Higgs Couplings

 à la HXSWG

Giampiero PASSARINO

Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino, Italy

HC2012 Workshop, Tokyo, 18-20 November 2012

Outline

Higgs couplings à la HXSWG
recipe by A. Tinoco Mendes

- generic Intro side dish
- generic BSM directions flavouring
- if any discrepancy, dissecting it
- how it may go away adding some zing to the dish
- a final touch

Outline

Let's consider the following path

Status HCP 2012

- Uncertainties of coupling parameters $\approx 20-30 \%$
- No significant deviations from the SM couplings are observed (well within 2σ). N.B. 20\% deviation $\equiv \Lambda \approx 5 \mathrm{TeV}$.
- Too early to draw any conclusion? Data-driven Theory!

CMS
 ；\＃02／20F\＄＞！4\＆FG＞2／䏸

Theory Choice

Inference to Best Explanation
Richter's IBE Criteria (Physics Today, October 2006)

- Most of what currently passes as the most advanced theory looks to be more theological speculation, the development of models with no testable consequences, than it is the development of practical knowledge, the development of models with testable and falsifiable consequences.

Nature Choice? Rashomon effect?

- $\mathbf{H}(125.9)$ it is more SM-like than at ICHEP except for $\gamma \gamma$ where it is exactly what it was in ICHEP.
- Chris Parkes told BBC News: "Supersymmetry may not be dead but these latest results have certainly put it into hospital."
- John Elis said "it was actually expected in (some) supersymmetric models. I certainly won't lose any sleep over the result."
- If new physics exists, then it is hiding very well behind the Standard Model.

Nature Choice? Rashomon effect?

- $\mathbf{H}(\mathbf{1 2 5 . 9})$ it is more SM-like than at ICHEP except for $\gamma \gamma$ where it is exactly what it was in ICHEP.
- Chris Parkes told BBC News: "Supersymmetry may not be dead but these latest results have certainly put it into hospital."
〉 John Ellis said "it was actually expected in (some) supersymmetric models. I certainly won't lose any sleep over the result."
- If new physics exists, then it is hiding very well behind the Standard Model.

Nature Choice? Rashomon effect?

- $\mathbf{H}(125.9)$ it is more SM-like than at ICHEP except for $\gamma \gamma$ where it is exactly what it was in ICHEP.
- Chris Parkes told BBC News: "Supersymmetry may not be dead but these latest results have certainly put it into hospital."
- John Ellis said "it was actually expected in (some) supersymmetric models. I certainly won't lose any sleep over the result."
- If new physics exists, then it is hiding very well behind the Standard Model.

Nature Choice? Rashomon effect?

- $\mathbf{H}(125.9)$ it is more SM-like than at ICHEP except for $\gamma \gamma$ where it is exactly what it was in ICHEP.
- Chris Parkes told BBC News: "Supersymmetry may not be dead but these latest results have certainly put it into hospital."
- John Ellis said "it was actually expected in (some) supersymmetric models. I certainly won't lose any sleep over the result."
- If new physics exists, then it is hiding very well behind the Standard Model.

Mission (impossible)

Higgs precision physics goal of making BSM \equiv SM examining emerging algorithms to circumvent limited technology
(for results \rightarrow rest of the workshop Rauch, \cdots, Grojean time-ordered)

Example

let's pick up one particular example: the fermiophobic Higgs model studied in present LHC analyses. Field-theoretically no consistent model of such kind exists, i.e. current analyses can only be viewed as purely phenomenological studies rather than putting constraints on solid models.

Key formula arXiv:1209.5538

A. David, A. Denner, M. Duehrssen, M. Grazzini, C. Grojean, G. P., M. Schumacher, M. Spira, G. Weiglein, M. Zanetti

The width of the assumed Higgs boson near 125 GeV is neglected ($5-10 \%$ accuracy for single channels), i.e. the zero-width approximation for this state is used. Hence

$$
(\sigma \cdot \mathrm{BR})(i i \rightarrow \mathrm{H} \rightarrow f f)=\frac{\sigma_{i j} \cdot \Gamma_{f f}}{\Gamma_{\mathrm{H}}}
$$

Taking the process $\mathrm{gg} \rightarrow \mathrm{H} \rightarrow \gamma \gamma$ as an example, one would use as cross section:
$(\sigma \cdot \mathrm{BR})(\mathrm{gg} \rightarrow \mathrm{H} \rightarrow \gamma \gamma)=\sigma_{\mathrm{SM}}(\mathrm{gg} \rightarrow \mathrm{H}) \cdot \mathrm{BR}_{\mathrm{SM}}(\mathrm{H} \rightarrow \gamma \gamma) \cdot \frac{\kappa_{\mathrm{g}}^{2} \cdot \kappa_{\gamma}^{2}}{\kappa_{\mathrm{H}}^{2}}$

Scaling of the VBF cross section

$\mathrm{K}_{\mathrm{VBF}}^{2}$ refers to the functional dependence of the VBF cross section on the scale factors κ_{W}^{2} and κ_{Z}^{2} :

$$
\kappa_{\mathrm{VBF}}^{2}\left(\kappa_{\mathrm{W}}, \kappa_{\mathrm{Z}}, m_{\mathrm{H}}\right)=\frac{\kappa_{\mathrm{W}}^{2} \cdot \sigma_{\mathrm{WF}}\left(m_{\mathrm{H}}\right)+\kappa_{\mathrm{Z}}^{2} \cdot \sigma_{\mathrm{ZF}}\left(m_{\mathrm{H}}\right)}{\sigma_{\mathrm{W} F}\left(m_{\mathrm{H}}\right)+\sigma_{\mathrm{ZF}}\left(m_{\mathrm{H}}\right)}
$$

Gluon fusion

As NLO QCD corrections factorize with the scaling of the electroweak couplings with κ_{t} and κ_{b}, the function $\kappa_{\mathrm{g}}^{2}\left(\kappa_{\mathrm{b}}, \kappa_{\mathrm{t}}, \mathrm{m}_{\mathrm{H}}\right)$ can be calculated in NLO QCD:

$$
\kappa_{\mathrm{g}}^{2}\left(\kappa_{\mathrm{b}}, \kappa_{\mathrm{t}}, m_{\mathrm{H}}\right)=\frac{\kappa_{\mathrm{t}}^{2} \cdot \sigma_{\mathrm{ggH}}^{\mathrm{tt}}\left(m_{\mathrm{H}}\right)+\kappa_{\mathrm{b}}^{2} \cdot \sigma_{\mathrm{gg}}^{\mathrm{bb}}\left(m_{\mathrm{H}}\right)+\kappa_{\mathrm{t}} \kappa_{\mathrm{b}} \cdot \sigma_{\mathrm{ggH}}^{\mathrm{tb}}\left(m_{\mathrm{H}}\right)}{\sigma_{\mathrm{ggH}}^{\mathrm{tt}}\left(m_{\mathrm{H}}\right)+\sigma_{\mathrm{ggH}}^{\mathrm{bb}}\left(m_{\mathrm{H}}\right)+\sigma_{\mathrm{ggH}}^{\mathrm{tb}}\left(m_{\mathrm{H}}\right)}
$$

Here, $\sigma_{\mathrm{ggH}}^{\mathrm{tt}}, \sigma_{\mathrm{ggH}}^{\mathrm{bb}}$ and $\sigma_{\mathrm{ggH}}^{\mathrm{tb}}$ denote the square of the top-quark, of the bottom-quark contribution and the top-bottom interference, respectively.

Partial width scaling

Treat the scale factor for $\Gamma_{g g}$ as a second order polynomial in κ_{b} and κ_{t}

κ_{γ}^{2} refers to the scale factor for the loop-induced $\mathrm{H} \rightarrow \gamma \gamma$ decay. Also for the $\mathrm{H} \rightarrow \gamma \gamma$ decay NLO QCD corrections exist. This allows to treat the scale factor for the $\gamma \gamma$ partial width as a second order polynomial in $\kappa_{b}, \kappa_{t}, \kappa_{\tau}$, and κ_{W} :

$$
\kappa_{\gamma}^{2}\left(\kappa_{\mathrm{b}}, \kappa_{\mathrm{t}}, \kappa_{\tau}, \kappa_{\mathrm{W}}, m_{\mathrm{H}}\right)=\frac{\sum_{i, j} \kappa_{i} \kappa_{j} \cdot \Gamma_{\gamma \gamma}^{i j}\left(m_{\mathrm{H}}\right)}{\sum_{i, j} \Gamma_{\gamma \gamma}^{j}\left(m_{\mathrm{H}}\right)}
$$

where the pairs (i, j) are $\mathrm{bb}, \mathrm{tt}, \tau \tau, \mathrm{WW}, \mathrm{bt}, \mathrm{b} \tau, \mathrm{bW}, \mathrm{t} \tau, \mathrm{tW}, \tau \mathrm{W}$.
The $\Gamma_{\gamma \gamma}^{i j} \Leftrightarrow\left\{\mathbf{k}_{\mathbf{i}}=\mathbf{1}, \kappa_{\mathbf{j}}=\mathbf{0},(\mathbf{j} \neq \mathbf{i})\right\}$.
The cross-terms $\Gamma_{\gamma \gamma}^{i j},(i \neq j) \Leftrightarrow\left\{\boldsymbol{\kappa}_{\mathbf{i}}=\kappa_{\mathbf{j}}=\mathbf{1}, \kappa_{\mathbf{l}}=\mathbf{0},(\mathbf{l} \neq \mathbf{i}, \mathbf{j})\right\}$, subtracting $\Gamma_{\gamma \gamma}^{i j}$ and $\Gamma_{\gamma \gamma}^{j j}$.

The total width Γ_{H} is the sum of all Higgs partial decay widths. Under the assumption that no additional BSM Higgs decay modes (into either invisible or undetectable final states) contribute to the total width, $\Gamma_{\mathrm{H}}=$ the sum of the scaled partial Higgs decay widths to SM particles, \leadsto a total scale factor κ_{H}^{2} compared to the SM total width $\Gamma_{\mathrm{H}}^{\mathrm{SM}}$:

$$
\kappa_{\mathrm{H}}^{2}\left(\kappa_{i}, m_{\mathrm{H}}\right)=\sum_{\substack{j=\mathrm{WW}^{(*)}, \mathrm{ZZ} \\ \gamma \gamma, \mathrm{Z} \gamma, \mathrm{gg}, \mathrm{tt}, \mathrm{c} \overline{\mathrm{c}}, \mathrm{~s} \overline{\mathrm{~s}}, \mu^{-} \mu^{+}}} \frac{\Gamma_{j}\left(\mathrm{k}_{i}, m_{\mathrm{H}}\right)}{\Gamma_{\mathrm{H}}^{\mathrm{SM}}\left(m_{\mathrm{H}}\right)}
$$

Common scale factor Free parameter: $\kappa\left(=\kappa_{\mathrm{t}}=\kappa_{\mathrm{b}}=\kappa_{\tau}=\kappa_{\mathrm{W}}=\kappa_{\mathrm{Z}}\right)$.					
	$\mathrm{H} \rightarrow \gamma \gamma$	$\mathrm{H} \rightarrow \mathrm{ZZ}^{(*)}$	$\mathrm{H} \rightarrow \mathrm{WW}^{(*)}$	$\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$	$\mathrm{H} \rightarrow \tau^{-} \tau^{+}$
	κ^{2}				
VBF					
WH ZH					

The simplest possible benchmark parametrization where a single scale factor applies to all production and decay modes. Cannot be realized within ESM.

	$\mathrm{H} \rightarrow \gamma \gamma$	$\mathrm{H} \rightarrow \mathrm{ZZ}^{(*)}$	H
$\mathrm{ggH}_{\text {tit }}$	$k^{k_{f}^{2} \cdot k_{\gamma}^{2}\left(k_{f}, k_{f}, k_{f}, k_{V}\right)}$	${ }^{k_{\mathrm{f}}^{2} \cdot \mathrm{k}_{\mathrm{V}}^{2}}$	
tt	2 $x^{x_{H}^{2}\left(x_{j}\right)}$	$\begin{aligned} & \frac{x_{\mathrm{N}}^{2}\left(x_{i j}\right)}{k_{\mathrm{V}}^{2} \cdot k_{V}^{2}} \end{aligned}$	
VBF			
$\begin{aligned} & \text { WH } \\ & \text { ZH } \end{aligned}$	$\mathrm{k}_{\mathrm{H}}^{2}\left(\mathrm{k}_{\mathrm{j}}\right)$	$\overline{k_{H}^{2}\left(k_{i}\right)}$	
Boson and fermion scaling without assumptions on the to Free parameters: $\kappa_{\mathrm{VV}}\left(=\kappa_{\mathrm{V}} \cdot \kappa_{\mathrm{V}} / \kappa_{\mathrm{H}}\right), \lambda_{\mathrm{fV}}$			
	$\mathrm{H} \rightarrow \gamma \gamma$	$\mathrm{H} \rightarrow \mathrm{ZZ}{ }^{(*)}$	H
$\underset{\text { tig }}{\text { ggH }}$	$\kappa_{\mathrm{VV}}^{2} \cdot \lambda_{\mathrm{fV}}^{2} \cdot \kappa_{\gamma}^{2}\left(\lambda_{\mathrm{fV}}, \lambda_{\mathrm{fV}}, \lambda_{\mathrm{fV}}, 1\right)$	$\mathrm{k}_{\mathrm{V} V}^{2} \cdot \lambda_{\mathrm{fV}}^{2}$	
$\begin{aligned} & \text { VBF } \\ & \text { WH } \\ & \text { ZH } \end{aligned}$	$k_{\mathrm{VV}}^{2} \cdot k_{\gamma}^{2}\left(\lambda_{\mathrm{fV}}, \lambda_{\mathrm{fV}}, \lambda_{\mathrm{fV}}, 1\right)$	$\kappa_{V \mathrm{~V}}^{2}$	

Probing up-type and down-type fermion symmetry assuming no invisible or undetectable widths Free parameters: $\kappa_{\mathrm{v}}\left(=\kappa_{\mathrm{z}}=\kappa_{\mathrm{w}}\right), \lambda_{\mathrm{du}}\left(=\kappa_{\mathrm{d}} / \kappa_{\mathrm{u}}\right), \kappa_{\mathrm{u}}\left(=\kappa_{\mathrm{t}}\right)$.					
	$\mathrm{H} \rightarrow \gamma \gamma$	$\mathrm{H} \rightarrow \mathrm{ZZ}{ }^{(*)}$	$\mathrm{H} \rightarrow \mathrm{WW}^{(*)}$	$\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$	$\mathrm{H} \rightarrow \tau^{-} \tau^{+}$
ggH	$\frac{\kappa_{g}^{2}\left(\kappa_{u} \lambda_{\mathrm{du}}, \kappa_{u}\right) \cdot \kappa_{\gamma}^{2}\left(\kappa_{u} \lambda_{\mathrm{du}}, \kappa_{\mathrm{u}}, \kappa_{\mathrm{u}} \lambda_{\mathrm{du}}, \kappa_{\mathrm{V}}\right)}{\kappa_{\mathrm{H}}^{2}\left(\kappa_{j}\right)}$	$\frac{\kappa_{\mathrm{g}}^{2}\left(\kappa_{\mathrm{u}} \lambda_{\mathrm{du}}, \kappa_{u}\right) \cdot \kappa_{V}^{2}}{\kappa_{\mathrm{H}}^{2}\left(\kappa_{j}\right)}$		$\frac{\kappa_{\mathrm{g}}^{2}\left(\kappa_{u} \lambda_{\mathrm{du}}, \kappa_{u}\right) \cdot\left(\kappa_{u} \lambda_{\mathrm{du}}\right)^{2}}{\kappa_{\mathrm{H}}^{2}\left(\kappa_{j}\right)}$	
t t H	$\frac{\kappa_{\mathrm{u}}^{2} \cdot \kappa_{\gamma}^{2}\left(\kappa_{\mathrm{u}} \lambda_{\mathrm{du}}, \kappa_{\mathrm{u}}, \kappa_{\mathrm{u}} \lambda_{\mathrm{du}}, \kappa_{\mathrm{V}}\right)}{\kappa_{\mathrm{H}}^{2}\left(\kappa_{j}\right)}$	$\frac{\kappa_{\mathrm{u}}^{2} \cdot \kappa_{\mathrm{V}}^{2}}{\mathrm{k}_{\mathrm{H}}^{2}\left(\kappa_{j}\right)}$		$\frac{k_{\mathrm{u}}^{2} \cdot\left(\mathrm{ku}_{\mathrm{u}} \lambda_{\mathrm{du}}\right)^{2}}{\mathrm{k}_{\mathrm{H}}^{2}\left(\kappa_{j}\right)}$	
VBF WH ZH	$\frac{\kappa_{V}^{2} \cdot \kappa_{\gamma}^{2}\left(\kappa_{\mathrm{u}} \lambda_{\mathrm{du}}, \kappa_{\mathrm{u}}, \kappa_{\mathrm{u}} \lambda_{\mathrm{du}}, \kappa_{\mathrm{V}}\right)}{\kappa_{\mathrm{H}^{2}}\left(\kappa_{j}\right)}$	$\frac{\kappa_{V}^{2} \cdot \kappa_{V}^{2}}{k_{K_{H}^{2}}^{2}\left(\kappa_{j}\right)}$		$\frac{\kappa_{V}^{2} \cdot\left(\kappa_{u} \lambda_{d u}\right)^{2}}{\kappa_{H}^{2}\left(\kappa_{i}\right)}$	
Probing up-type and down-type fermion sym metry without assumptions on the total width Free parameters: $\kappa_{\mathrm{uu}}\left(=\kappa_{\mathrm{u}} \cdot \kappa_{\mathrm{u}} / \kappa_{\mathrm{H}}\right), \lambda_{\mathrm{du}}\left(=\kappa_{\mathrm{d}} / \kappa_{\mathrm{u}}\right), \lambda_{\mathrm{V}}\left(=\kappa_{\mathrm{V}} / \kappa_{\mathrm{u}}\right)$.					
	$\mathrm{H} \rightarrow \gamma \gamma$	$\mathrm{H} \rightarrow \mathrm{ZZ}^{(*)}$	$\mathrm{H} \rightarrow \mathrm{WW}^{(*)}$	$\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$	$\mathrm{H} \rightarrow \tau^{-} \tau^{+}$
ggH	$\kappa_{\mathrm{uu}}^{2} \kappa_{\mathrm{g}}^{2}\left(\lambda_{\mathrm{du}}, 1\right) \cdot \kappa_{\gamma}^{2}\left(\lambda_{\mathrm{du}}, 1, \lambda_{\mathrm{du}}, \lambda_{\mathrm{Vu}}\right)$	$\mathrm{k}_{\mathrm{uu}}^{2} \mathrm{k}_{\mathrm{g}}^{2}\left(\lambda_{\mathrm{du}}, 1\right) \cdot \lambda_{\mathrm{Vu}}^{2}$		$\kappa_{\mathrm{uu}}^{2} \kappa_{\mathrm{g}}^{2}\left(\lambda_{\mathrm{du}}, 1\right) \cdot \lambda_{\mathrm{du}}^{2}$	
t t H	$\mathrm{k}_{\mathrm{uu}}^{2} \cdot \mathrm{k}_{\gamma}^{2}\left(\lambda_{\mathrm{du}}, 1, \lambda_{\mathrm{du}}, \lambda_{\mathrm{Vu}}\right)$	$\mathrm{k}_{\mathrm{uu}}^{2} \cdot \lambda_{\mathrm{Vu}}^{2}$		$\mathrm{k}_{\mathrm{uu}}^{2} \cdot \lambda_{\mathrm{du}}^{2}$	
$\begin{gathered} \hline \text { VBF } \\ \text { WH } \\ \text { ZH } \\ \hline \end{gathered}$	$\kappa_{\mathrm{uu}}^{2} \lambda_{\mathrm{Vu}}^{2} \cdot \kappa_{\gamma}^{2}\left(\lambda_{\mathrm{du}}, 1, \lambda_{\mathrm{du}}, \lambda_{\mathrm{Vu}}\right)$	$\kappa_{\mathrm{uu}}^{2} \lambda_{\mathrm{Vu}}^{2} \cdot \lambda_{\mathrm{Vu}}^{2}$		$\kappa_{\mathrm{uu}}^{2} \lambda_{\mathrm{Vu}}^{2} \cdot \lambda_{\mathrm{du}}^{2}$	

Probing up-type and down-type fermion symmetry without as Free parameters: $\kappa_{\mathrm{uu}}\left(=\kappa_{\mathrm{u}} \cdot \kappa_{\mathrm{u}} / \kappa_{\mathrm{H}}\right), \lambda_{\mathrm{du}}\left(=\kappa_{\mathrm{C}}\right.$

68\% CL HCP 2012

$$
\begin{gathered}
\kappa_{\mathrm{g}}^{2} \sigma_{\mathrm{SM}}(\mathrm{gg} \rightarrow \mathrm{H}) \frac{\kappa_{\gamma}^{2}}{\kappa_{\mathrm{H}}^{2}} \mathrm{BR} \mathrm{RM}_{\mathrm{SM}}(\mathrm{H} \rightarrow \gamma \gamma) \\
\kappa_{\mathrm{F}} \in[-1.0,-0.7] \cup[0.7,1.3] \\
\kappa_{\mathrm{V}} \in[0.9,1.0] \cup[1.1,1.3] \\
\frac{\kappa_{W}}{\kappa_{\mathrm{Z}}}=1.07_{-0.27}^{+0.35} \mapsto \operatorname{SU}(2)_{\mathrm{C}} \\
\kappa_{\gamma}=1.2_{-0.2}^{+0.3} \quad \kappa_{\mathrm{g}}=1.1_{-0.3}^{+0.2} \mapsto \text { new colored states }
\end{gathered}
$$

95\% CL HCP 2012

Good fit to individual couplings (still limited precision)

$$
\begin{gathered}
\frac{\kappa_{W}}{\kappa_{Z}} \in[0.57,1.65] \mapsto S U(2)_{\mathrm{C}} \\
\kappa_{\mathrm{g}} \in[0.55,1.07] \quad \kappa_{\gamma} \in[0.98,1.92] \mapsto \text { new colored states }
\end{gathered}
$$

Space of Lagrangians (axxiv:12023:344, axxv:12023:3415, arxv:1202 26897)

Wilson coefficients in $\mathscr{L}_{\text {ESM }}$ are assumed to be small enough that they can be treated at leading order.

But \leadsto model-dependent (non-decoupling, new light degrees of freedom ...) . (\cdot. not favored by the data)

Strategy

measure k

$$
\frac{\Gamma_{\mathrm{gg}}}{\Gamma_{\mathrm{gg}}^{\mathrm{SM}}\left(m_{\mathrm{H}}\right)}=\frac{\kappa_{\mathrm{t}}^{2} \cdot \Gamma_{\mathrm{gg}}^{\mathrm{tt}}\left(m_{\mathrm{H}}\right)+\kappa_{\mathrm{b}}^{2} \cdot \Gamma_{\mathrm{gg}}^{\mathrm{bb}}\left(m_{\mathrm{H}}\right)+\kappa_{\mathrm{t}} \kappa_{\mathrm{b}} \cdot \Gamma_{\mathrm{gg}}^{\mathrm{tb}}\left(m_{\mathrm{H}}\right)}{\Gamma_{\mathrm{gg}}^{\mathrm{tt}}\left(m_{\mathrm{H}}\right)+\Gamma_{\mathrm{gg}}^{\mathrm{bb}}\left(m_{\mathrm{H}}\right)+\Gamma_{\mathrm{gg}}^{\mathrm{tb}}\left(m_{\mathrm{H}}\right)}
$$

find $\mathscr{O}_{\mathbf{i}} \Leftrightarrow \kappa_{\mathbf{x}}$
(epistemological stop, true ESM believers stop here)

$$
\mathscr{L}_{\mathrm{ESM}}=\mathscr{L}_{\mathrm{SM}}+\sum_{n>4} \sum_{i=1}^{N_{n}} \frac{a_{i}^{n}}{\Lambda^{n-4}} \mathscr{O}_{i}^{(d=n)}
$$

Theoretical uncertainties

- Such uncertainties will directly affect the determination of the κ_{X}. When one or more of the κ_{X} differ from 1, THU from missing NLO(NNLO) contributions will be larger than what estimated so far.
- Without a consistent EW NLO calculation for deviations from the SM , EW corrections and their THU are naively scaled together. In SM THU is
- $\sim 5 \%$ in $\mathrm{gg} \rightarrow \mathrm{H}$
$\wedge \sim 2 \%$ in $\mathrm{H} \rightarrow \gamma \gamma$
- Crucial approximations are:
- missing off-shell effects and ZWA (5-10\%)
- missing S/l effects ($\mathbf{1 0 \%}$ for $\mathrm{H} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{e}^{+} \mathrm{e}^{-}$at 125 GeV).

NLO: QCD and EW

- The treatment of EW corrections becomes easily inconsistent because they will be rescaled in the same way as all tree-level contributions and QCD corrections.
- A first-step treatment would be to include the QCD corrections into the rescaling, since they factorise in all cases, but to omit the EW ones.
- A better choice is to set up a strategy for most of the near-future LHC analyses. This strategy has to be as consistent as possible - in particular in the context of higher-dimensional operators.

Open problems: arXiv:1209.5538

Mathematical consistency must have a preeminent role with observational consistency

- From the Lagrangian to the S-matrix
- Nature of $\mathbf{d}=6$ operators, tree versus loop
- Implementation:
- Insertion of d=6 operators in loops
- Effective theory and renormalization
- Decoupling
- Mixing
- Perturbative unitarity

Nobody ever used the Effective-Fermi-Theory to study the Z-pole, at most the muon-decay.

Improved Buchmüller - Wyler basis

1. Use the minimal bases of \mathscr{O}_{i}, apart from those that are irrelevant for Higgs processes. This is a minimal set after the use of EOM.
2. The operators can be organized in a subset that result from tree-level exchange and those that result from loops of heavy degrees of freedom.
3. Further split the operators in those that respect CP and those that violate CP.
4. The absence of FCNC puts requirements on the coupling matrices of the operators $\mapsto 29$ free coupling parameters. Of course the analysis could be done on subsets.

Operators

- Note that the L-operators are usually not included in the analysis. The accuracy at which results for amplitudes will be presented is given by LO SM (the first order in perturbation theory where the amplitude receives a contribution), NLO SM, LO+NLO ESM.
- One example of L -operator is given by the contributions from heavy colored scalar fields transforming in a ($\mathbf{C}, \mathbf{T}, \mathbf{Y}$) representation of $\mathbf{S U}(\mathbf{3}) \otimes \mathbf{S U}(\mathbf{2}) \otimes \mathbf{U}(1)$, e.g. the
$(\mathbf{8}, \mathbf{2}, \mathbf{1} / \mathbf{2})$ representation.

$$
\mathrm{K}=\frac{1}{\sqrt{2}}\binom{\mathrm{H}+2 \frac{M}{g}+i \phi^{0}}{\sqrt{2} i \phi^{-}}
$$

$\mathrm{H}=$ custodial singlet in $\left(2_{\mathrm{L}} \otimes 2_{\mathrm{R}}\right)=1 \oplus 3$.

Table: A selection of relevant $d=6$ operators

$$
\begin{array}{ll}
\mathscr{O}_{\mathrm{K}}=-\frac{g^{3}}{3}\left(\mathrm{~K}^{\dagger} \mathrm{K}\right)^{3} & \mathscr{O}_{\partial \mathrm{K}}=\frac{g^{2}}{2} \partial_{\mu}\left(\mathrm{K}^{\dagger} \mathrm{K}\right) \partial_{\mu}\left(\mathrm{K}^{\dagger} \mathrm{K}\right) \\
\mathscr{O}_{\mathrm{K}}^{1}=g^{2}\left(\mathrm{~K}^{\dagger} \mathrm{K}\right)\left(D_{\mu} \mathrm{K}\right)^{\dagger} D_{\mu} \mathrm{K} & \mathscr{O}_{\mathrm{K}}^{3}=g^{2}\left(\mathrm{~K}^{\dagger} D_{\mu} \mathrm{K}\right)\left[\left(D_{\mu} \mathrm{K}\right)^{\dagger} \mathrm{K}\right] \\
\mathscr{O}_{\mathrm{K}}^{4}=i g^{2}\left(D_{\mu} \mathrm{K}\right)^{\dagger} \tau_{a} D_{\mu} \mathrm{K} F_{\mu \nu}^{a} & \mathscr{O}_{\mathrm{K}}^{5}=i g^{2}\left(D_{\mu} \mathrm{K}\right)^{\dagger} D_{\mu} \mathrm{K} F_{\mu \nu}^{0} \\
\mathscr{O}_{\mathrm{V}}^{1}=g\left(\mathrm{~K}^{\dagger} \mathrm{K}-v^{2}\right) F_{\mu \nu}^{a} F_{\mu \nu}^{a} & \mathscr{O}_{\mathrm{V}}^{2}=g\left(\mathrm{~K}^{\dagger} \mathrm{K}-v^{2}\right) F_{\mu \nu}^{0} F_{\mu \nu}^{0} \\
\mathscr{O}_{\mathrm{V}}^{3}=g \mathrm{~K}^{\dagger} \tau_{a} \mathrm{~K} F_{\mu \nu}^{a} F_{\mu \nu}^{0} & \mathscr{O}_{\mathrm{eV}}^{1}=g\left(\mathrm{~K}^{\dagger} \mathrm{K}-v^{2}\right) \mathrm{F}_{\mu \nu}^{\mathrm{a}} \mathrm{~F}_{\mu \nu}^{a} \\
\mathscr{O}_{\mathrm{eV}}^{2}=g\left(\mathrm{~K}^{\dagger} \mathrm{K}-v^{2}\right) \mathrm{F}_{\mu \nu}^{0} \mathrm{~F}_{\mu \nu}^{\mathrm{a}} & \mathscr{O}_{\mathrm{eV}}^{3}=g \mathrm{~K}^{\dagger} \tau_{a} \mathrm{~K} F_{\mu \nu}^{\mathrm{a}} F_{\mu \nu}^{0} \\
\mathscr{O}_{\mathrm{g}}=g\left(\mathrm{~K}^{\dagger} \mathrm{K}-v^{2}\right) G_{\mu \nu}^{a} G_{\mu \nu}^{a} & \mathscr{O}_{\mathrm{f}}^{1}=g^{2}\left(\mathrm{~K}^{\dagger} \mathrm{K}-v^{2}\right) \psi_{\mathrm{L}} \mathrm{~K} \mathrm{t}_{\mathrm{R}}+\mathrm{h} . \mathrm{c} . \\
\mathscr{O}_{\mathrm{f}}^{2}=g^{2}\left(\mathrm{~K}^{\dagger} \mathrm{K}-v^{2}\right) \psi_{\mathrm{L}} \mathrm{~K}^{c} \mathrm{~b}_{\mathrm{R}}+\mathrm{h} . \mathrm{c} . & \mathscr{O}_{\mathrm{f}}^{3}=\psi_{\mathrm{L}} D_{\mu} \mathrm{t}_{\mathrm{R}} D_{\mu} \mathrm{K}+\mathrm{h} . \mathrm{c} . \\
\mathscr{O}_{\mathrm{f}}^{4}=\psi_{\mathrm{L}} D_{\mu} \mathrm{b}_{\mathrm{R}} D_{\mu} \mathrm{K}^{c}+\mathrm{h} . \mathrm{c} . &
\end{array}
$$

UV and Effective NLO Approximation

- What is needed is a preliminar study of the insertion of $\mathbf{d}=\mathbf{6}$ operators in SM loop diagrams, analyzing their UV effect on all relevant processes. This defines the ENLOA
- operators altering the UV power-counting of a SM diagram and
- operators that do not change the UV power-counting.
- A set of SM diagrams is UV-scalable w.r.t. a combination of $\mathbf{d}=\mathbf{6}$ operators if their sum is UV finite and all diagrams in the set are scaled by the same combination of $\mathbf{d}=\mathbf{6}$ operators.

ESM /UCSM and renormalization

$$
\begin{gathered}
\mathscr{L}=\mathscr{L}_{\mathrm{SM}}-\frac{1}{2} \partial_{\mu} S \partial_{\mu} S-\frac{1}{2} M_{\mathrm{S}}^{2} S^{2}+\mu_{\mathrm{S}} \mathrm{~K}^{\dagger} K S \\
\mathscr{L}_{\mathrm{Lm}}=\frac{1}{2} \mu_{\mathrm{S}}\left(\mathrm{H}^{2}+\varphi^{0} \varphi^{0}+2 \phi^{\dagger} \phi^{-}\right) S
\end{gathered}
$$

In the limit $\mathbf{M}_{\mathbf{S}} \rightarrow \infty$ we have

$$
\mathscr{L} \rightarrow \mathscr{L}_{\mathrm{SM}}^{\mathrm{LO}}+\frac{\mu_{\mathrm{S}}^{2}}{M_{\mathrm{S}}^{2}}\left(\mathrm{~K}^{\dagger} \mathrm{K}\right)^{2}+\frac{\mu_{\mathrm{S}}^{2}}{M_{\mathrm{S}}^{4}} \mathscr{O}_{\partial \mathrm{K}}
$$

The $\mathbf{d}=\mathbf{4}$ operator can be absorbed through a parameter redefinition, and we are left with a contribution to the $\mathbf{d}=\mathbf{6}$ operator $\mathscr{O}_{\partial K}$.
The three-point function H^{3} with the insertion of the $\mathscr{O}_{\partial \mathrm{K}}$ operator (left) and the same contribution in the full Lagrangian.

N.B. parameters \sim SM-like kinetic and mass terms

$$
f_{\text {eff }}^{\mathrm{DR}}=\frac{3}{4} g \frac{\overline{\mathrm{M}}_{\mathrm{H}}^{2}}{\overline{\mathrm{M}} \Lambda^{2}}\left[\left(\frac{1}{2} s-3 \overline{\mathrm{M}}_{\mathrm{H}}^{2}\right)\left(\frac{1}{\bar{\varepsilon}}-\ln \frac{s}{\mu_{\mathrm{R}}^{2}}\right)+\text { finite part }\right]
$$

After subtracting the UV pole we can say that the insertion of a $\mathbf{d}=\mathbf{6}(8)$ operator produces a result

$$
l_{d=6}^{\mathrm{ren}} \sim \frac{\overline{\mathrm{M}}_{\mathrm{H}}^{2}}{\Lambda^{2}} \ln \mu_{\mathrm{R}} \quad l_{d=8}^{\mathrm{ren}} \sim \frac{\overline{\mathrm{M}}_{\mathrm{H}}^{4}}{\Lambda^{4}} \ln \mu_{\mathrm{R}}
$$

Note that, with cutoff regularization, both integrals would be of $\mathscr{O}(\mathbf{1})$.

Working (for simplicity) with $\overline{\mathrm{M}}_{\mathrm{H}}^{2} \ll s \ll M_{\mathrm{S}}^{2}$ we obtain

$$
I_{\text {full }}=\frac{3}{2} g \frac{\overline{\mathrm{M}}_{\mathrm{H}}^{2} \mu_{\mathrm{S}}^{2}}{\overline{\mathrm{M} s}}\left[\zeta(2)-\operatorname{Li}_{2}\left(1+\frac{s+i 0}{M_{\mathrm{S}}^{2}}\right)\right]
$$

We can identify $\Lambda=M_{S}^{2} / \mu_{\mathrm{S}}$, expand in $\mathbf{s} / \mathbf{M}_{\mathrm{S}}^{2}$, and obtain

The first term in $\mathbf{I}_{\text {full }}$ reproduces the $\mathbf{d}=\mathbf{4}$ operator while the second term corresponds to the $\mathbf{d}=\mathbf{6}, \mathscr{O}_{\partial \mathrm{K}}$ operator. There is no UV divergence in $\mathrm{I}_{\text {full }}$ and the logarithm is uniquely fixed.

Working (for simplicity) with $\overline{\mathrm{M}}_{\mathrm{H}}^{2} \ll s \ll M_{\mathrm{S}}^{2}$ we obtain

$$
I_{\text {full }}=\frac{3}{2} g \frac{\overline{\mathrm{M}}_{\mathrm{H}}^{2} \mu_{\mathrm{S}}^{2}}{\overline{\mathrm{M} s}}\left[\zeta(2)-\operatorname{Li}_{2}\left(1+\frac{s+i 0}{M_{\mathrm{S}}^{2}}\right)\right]
$$

We can identify $\Lambda=M_{S}^{2} / \mu_{\mathrm{S}}$, expand in $\mathbf{s} / \mathbf{M}_{\mathrm{S}}^{2}$, and obtain

The first term in $\mathbf{I}_{\text {full }}$ reproduces the $\mathbf{d}=\mathbf{4}$ operator while the second term corresponds to the $\mathbf{d}=\mathbf{6}, \mathscr{O}_{\partial \mathrm{K}}$ operator. There is no UV divergence in $\mathrm{I}_{\text {full }}$ and the logarithm is uniquely fixed.

Higgs-like couplings

$$
\begin{aligned}
& T^{\mu v}=p_{2}^{\mu} p_{1}^{v}-p_{1} \cdot p_{2} \delta^{\mu v} \quad p^{\mu v}=p_{1}^{\mu} p_{1}^{v}+2 p_{1}^{v} p_{2}^{\mu}+p_{2}^{\mu} p_{2}^{v} \\
& E^{\mu v}=\varepsilon^{\alpha \beta \mu v} p_{1 \alpha} p_{2 \beta}
\end{aligned}
$$

HAA

$$
\begin{aligned}
& 8 \frac{\overline{\mathrm{M}}}{\Lambda^{2}}\left(\hat{s}_{\theta}^{2} a_{\mathrm{V}}^{1}+\hat{c}_{\theta}^{2} a_{\mathrm{V}}^{2}+g \hat{c}_{\theta} \hat{s}_{\theta} a_{\mathrm{V}}^{3}\right) T^{\mu v} \\
+ & 16 \frac{\overline{\mathrm{M}}}{\Lambda^{2}}\left(\hat{s}_{\theta}^{2} a_{\mathrm{ev}}^{1}+\hat{c}_{\theta}^{2} a_{\mathrm{ev}}^{2}+g \hat{c}_{\theta} \hat{s}_{\theta} a_{\mathrm{ev}}^{3}\right) E^{\mu v}
\end{aligned}
$$

For $\mathrm{H} \rightarrow \gamma \gamma$ the SM amplitude reads

$$
\begin{gathered}
\mathscr{M}_{\mathrm{SM}}=F_{\mathrm{SM}}\left(\delta^{\mu \nu}+2 \frac{p_{1}^{v} p_{2}^{\mu}}{\overline{\mathrm{M}}_{\mathrm{H}}^{2}}\right) e_{\mu}\left(p_{1}\right) e_{v}\left(p_{2}\right) \\
\underbrace{}_{\mathrm{SM}}=-g \overline{\mathrm{M}} F_{\mathrm{SM}}^{\mathrm{W}}-\frac{1}{2} g \frac{M_{\mathrm{t}}^{2}}{\overline{\mathrm{M}}} F_{\mathrm{SM}}^{\mathrm{t}}-\frac{1}{2} g \frac{M_{\mathrm{b}}^{2}}{\overline{\mathrm{M}}} F_{\mathrm{SM}}^{\mathrm{b}} \\
F_{\mathrm{SM}}^{\mathrm{W}}= \\
F_{\mathrm{SM}}^{\mathrm{t}}= \\
=-8+\frac{\overline{\mathrm{M}}_{\mathrm{H}}^{2}}{\overline{\mathrm{M}}^{2}}+6\left(\overline{\mathrm{M}}_{\mathrm{H}}^{2}-2 \overline{\mathrm{M}}^{2}\right) C_{0}\left(-\overline{\mathrm{M}}_{\mathrm{H}}^{2}, 0,0 ; \overline{\mathrm{M}}, \overline{\mathrm{M}}, \overline{\mathrm{M}}\right) \\
\left.\mathrm{H}-4 M_{\mathrm{t}}^{2}\right) C_{0}\left(-\overline{\mathrm{M}}_{\mathrm{H}}^{2}, 0,0 ; M_{\mathrm{t}}, M_{\mathrm{t}}, M_{\mathrm{t}}\right)
\end{gathered}
$$

$\mathrm{H} \rightarrow \gamma \gamma$

$$
\begin{aligned}
& \mathscr{M}_{\mathrm{H} \rightarrow \gamma \gamma}=\left(4 \sqrt{2} G_{\mathrm{F}}\right)^{1 / 2}\left\{-\frac{\alpha}{\pi}\left[\mathrm{k}_{\mathrm{W}}^{\gamma \gamma} F_{\mathrm{sM}}^{\mathrm{w}}+3 Q_{\mathrm{t}}^{2} \mathrm{k}_{\mathrm{t}}^{\gamma \gamma} F_{\mathrm{sM}}^{\mathrm{t}}\right.\right. \\
& \left.+3 Q_{\mathrm{b}}^{2} \mathrm{k}_{\mathrm{b}}^{\gamma \eta} F_{\mathrm{sm}}^{\mathrm{b}}\right]+\left[\mathrm{k}_{\text {loop }}^{\gamma \gamma}\right\} \\
& \kappa_{\text {loop }}^{\gamma \eta}=\frac{g_{6}}{\sqrt{2}} \bar{M}_{\mathrm{H}}^{2}\left(\hat{s}_{\theta}^{2} A_{\mathrm{V}}^{1}+\hat{c}_{\theta}^{2} A_{\mathrm{V}}^{2}+\hat{c}_{\theta} \hat{s}_{\theta} A_{\mathrm{V}}^{3}\right) \\
& g_{6}=\frac{1}{G_{F} \Lambda^{2}}=0.085736\left(\frac{\mathrm{TeV}}{\Lambda}\right)^{2}
\end{aligned}
$$

$\kappa^{\gamma \gamma}$ (ENLOA only)

for the W-loop

$$
\kappa_{\mathrm{W}}^{\gamma \gamma}=\frac{1}{4} \overline{\mathrm{M}}^{2}\left\{1+\frac{g_{6}}{4 \sqrt{2}}\left[8 A_{\mathrm{V}}^{3} \hat{c}_{\theta}\left(\hat{\mathrm{s}}_{\theta}+\frac{1}{\hat{\mathrm{~S}}_{\theta}}\right)+A_{\mathrm{K}}^{0}\right]\right\}
$$

for the quark loops

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{t}}^{\gamma \gamma}=\frac{1}{8} M_{\mathrm{t}}^{2}\left\{1+\frac{g_{6}}{4 \sqrt{2}}\left[8 A_{\mathrm{V}}^{3} \hat{c}_{\theta}\left(\hat{s}_{\theta}+\frac{1}{\hat{s}_{\theta}}\right)+A_{\mathrm{K}}^{0}-A_{\mathrm{f}}^{1}\right]\right\} \\
& \mathrm{K}_{\mathrm{b}}^{\gamma \gamma}=\frac{1}{8} M_{\mathrm{b}}^{2}\left\{1+\frac{g_{6}}{4 \sqrt{2}}\left[8 A_{\mathrm{V}}^{3} \hat{c}_{\theta}\left(\hat{s}_{\theta}+\frac{1}{\hat{s}_{\theta}}\right)+A_{\mathrm{K}}^{0}-A_{\mathrm{f}}^{2}\right]\right\}
\end{aligned}
$$

$\mathrm{H} \rightarrow \overline{\mathrm{b}} \mathrm{b}$

$$
\begin{gathered}
\mathscr{M}_{\mathrm{H} \rightarrow \overline{\mathrm{bb}}}=\left(4 \sqrt{2} G_{\mathrm{F}}\right)^{1 / 2} M_{\mathrm{b}} \bar{u}\left(p_{2}\right) v\left(p_{1}\right)\left\{\frac{G_{\mathrm{F}} \overline{\mathrm{M}}^{2}}{\pi^{2}} \mathrm{~K}^{\overline{\mathrm{bb}}} F_{\mathrm{H} \rightarrow \overline{\mathrm{bb}}}^{\mathrm{SM}}+\kappa_{\text {loop }}^{\overline{\mathrm{Eb}}}\right\} \\
\left.\mathrm{K}_{\text {loop }}^{\mathrm{bb}}=\frac{g_{6}}{128 \sqrt{2}}\left[\overline{\mathrm{M}}_{\mathrm{H}}^{2} \overline{\mathrm{M}}^{2} A_{\mathrm{f}}^{4}-16\left(A_{\mathrm{K}}^{3}+2 A_{\partial \mathrm{K}}+A_{\mathrm{f}}^{2}\right)\right]\right\} \\
\kappa^{\overline{\mathrm{bb}}}=\frac{1}{2 \sqrt{2}}\left[1+\frac{g_{6}}{4 \sqrt{2}}\left(A_{\mathrm{K}}^{1}+A_{\mathrm{K}}^{3}+6 A_{\partial \mathrm{K}}\right)\right]
\end{gathered}
$$

ENLOA

Amplitude for a two-body decay of the Higgs boson (dash line) including LO+NLO SM contributions with a sum over all one-loop diagrams (i); SM diagrams are eventually multiplied by an admissible scaling from $\mathbf{d}=\mathbf{6}$ operators (red circle); the grey circle represents a contact term (including L-operators).

Score

UV completion of the SM (UCSM) versus ESM
Bottom-up or top-down approach to ESM ?

- How many facts the theory explains: it is a draw
- Having the fewer auxiliary hypothesis: SM \rightarrow UCSM superior
- Analogy: SM should be augmented by all possible terms consistent with symmetries \rightarrow ESM

The regulative ideal of an ultimate theory remains a powerful aesthetic ingredient

Decoupling and $S U(2)_{\mathrm{C}}$

\downarrow Heavy degrees of freedom $\hookrightarrow \mathrm{H} \rightarrow \gamma \gamma$: to be fully general one has to consider effects due to heavy fermions $\in \mathbf{R}_{\mathbf{f}}$ and heavy scalars $\in \mathbf{R}_{\mathbf{s}}$ of $\mathbf{S U}(\mathbf{3})$. Colored scalars disappear from the low energy physics as their mass increases. However, the same is not true for fermions.

- Renormalization: whenever $\rho_{\mathrm{LO}} \neq 1$, quadratic power-like contribution to $\Delta \rho$ are absorbed by renormalization of the new parameters of the model $\leadsto \rho$ is not a measure of the custodial symmetry breaking.
Alternatively one could examine models containing $\mathrm{SU}(2)_{\mathrm{L}} \otimes \mathrm{SU}(2)_{\mathrm{R}}$ multiplets.

Decoupling and $S U(2)_{\mathrm{C}}$

- Heavy degrees of freedom $\hookrightarrow \mathrm{H} \rightarrow \gamma \gamma$: to be fully general one has to consider effects due to heavy fermions $\in \mathbf{R}_{\mathbf{f}}$ and heavy scalars $\in \mathbf{R}_{\mathbf{s}}$ of $\mathbf{S U}(\mathbf{3})$. Colored scalars disappear from the low energy physics as their mass increases. However, the same is not true for fermions.
- Renormalization: whenever $\rho_{\mathrm{LO}} \neq 1$, quadratic power-like contribution to $\Delta \rho$ are absorbed by renormalization of the new parameters of the model $\leadsto \rho$ is not a measure of the custodial symmetry breaking.
Alternatively one could examine models containing
$\mathbf{S U}(\mathbf{2})_{\mathrm{L}} \otimes \mathbf{S U}(\mathbf{2})_{\mathrm{R}}$ multiplets.

Conclusions?

Data-driven Theory?

 or

If you're looking for your lost keys, failing to find them in the kitchen is not evidence against their being somewhere else in the house

Conclusions?

- Higgs-landscape: asking the right questions takes as much skill as giving the right answers
- A conclusion is the place where you got tired of thinking (Arthur Bloch)
> I am turned into a sort of machine for observing facts and grinding out conclusions (Charles Darwin)
- El sueño de la razõn produce monstruos (Francisco Goya)

Conclusions?

- Higgs-landscape: asking the right questions takes as much skill as giving the right answers
- A conclusion is the place where you got tired of thinking (Arthur Bloch)
- I am turned into a sort of machine for observing facts and grinding out conclusions (Charles Darwin)
- El sueño de la razõn produce monstruos (Francisco Goya)

Conclusions?

- Higgs-landscape: asking the right questions takes as much skill as giving the right answers
- A conclusion is the place where you got tired of thinking (Arthur Bloch)
- I am turned into a sort of machine for observing facts and grinding out conclusions (Charles Darwin)
- El sueño de la razõn produce monstruos (Francisco Goya)

Conclusions?

- Higgs-landscape: asking the right questions takes as much skill as giving the right answers
- A conclusion is the place where you got tired of thinking (Arthur Bloch)
- I am turned into a sort of machine for observing facts and grinding out conclusions (Charles Darwin)
- El sueño de la razõn produce monstruos (Francisco Goya)

ご清聘ありがとうございました

ENLOA

In the one-loop (bosonic) amplitude for $\mathrm{H} \rightarrow \gamma \gamma$ there are three different contribution

- a W-loop
- a charged ϕ-loop and
- a mixed W - ϕ loop

It is straightforward to show that the SM one-loop, bosonic, amplitude for $\mathrm{H} \rightarrow \gamma \gamma$ with on-shell Higgs line is UV-scalable w.r.t. the combination

$$
C_{\mathrm{bos}}=\frac{\overline{\mathrm{M}}^{2}}{\Lambda^{2}}\left(a_{\mathrm{K}}^{3}-2 a_{\mathrm{K}}^{1}+2 a_{\partial \mathrm{K}}\right)
$$

which could be admissible.

However, in the one-loop amplitude we also have FP-ghost loops Therefore the bosonic component is only UV-scalable w.r.t. the combination

$$
C_{\mathrm{bos}}^{1}=\frac{\overline{\mathrm{M}}^{2}}{\Lambda^{2}}\left(a_{\mathrm{K}}^{3}+2 a_{\partial \mathrm{K}}\right)
$$

Similarly, we consider the $\gamma \mathrm{WW}, \gamma \mathrm{W} \phi, \gamma \phi \phi$ and $\gamma^{ \pm} \mathrm{X}^{ \pm}$vertices, which also appear in the one-loop bosonic amplitude for $\mathrm{H} \rightarrow \gamma \gamma$, and conclude that the latter is UV-scalable w.r.t. the combination

$$
C_{\mathrm{bos}}^{2}=\frac{\overline{\mathrm{M}}^{2}}{\Lambda^{2}} \frac{\hat{c}_{\theta}}{\hat{s}_{\theta}^{2}}\left(4 \hat{s}_{\theta} a_{\mathrm{V}}^{3}+\hat{c}_{\theta} a_{\mathrm{K}}^{3}\right)
$$

which is also admissible. Obviously, the wave-function factors are also admissible.

To be more precise, the one-loop bosonic amplitude for $\mathrm{H} \rightarrow \gamma \gamma$ is made of three different families of diagrams
The three families of diagrams contributing to the bosonic amplitude for $\mathrm{H} \rightarrow \gamma \gamma ; \mathrm{W} / \phi$ denotes a W -line or a ϕ-line. $\mathrm{X}^{ \pm}$ denotes a FP-ghost line.

- We find that the $\gamma \gamma \mathrm{WW}, \gamma \gamma \mathrm{W} \phi$ and $\gamma \gamma \phi \phi$ vertices are all UV-scalable w.r.t. $\mathbf{2 C b o s}^{2}$.
- Furthermore, the vertex $\gamma \mathrm{HW} \phi$ is UV-scalable w.r.t. $\mathbf{C}_{\text {bos }}^{1}+\mathbf{C}_{\text {bos }}^{2}$.
The underlying algebra is such that
> the quadrilinear vertex with two $\gamma \mathrm{s}$ is equivalent to the square of the trilinear vertex with one γ (to $\mathscr{O}\left(1 / \Lambda^{2}\right)$) and
- the quadrilinear vertex with one H is equivalent (to the same order) to the product of the two trilinear vertices, with a γ and with a H

As a consequence, there is a non-trivial scaling factor which is
admissible, not spoiling the UV behavior.

