

¶ The construction of the SMEFT, to all orders, is not based
on assumptions on the size of the Wilson coefficients of
the higher dimensional operators

· Restricting to a particular UV case is not an integral part of
a general SMEFT treatment and various cases can be
chosen once the general calculation is performed.

¸ If the value of Wilson coefficients in broad UV scenarios
could be inferred in general this would be of significant
scientific value.
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Despite Wightman Axioms QFT is full of assumptions but, once
you accept them, QFT is a non flexible working environment:
you cannot work with the theory (pretending to get meaningful
results) before constructing it

What can be said at all can be said clearly and whereof one cannot speak thereof
one must be silent L. Wittgenstein

· · · constructing SMEFT

Experiments occur at finite energy and measure Seff(Λ)Seff(Λ)Seff(Λ)

Whatever QFT should give low energy Seff(Λ)Seff(Λ)Seff(Λ) , ∀Λ < ∞

There is no fundamenta scale above which Seff(Λ)Seff(Λ)Seff(Λ) is not defined
(K. Costello)
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The UV connection

AAA =
∞

∑
n=N

gn A
(4)

n +
∞

∑
n=N6

n

∑
l=1

∞

∑
k=1

gn g l
4+2k A

(4+2k)
n l k

∞

∑
n=N

gn A
(4)

n +
∞

∑
n=N6

n

∑
l=1

∞

∑
k=1

gn g l
4+2k A

(4+2k)
n l k

∞

∑
n=N

gn A
(4)

n +
∞

∑
n=N6

n

∑
l=1

∞

∑
k=1

gn g l
4+2k A

(4+2k)
n l k

where g is the SU(2) coupling constant and g4+2k = 1/(
√

2GF Λ2)k = gk
6 , where GF is the Fermi coupling constant

and Λ is the scale around which new physics (NP) must be resolved. For each process N defines the dim = 4 LO

(e.g. N = 1 for H → VV etc. but N = 3 for H → γ γ ). N6 = N for tree initiated processes and N−2 for loop initiated

ones. Here we consider single insertions of dim = 6 operators, which defines NLO SMEFT.

Ex: HAA (tree) vertex generated by O
(6)
φ W =

(
Φ

†
Φ
)

Fa µν Fa
µν , by

O
(8)
φ W = Φ

† Fa µν Fa
µρ Dρ Dν Φ etc.
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SMEFT ordertable for tree initiated 1→ 2 processes

g /dim −→
↓ g A

(4)
1 + g g6 A

(6)
1,1,1 + g g8 A

(8)
1,1,2

g3 A
(4)

3 + g3 g6 A
(6)

3,1,1 + g3 g2
6 A

(6)
3,2,1

. . . . . . . . . . . . . . . . . .

g g6 A
(6)

1,1,1 LO SMEFT. There is also RG-improved LO
(arXiv:1308.2627) and MHOU for LO SMEFT
(arXiv:1508.05060)

g3 g6 A
(6)

3,1,1 (arXiv:1505.03706) NLO SMEFT

g g8 A
(8)

1,1,2 (arXiv:1510.00372), g3 g2
6 A

(6)
3,2,1 MHOU for NLO

SMEFT

N.B. g8 denotes a single O(8) insertion, g2
6 denotes two, distinct, O(6) insertions
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A = gN A
(4)
LO ({p}) + gN g6 A

(6)
LO ({p}) + 1

16 π
2 gN+2 A

(4)
NLO({p} , {a}) + 1

16 π
2 gN+2 g6 A

(6)
NLO({p} , {a})A = gN A

(4)
LO ({p}) + gN g6 A

(6)
LO ({p}) + 1

16 π
2 gN+2 A

(4)
NLO({p} , {a}) + 1

16 π
2 gN+2 g6 A

(6)
NLO({p} , {a})A = gN A

(4)
LO ({p}) + gN g6 A

(6)
LO ({p}) + 1

16 π
2 gN+2 A

(4)
NLO({p} , {a}) + 1

16 π
2 gN+2 g6 A

(6)
NLO({p} , {a})

CT4CT4CT4

CT4,6 +MixCT4,6 +MixCT4,6 +Mix

{p} = {g , sin θW , M , MH , Mf} ∈{p} = {g , sin θW , M , MH , Mf} ∈{p} = {g , sin θW , M , MH , Mf} ∈ SM

{a} ={a} ={a} = Wilson coeff. ∈∈∈ Warsaw basis

{p} , {a} −→{p} , {a} −→{p} , {a} −→ {pren} , {aren} −→{pren} , {aren} −→{pren} , {aren} −→ IPS , {aren(µR)}IPS , {aren(µR)}IPS , {aren(µR)}

︷ ︸︸ ︷

GF , MW , MZ , MH

︷ ︸︸ ︷

GF , MW , MZ , MH

︷ ︸︸ ︷

GF , MW , MZ , MH

րրր

CT = counterterm

16/41



Physics could be made much easier if

¶ Each statement/equation/data is transformed into a table of rules

· Interpretation is left to a Turing machine

¸ The degree of complexity of a theory could be measured by comparing
the CPU time needed to

input data (+ cuts + ...) run TM output ascii file
input theory run TM output ascii file

* 01100001 00100000 01100010 01100001 01110011 01101001
01110011 00100000 01101001 01110011 00100000 01100011
01101100 01101111 01110011 01100101 01100100 00100000
01110101 01101110 01100100 01100101 01110010 00100000
01110010 01100101 01101110 01101111 01110010 01101101
01100001 01101100 01101001 01111010 01100001 01110100
01101001 01101111 01101110
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The role of H → VEV

O = Λ
−n

dim︷ ︸︸ ︷
M l

NF

∂
c
︷ ︸︸ ︷
ψ

a
ψ

b (
Φ

†)d
Φ

e Af

codim︸ ︷︷ ︸
3
2

(a+b)+c +d +e + f + l +n = 4

one loop renormalization is controlled by:

dim = 6 codim = 4 NF > 2 (Jargon: LO SMEFT)

The hearth of the problem: a large number of operators implodes into a small
number of coefficients

92 SM vertices ⇐⇒ 28 CP even operators (1 flavor, Nψ = 0,2)
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HHH

γγγ

W/ZW/ZW/Z

HHH

ggg

γγγ ZZZ

fff

µµµ -decay

Self-energies

SHH =
g2

16π2 ΣHH =
g2

16π2

(
Σ

(4)
HH +g6 Σ

(6)
HH

)
Sµν

AA =
g2

16π2 Σ
µν

AA Σ
µν

AA = ΠAA Tµν

Sµν

VV =
g2

16π2 Σ
µν

VV Σ
µν

VV = DVV δ
µν +PVV pµ pν

DVV = D(4)
VV +g6 D(6)

VV PVV = P(4)
VV +g6 P(6)

VV

Sµν

ZA =
g2

16π2 Σ
µν

ZA +g6 Tµν aAZ Σ
µν

ZA = ΠZA Tµν +PZA pµ pν

Sf =
g2

16π2

[
∆f +

(
Vf−Af γ

5) i/p
]
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∆UV = 2
4−n − γ− lnπ− ln

µ2
R

µ2
n is space-time dimension
loop measure µ4−n dnq

µR ren. scale

ZiZiZi = 1+
g2

16π2

(
dZ(4)

i +g6 dZ(6)
i

)
∆UV1+

g2

16π2

(
dZ(4)

i +g6 dZ(6)
i

)
∆UV1+

g2

16π2

(
dZ(4)

i +g6 dZ(6)
i

)
∆UV

With field/parameter counterterms we can make

SHH,ΠAA,DVV,ΠZASHH,ΠAA,DVV,ΠZASHH,ΠAA,DVV,ΠZA, Vf,AfVf,AfVf,Af and the corresponding Dyson
resummed propagators UV finite at O(g2 g6)O(g2 g6)O(g2 g6) ( Q.E.D.)

which is enough when working under the assumption that gauge bosons
couple to conserved currents
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Mixing

Field/parameter counterterms are not enough to make UV finite
the Green’s functions with more than two legs. A mixing matrix

among Wilson coefficients is needed:

aiaiai = ∑
j

ZW
ij aren

j∑
j

ZW
ij aren

j∑
j

ZW
ij aren

j ZW
ij = δij +

g2

16π2 dZW
ij ∆UVZW

ij = δij +
g2

16π2 dZW
ij ∆UVZW

ij = δij +
g2

16π2 dZW
ij ∆UV

| gN A
(4)

N +gK g6 A
(6)

K,1,1 |
2 ; | gN A

(4)
N |2 + 2gN+K g6 Re

[
A

(4)
N

]†
A

(6)
K,1,1

Remark negative bin entries judge the validity of the dim = 6 “linear” approach (arXiv:1511.05170)
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SM
H

W
±/φ±/X

±
W
±/φ±

W
±/φ± t

LO SMEFT

NLO SMEFTW
±/φ±/X

±
∑

•

t
∑

•

W
±/φ± W

±/φ±/H/φ0

W
±/φ± W

±/φ±

t W
±

Diagrams contributing to the amplitude for H → γ γH → γ γH → γ γ in the Rξ
RξRξ -gauge: SM (first row), LO SMEFT (second row), and

NLO SMEFT. Black circles denote the insertion of one dim = 6dim = 6dim = 6 operator. ∑•∑•∑• implies summing over all insertions in
the diagram (vertex by vertex). For triangles with internal charge flow (t,W±,φ

±,X±t,W±,φ
±,X±t,W±,φ
±,X±) only the clockwise orientation

is shown. Non-equivalent diagrams obtained by the exchange of the two photon lines are not shown. Higgs and
photon wave-function factors are not included. The Fadeev-Popov ghost fields are denoted by XXX.
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¶

Define the following combinations of Wilson coefficients (where
sθ (cθ ) denotes the sine(cosine) of the renormalized

weak-mixing angle.
aZZ = s2

θ aφ B +c2
θ aφ W −sθ cθ aφ WB

aAA = c2
θ aφ B +s2

θ aφ W +sθ cθ aφ WB

aAZ = 2cθ sθ

(
aφ W −aφ B

)
+
(

2c2
θ −1

)
aφ WB

and compute the (on-shell) decay H(P)→ A
µ
(p1)Aν

(p2)H(P)→ A
µ
(p1)Aν

(p2)H(P)→ A
µ
(p1)Aν

(p2) where
the amplitude is

Aµν

HAAAµν

HAAAµν

HAA = THAA T µνTHAA T µνTHAA T µν M2
H T µν = pµ

2 pν

1 −p1 ·p2 δ
µνM2

H T µν = pµ

2 pν

1 −p1 ·p2 δ
µνM2

H T µν = pµ

2 pν

1 −p1 ·p2 δ
µν

Remark The amplitude is made UV finite by mixing aAAaAAaAA with
aAA,aAZ,aZZaAA,aAZ,aZZaAA,aAZ,aZZ and aQWaQWaQW Q.E.D.

go
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·

Compute the (on-shell) decay H(P)→ A
µ
(p1)Zν

(p2)H(P)→ A
µ
(p1)Zν

(p2)H(P)→ A
µ
(p1)Zν

(p2). After
adding 1PI and 1PR components we obtain

Aµν

HAZAµν

HAZAµν

HAZ = THAZ T µνTHAZ T µνTHAZ T µν M2
H T µν = pµ

2 pν

1 −p1 ·p2 δ
µνM2

H T µν = pµ

2 pν

1 −p1 ·p2 δ
µνM2

H T µν = pµ

2 pν

1 −p1 ·p2 δ
µν

Remark The amplitude is made UV finite by mixing aAZaAZaAZ with
aAA,aAZ,aZZaAA,aAZ,aZZaAA,aAZ,aZZ and aQWaQWaQW Q.E.D.
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¸

Compute the (on-shell) decay H(P)→ Z
µ
(p1)Zν

(p2)H(P)→ Z
µ
(p1)Zν

(p2)H(P)→ Z
µ
(p1)Zν

(p2). The
amplitude contains

a DHZZDHZZDHZZ part proportional to δ µνδ µν
δ µν and

a PHZZPHZZPHZZ part proportional to pµ

2 pν

1pµ

2 pν

1pµ

2 pν

1 .

Remark Mixing of aZZaZZaZZ with other Wilson coefficients makes
PHZZPHZZPHZZ UV finite, while the mixing of aφ2aφ2aφ2 makes DHZZDHZZDHZZ UV finite
Q.E.D.
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¹

Compute the (on-shell) decay H(P)→W−
µ
(p1)W+

ν
(p2)H(P)→W−

µ
(p1)W+

ν
(p2)H(P)→W−

µ
(p1)W+

ν
(p2). This

process follows the same decomposition of H → ZZH → ZZH → ZZ and it is UV
finite in the dim = 4dim = 4dim = 4 part. However, for the dim = 6dim = 6dim = 6 one, there

are no Wilson coefficients left free in PHWWPHWWPHWW so that its UV
finiteness follows from gauge cancellations

(H → AA, AZ, ZZ, WW = 6 Lorentz structures controlled by 5 coefficients)

Proposition
This is the first part in proving closure of NLO SMEFT under
renormalization Q.E.D.

Remark Mixing of aφ Daφ Daφ D makes DHWWDHWWDHWW UV finite Q.E.D.
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º

Compute the (on-shell) decay H(P)→ b(p1)b(p2)H(P)→ b(p1)b(p2)H(P)→ b(p1)b(p2).

Remark

It is dim = 4dim = 4dim = 4 UV finite and

mixing of ad φad φad φ makes it UV finite also at dim = 6dim = 6dim = 6 Q.E.D.
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»

Compute the (on-shell) decay Z(P)→ f(p1)f(p2)Z(P)→ f(p1)f(p2)Z(P)→ f(p1)f(p2). It is dim = 4dim = 4dim = 4
UV finite and we introduce

al W = sθ al WB +cθ al BW al B = sθ al BW −cθ al WB

ad W = sθ ad WB +cθ ad BW ad B = sθ ad BW −cθ ad WB

au W = sθ au WB +cθ au BW au B = cθ au WB −sθ au BW

a(3)
φ l −a(1)

φ l =
1
2

(aφ l V +aφ l A ) aφ l =
1
2

(aφ l A −aφ l V )

aφu V = a(3)
φq +aφu +a(1)

φq aφu A = a(3)
φq −aφu +a(1)

φq

aφd V = a(3)
φq −aφd −a(1)

φq aφd A = a(3)
φq +aφd −a(1)

φq

and obtain that ( Q.E.D.)

Z → l lZ → l lZ → l l requires mixing of al BW ,aφ l Aal BW ,aφ l Aal BW ,aφ l A and aφ l Vaφ l Vaφ l V with other coefficients,
Z → uuZ → uuZ → uu requires mixing of au BW ,aφu Aau BW ,aφu Aau BW ,aφu A and aφu Vaφu Vaφu V with other coefficients,

Z → ddZ → ddZ → dd requires mixing of ad BW ,aφd Aad BW ,aφd Aad BW ,aφd A and aφd Vaφd Vaφd V with other coefficients,

Z → ννZ → ννZ → νν requires mixing of aφν = 2(a(1)
φ l +a(3)

φ l )aφν = 2(a(1)
φ l +a(3)

φ l )aφν = 2(a(1)
φ l +a(3)

φ l ) with other coefficients.
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¼

At this point we are left with the universality of the electric charge. In QED
there is a Ward identity telling us that eee is renormalized in terms of vacuum
polarization and Ward-Slavnov-Taylor identities allow us to generalize the

argument to the full SM.

We can give a quantitative meaning to the the previous statement by saying
that the contribution from vertices (at zero momentum transfer) exactly cancel

those from (fermion) wave function renormalization factors. Therefore,

Compute the vertex AffAffAff (at q2 = 0q2 = 0q2 = 0) and the fff wave function factor in SMEFT,
proving that the WST identity can be extended to dim = 6dim = 6dim = 6; this is non trivial

since there are no free Wilson coefficients in these terms (after the previous
steps); (non-trivial) finiteness of e+e−→ ffe+e−→ ffe+e−→ ff follows.

Proposition
This is the second part in proving closure of NLO SMEFT under
renormalization Q.E.D.
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The IR connection (e.g. Z → llZ → llZ → ll)

= ρ
f
Z γµ

[(
I(3)
f + i aL

)
γ+−2Qf κ

f
Z sin2

θ + i aQ

]
= ρ

f
Z γµ

[(
I(3)
f + i aL

)
γ+−2Qf κ

f
Z sin2

θ + i aQ

]
= ρ

f
Z γµ

[(
I(3)
f + i aL

)
γ+−2Qf κ

f
Z sin2

θ + i aQ

]
A tree

µ = g A
(4)

1 µ
+g g6 A

(6)
1 µ

A
(4)

1 µ
=

1
4cθ

γµ

(
vL + γ

5
)

A
(6)

1 µ
=

1
4

γµ

(
Vl +Al γ

5
)

Vl =
s2

θ

cθ

(
4s2

θ −7
)

aAA +cθ

(
1+4s2

θ

)
aZZ +sθ

(
4s2

θ −3
)

aAZ

+
1

4cθ

(
7−s2

θ

)
aφ D +

2
cθ

aφ l V

Al =
s2

θ

cθ

aAA +cθ aZZ +sθ aAZ −
1

4cθ

aφ D +
2
cθ

aφ L A

After UV renormalization, i.e. after counterterms and mixing have been
introduced, we perform analytic continuation in n (space-time dimension),
n = 4+ ε with ε positive.
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A tree ,1L = u1 A tree ,1L
µ v2 eµ (λ , P)

Γ
(
Z → l + l

)
|div =

2
3

1
(2π)2 ∑

spin

∫
dΦ1→2 Re

[
A tree

]†
A 1L |div

(
ε , mf

)(
ε , mf

)(
ε , mf

)
-scheme for (IR , collinear) singularities

1
ε̂

=
2
ε

+ γ− ln
M2

W

µ2 Lc W = ln
m2

l

M2
W

Lc Z = ln
m2

l

M2
Z

γ = γ + lnπ L = ln
M2

Z

M2
W
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IR /collinear divergent factor

F virt = −2
(

1
ε̂

+ γ

)
(1+Lc Z)−L2

c Z −4Lc Z L+3Lc Z −4L

− 2 ln
M2

W

µ2 (1+Lc Z)+2−8ζ (2)

Sub-amplitudes

Γ
(4)
0 =

1
2

(
1−4s2

θ +8s4
θ

) 1
c2

θ

=
1
4

(
1+v2

l

) 1
c2

θ

Γ
(4)
0A = 2

(
1−4s2

θ

) sθ

cθ

= 2vl
sθ

cθ

Γ
(6)
0 = −

(
3−16s2

θ +8s4
θ

) s2
θ

c2
θ

aAA +
(

1−8s4
θ

)
aZZ −

(
1−8s2

θ +8s4
θ

) sθ

cθ

aAZ

+
1
4

(
3−16s2

θ +8s4
θ

) 1
c2

θ

aφ D +
1
c2

θ

aφ l A +
(

1−4s2
θ

) 1
c2

θ

aφ l V
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Proposition
The infrared/collinear part of the one-loop virtual corrections
shows double factorization.

Γ
(
Z → l + l

)
|div = − g4

384π3 MZ s2
θ F virt

[
Γ

(4)
0 (1+g6 ∆Γ)+g6 Γ

(6)
0

]

∆Γ = 2
(

2−s2
θ

)
aAA +2s2

θ aZZ +2
c3

θ

sθ

aAZ −
1
2

1
s2

θ
c2

θ

aφ D
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Next we compute Z(P)→ l(p1)+ l(p2)+ γ(k), obtaining

Γ
(
Z → l + l + γ

)
=

1
3

1
(2π)5 ∑

spin

∫
dΦ1→3 |A real |2

A real = u1 A real
µν v2 eµ (λ , P)eν (σ , k)

We split the total into

“approximated”, n 6= 4n 6= 4n 6= 4, approximated phase-space, reproducing the
exact structure of singularities

“remainder”, n = 4n = 4n = 4, finite
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After expanding in ε = n−4 we obtain an overall infrared/collinear (real) factor

F real = −2
(

1
ε̂

+ γ

)
(1+Lc Z)−L2

c Z −2Lc Z L+3Lc Z −2L

− 2 ln
M2

Z

µ2 (1+Lc Z)+1−4ζ (2)

and a partial width integrated over the whole photon phase space

Γ
app (Z → l + l +(γ)

)
=

g4

384π3 MZ s2
θ F real

[
Γ

(4)
0 (1+g6 ∆Γ)+g6 Γ

(6)
0

]

Proposition

The infrared/collinear part of the real corrections shows double factorization.
The total = virtual + real is IR /collinear finite at O(g4 g6)O(g4 g6)O(g4 g6) ( Q.E.D.).
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Assembling everything gives

Γ
l
QED =

3
4

Γ
l
0

α

π

(
1+g6 ∆

(6)
QED

)
Γ

l
0 =

GF M3
Z

24
√

2π

(
v2

l +1
)

∆
(6)
QED = 2

(
2−s2

θ

)
aAA +2s2

θ aZZ +2

(
c3

θ

sθ

+
512
26

vL

v2
L +1

)
aAZ

− 1
2

c2
θ

s2
θ

aφ D +
1

v2
L +1

δ
(6)
QED

δ
(6)
QED =

(
1−6vl −v2

l

) 1
c2

θ

(
sθ aAA −

1
4

aφ D

)
+

(
1+2vl −v2

l

) (
aZZ +

sθ

cθ

aAZ

)
+

2
c2

θ

(
aφ l A +vl aφ l V

)
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WWW -decay: solvable problems expected

Triple/quadrupole gauge couplings,
last stop before renormalizability?
Gauge anomalies, anomaly cancellation; d’Hoker-Farhi
(Wess-Zumino) terms? Extra simmetry? Etc: severe
problems expected

(perhaps, a deeper understanding of SMEFT)
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=== +++ MZMZMZ

•••

•••

•••

•••

= A Jα Jβ εµναβ p1µ p2ν= A Jα Jβ εµναβ p1µ p2ν= A Jα Jβ εµναβ p1µ p2ν

U(1)U(1)U(1)

SU(2)SU(2)SU(2) SU(2)SU(2)SU(2)

etc.

Proposition

7 SMEFT anomalies are UV finitea and localb

It’s another tiny step forward

aIt’s good for renormalizability
bIt’s good for unitarity
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4 EFT is traditionally a very successful paradigm to use to
interpret the data because it is implemented as a well
defined field theory

4 Standard EFTs can be systematically improved from LO to
NLO as they avoid ad-hoc and ill defined assumptions
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Ideas that require people to reorganize their picture of the world provoke hostility

To conclude, the journey to the next SM may require crossing
narrow straits of precision physics. If that is what nature has in

store for us, we must equip ourselves with both a range of
concrete BSM models as well as a general SMEFT. Both will be

indispensable tools in navigating an ocean of future
experimental results.

Each paradigm will be shown to satisfy more or less the
criteria that it dictates for itself and to fall short of a few
of those dictated by its opponent

T. S. Kuhn
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Thank you for your attention
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NLO SMEFT for Higgs and EW precision data

43/41



No NP yet?
A study of SM-deviations: here the reference process is gg → Hgg → Hgg → H
3 κκκ -approach: write the amplitude as

AggAggAgg = ∑
q=t,b

κ
gg
q A gg

q +κ
gg
c∑

q=t,b
κ

gg
q A gg

q +κ
gg
c∑

q=t,b
κ

gg
q A gg

q +κ
gg
c

A gg
tA gg
tA gg
t being the SM t -loop etc. The contact term (which is the LO

SMEFT) is given by κ
gg
cκ
gg
cκ
gg
c . Furthermore

κ
gg
q = 1+∆κ

gg
qκ

gg
q = 1+∆κ

gg
qκ

gg
q = 1+∆κ

gg
q
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Compute

R = σ

(
κ

gg
q , κ

gg
c

)
/σSM−1 [%]R = σ

(
κ

gg
q , κ

gg
c

)
/σSM−1 [%]R = σ

(
κ

gg
q , κ

gg
c

)
/σSM−1 [%]

¶ In LO SMEFT κcκcκc is non-zero and κq = 1κq = 1κq = 1. 5 You measure a
deviation and you get a value for κcκcκc

· However, at NLO ∆κq∆κq∆κq is non zero and you get a
degeneracy

¸ The interpretation in terms of κ
LO
cκ
LO
cκ
LO
c or in terms of {κ

NLO
c{κ
NLO
c{κ
NLO
c ,∆κ

NLO
q }κ
NLO
q }κ
NLO
q }

could be rather different.

5Certainly true in the linear realization
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Going interpretational

Agg
SMEFTAgg
SMEFTAgg
SMEFT =

g g2
S

π2 ∑
q=t,b

κ
gg
q A gg

q
g g2

S
π2 ∑

q=t,b
κ

gg
q A gg

q
g g2

S
π2 ∑

q=t,b
κ

gg
q A gg

q

+ 2gS g6

s
M2

W
aφg +

g g2
S g6

π2 ∑
q=t,b

A NF ; gg
q aqg2gS g6

s
M2

W
aφg +

g g2
S g6

π2 ∑
q=t,b

A NF ; gg
q aqg2gS g6

s
M2

W
aφg +

g g2
S g6

π2 ∑
q=t,b

A NF ; gg
q aqg

Remark use arXiv:1505.03706, adopt Warsaw basis (arXiv:1008.4884),
eventually work in the Einhorn-Wudka PTG scenario (arXiv:1307.0478)

¬ LO SMEFT: κq = 1κq = 1κq = 1 and aφgaφgaφg is scaled by 1/16π2 being LG (blue color)

 NLO PTG-SMEFT: κq 6= 1κq 6= 1κq 6= 1 but only PTG operators inserted in loops
(non-factorizable terms absent), aφgaφgaφg scaled as above

® NLO full-SMEFT: κq 6= 1κq 6= 1κq 6= 1 LG/PTG operators inserted in loops
(non-factorizable terms present), LG coefficients scaled as above

At NLO, ∆κ = g6 ρ∆κ = g6 ρ∆κ = g6 ρ
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Warsaw basis
g−1

6
g−1

6
g−1

6
=

√
2GF Λ

2
√

2GF Λ
2

√
2GF Λ

2

4π αs4π αs4π αs = g2
Sg2
Sg2
S

ρ
gg
tρ
gg
tρ
gg
t = aφ W +at φ +2aφ2−

1
2

aφ Daφ W +at φ +2aφ2−
1
2

aφ Daφ W +at φ +2aφ2−
1
2

aφ D

ρ
gg
bρ
gg
bρ
gg
b = aφ W −ab φ +2aφ2−

1
2

aφ Daφ W −ab φ +2aφ2−
1
2

aφ Daφ W −ab φ +2aφ2−
1
2

aφ D

Relaxing the PTG assumption introduces
non-factorizable sub-amplitudes proportional to at g,ab gat g,ab gat g,ab g with a
mixing among {aφg,at g,ab g}{aφg,at g,ab g}{aφg,at g,ab g}. Meanwhile, renormalization has
made one-loop SMEFT finite, e.g. in the GFGFGF -scheme, with a

residual µRµRµR -dependence.

What are POs? Experimenters collapse some “primordial quantities” (say
number of observed events in some pre-defined set-up) into some

“secondary quantities” which we feel closer to the theoretical description of
the phenomena.

Residues of resonant poles, κκκ -parameters and Wilson coefficients are
different layers of POs
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Λ = 3 TeVΛ = 3 TeVΛ = 3 TeV
gg → Hgg → Hgg → H off-shell
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gg→ Hgg→ Hgg→ H

tttttt

ZZZZZZ

κcκcκc only

κc = 0κc = 0κc = 0

total

ai = 1, ∀iai = 1, ∀iai = 1, ∀i
Λ = 3 TeVΛ = 3 TeVΛ = 3 TeV

Another reason to go NLO

The contact term is real . . . κ
gg
c ∈ R

g g2
S g6
π2 ∑q=t,b

[
∆κ

gg
q A

gg
q +A

NF;gg
q aqg

]
∈ C

2gS g6
s

M2
W

aφg ∈ R
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Return

Appendix C. Dimension-Six Basis Operators for the SM22.

X3 (LG) ϕ6 and ϕ4D2 (PTG) ψ2ϕ3 (PTG)

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ2 (ϕ†ϕ)2(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

Q
W̃

εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 (LG) ψ2Xϕ (LG) ψ2ϕ2D (PTG)

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσ
µνer)τ

IϕW I
µν Q

(1)
ϕl (ϕ†i

↔

Dµ ϕ)(l̄pγ
µlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσ
µνer)ϕBµν Q

(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσ
µνTAur)ϕ̃ G

A
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγ
µer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσ
µνur)τ

I ϕ̃W I
µν Q

(1)
ϕq (ϕ†i

↔

Dµ ϕ)(q̄pγ
µqr)

QϕB ϕ†ϕBµνB
µν QuB (q̄pσ

µνur)ϕ̃ Bµν Q
(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

Q
ϕB̃

ϕ†ϕ B̃µνB
µν QdG (q̄pσ

µνTAdr)ϕG
A
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγ
µur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσ
µνdr)τ

IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγ
µdr)

Q
ϕW̃B

ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσ
µνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγ

µdr)

Table C.1: Dimension-six operators other than the four-fermion ones.

22These tables are taken from [5], by permission of the authors.
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