CP scheme 00000	Heavy mass	Interference	POs 00000000	Results	conclusion
	POI	Revitalized			

Giampiero PASSARINO

Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino, Italy

BNL Workshop, 4-6 May 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

CP scheme	Heavy mass	Interference	POs	Results	conclusions

Revitalized by what?

Need for PO Ad Usum Delphini, The sudden 'discovery' of the High - Mass problem, support from my buddies, CSR

Why revitalized?

"What giants?" asked Sancho Panza.

(Cervantes' Don Quixote)

.....

:onclusions DOODODOO

CP scheme	Heavy mass	Interference	POs	Results	conclusions
00000				000000000000	

Higgs @ MC: cfr. arXiv:0812.0578

definition of production \otimes decay:

the MC produces a scalar resonance (H), with a momentum distributed according to a Breit–Wigner where peak and width are related to the on-shell mass and width of the Higgs boson.

$$\delta\left(\hat{\mathbf{s}}-M_{H}^{2}\right) \rightarrow \begin{cases} \frac{1}{\pi} \frac{M_{H} \Gamma_{H}}{\left(\hat{\mathbf{s}}-M_{H}^{2}\right)^{2}+\left(M_{H} \Gamma_{H}\right)^{2}} & \text{MC@NLO} \\ \\ \frac{1}{\pi} \frac{\hat{\mathbf{s}} \Gamma_{H}/M_{H}}{\left(\hat{\mathbf{s}}-M_{H}^{2}\right)^{2}+\left(\hat{\mathbf{s}} \Gamma_{H}/M_{H}\right)^{2}} & \text{Pythia/POWHEG} \end{cases}$$

where M_{H} , Γ_{H} are the on-shell mass and width.

・ロト・西ト・ヨト・日下 山・つくぐ

CP scheme	Heavy mass	Interference	POs	Results	conclusions
00000				000000000000	

Complex pole scheme → approximations?

Higgs-boson propagator \iff Breit–Wigner distribution

Given the complex pole (nothing more than a parametrization)

$$\mathbf{s}_{\!\scriptscriptstyle H} = \mu_{\scriptscriptstyle H}^2 - \mathbf{i}\,\mu_{\scriptscriptstyle H}\,\gamma_{\scriptscriptstyle H}$$

perform the transformation (Bar - scheme)

$$\overline{M}_{H}^{2} = \mu_{H}^{2} + \gamma_{H}^{2} \quad \mu_{H} \gamma_{H} = \overline{M}_{H} \overline{\Gamma}_{H}$$

It follows the remarkable identity:

$$\frac{1}{\hat{s}-s_{\scriptscriptstyle H}} = \left(1+i\,\frac{\overline{\Gamma}_{\scriptscriptstyle H}}{\overline{M}_{\scriptscriptstyle H}}\right)\left(\hat{s}-\overline{M}_{\scriptscriptstyle H}^2+i\,\frac{\overline{\Gamma}_{\scriptscriptstyle H}}{\overline{M}_{\scriptscriptstyle H}}\,\hat{s}\right)^{-1},$$

CP scheme	Heavy mass	Interference	POs	Results	conclusions
00000					

Question time

ComplexPole FAQ

- **Q** What is μ_{H} ?
- A An imput parameter as the OS mass; QFT doesn't provide an answer for them.
- **Q** Can I compute γ_{H} ?
- A Yes, $\gamma_H(\mu_H)$, more or less as you compute $\Gamma_H^{os}(M_H^{os})$.
- Q What is the difference?
- A OS quantities are ill defined.
- Q Are they related?
- A Yes, in PT which however breaks down in the HM region

CP scheme	Heavy mass	Interference	POs	Results	conclusions
00000					

From Complex to Real: a fact of life

What is the *common sense* definition of mass and width of an unstable particle?

Options

$$\begin{split} s_{H} &= \mu_{H}^{2} - i \,\mu_{H} \gamma_{H}, \\ s_{H} &= \left(\mu_{H}' - \frac{i}{2} \,\gamma_{H}' \right)^{2}, \\ s_{H} &= \frac{\overline{M}_{H}^{2} - i \,\overline{\Gamma}_{H} \,\overline{M}_{H}}{1 + \overline{\Gamma}_{H}^{2} / \overline{M}_{H}^{2}} \end{split}$$

which one is

- correct,
- approximate,
- closer to the exp peak

• · · · ?

CP scheme ○○○○●	Heavy mass	Interference	POs 00000000	Results	conclusions

Answers to the previous question

Definition of mass for exclusion and discovery

$\gamma_{\rm H} \ll \mu_{\rm H}$

- *M_H* good approximation for on-shell mass
- \overline{M}_{H} closer to the exp peak

$\gamma_{H} \sim \mu_{H}$

•
$$\overline{O}_{H} \neq O_{H}^{OS}$$

Dialogue Concerning the Two Chief World Systems: Salviati, Sagredo, Simplicio

- TH How do you want to proceed? Full scenario?
- EX No, we separate Higgs production and decay, and MCs implement an ad-hoc Breit-Wigner
- TH Hope you are not going for high-mass!
- **EX** Up to 600 GeV via ggF(+VBF) ($H \rightarrow WW \rightarrow l\nu qq$)
- **TH** Then you got problems, the three bricks need a proper definition:
 - **()** The full S -matrix element is $S \oplus B$
 - 2 S is [production \otimes propagation \otimes decay]
 - each of them must be defined consistently
- **EX** We are working with a mass spectrum peak, but what about the on-shell mass peak? Are there other definitions?
- TH This I told you before

CP scheme	Heavy mass	Interference	POs	Results	conclusions
	00000				

High–Mass

What is the physical meaning of an heavy Higgs search?

New Physics

- An Higgs above 600 GeV requires new physics at 1 TeV;
- This is based an partial-wave unitarity but should not be taken quantitatively or too literally:
 - With Fermi theory the unitarity bound is at $\mathcal{O}\left(10^2\right)GeV$ and we have been lucky that the vector boson scale is $80-90\,GeV$

• Violation of unitarity bound $\hookrightarrow J = 0, 1$, resonances

- but there is no way to predict their masses, simply scaling the $\pi-\pi$ system gives you the 1 TeV ballpark.
- Anyway, it would be a good idea to address it as *search* for J = 0, 1 *heavy new resonances* decaying into $VV \rightarrow 4$ f.

00000	Heavy mass ○●○○○○	000	PUS 0000000000	Results	0000000
	Analytic Analytic Analytic and				

Do we want to go back to the Sixties?

- This is not anymore our beloved Lagrangian QFT landmark;
- it is the territory of other keywords:
 - unitarized partial waves,
 - N/D formalism, etc, etc.
- For high-mass VBF should be a *Fitter* more than a *Calculator*.
 - one should be more interested in a model-independent parametrization of *VV* scattering than in its SM determination

CP scheme 00000	Heavy mass ○○●○○○	Interference	POs 0000000000	Results	conclusions

WW SCATTERING WITH SCALAR AND VECTOR RESONANCES

[14] of WZ and $W^{\pm}W^{\pm}$ channels at hadron colliders.

¹ How reliable is the simple N/D result for a vector resonance? As already mentioned, the full N/D for the vector channel has no solution because of bad high-energy behavior. This means that N/D iteration would not converge and our simple N/D solution should be regarded as the vector coupling is reasonably small even for relatively large vector masses, as may be seen from the narrowness of the resonance compared to the scalar. This implies

that the single iteration can be a good approximation. If one measures the convergence as we did for the scalar case by the condition that $D_{11}(-m_V^2)$ deviates from 1 by within, say, 15%, one finds $m_V < 2.2$ TeV.

IV. COMPARISON WITH DIFFERENT APPROACHES

Various methods [15] have been used to obtain unitary amplitudes. The most widely used methods are K matrix unitarization and the Padé approximant. Here we compare these methods with our simple N/D approach. The N/D language provides a convenient basis for the comparison, since it allows us a unified description of all these methods. Since elastic unitarity for the partial wave amplitude *a* is equivalent to Eq. (3), any unitarized amplitude can be written in the form a = N/D with N real and ImD = -N (in the physical region s >0. Various unitarization schemes correspond to different choices of N and ReD.

Suppose that we have an approximation amplitude a_0 which is real and therefore nonunitary. The K matrix unitarization is equivalent to setting $N = a_0$ and ReD = 1 (with ImD = -N). Though being unitary, the K-matrixunitarized amplitude does not necessarily satisfy analyticity [16]. On the other hand, in the simple N/D approach, we set $N = a_0$ and calculate D by a dispersion relation. The result always gives an analytic amplitude.

The Padé approximant can be used if the first two terms of an expansion (in coupling constant or energy) are known. For a real amplitude of the form $a_0 - a_{R}(1+\delta)$, the [1,1] Padé is equivalent to $N = a_{R}$, $ReD = 1-\delta$. Analyticity of the result is again not obvious. [If the K matrix is used for the same amplitude, one finds $N = a_{R}$, $ReD = 1/(1+\delta)$.]

These unitarization methods are often used [17-20] in the chiral Lagrangian approach. The chiral Lagrangian for *uw* scattering is nothing but low-energy expansion with the constraint of the low-energy theorem. One starts with the expansion to $O(s^3)$: $a_0(s) = As(1+Cs)$, where A is fixed by the low-energy theorem and C depends on the parameters of the chiral expansion. A unitary amplitude is obtained by setting N=As, ReD=1-Cs (Padé) or ReD=1/(1+Cs) (K matrix). These two methods are known to give very different re-

[14] of WZ and $W^{\pm}W^{\pm}$ channels at hadron colliders.

How reliable is the simple N/D result for a vector resonance? As already mentioned, the full N/D for the vector channel has no solution because of bad high-energy behavior. This means that N/D iteration would not converge and our simple N/D solution should be regarded as the first term of an asymptotic series. On the other hand, the vector coupling is reasonably small even for relatively large vector masses, as may be seen from the narrowness of the resonance compared to the scalar. This implies

that that the one makes the one makes the one makes the one of the

Vai ampli unitar pare t N/Dpariso methe plitud tude o ImD= izatio ReD. Sup which itariza (with unitar city [proac lation The

CP scheme	Heavy mass	Interference	POs	Results	conclusions
	000000				

N/D in a nutshell: cfr. Phys.Rev.D48:3055-3061,1993

$$a(s) = \frac{N(s)}{D(s)}$$

• Elastic unitarity + analiticity

Im $D(s) = -N(s), s > 0$

 $D(s) = 1 - \frac{s}{\pi} \int_{0}^{\infty} d\tau \frac{N(\tau)}{\tau(\tau - s)}$

- a(s) is a partial wave
- Invent N.
- derive D
- get a plot
- baptize your resonance

• Define the width from peak $M_{\rm s}$

$$a(s) \sim -\frac{M_{\rm s}\,\Gamma_{\rm s}}{s - M_{\rm s}^2 + i\,M_{\rm s}\,\Gamma_{\rm s}}, \quad \Gamma_{\rm s} = -\frac{N(M_{\rm s}^2)}{M_{\rm s}\,{\rm Re}\,D'(M_{\rm s}^2)}$$

CP scheme	Heavy mass	Interference	POs	Results	conclusions
	000000				

Or you go Higgsless

There have been several alternatives proposed. All of the alternative mechanisms use strongly interacting dynamics to produce a vacuum expectation value that breaks EWSB. A partial list of these alternative mechanisms includes:

- Technicolor models
- Extra-dimensional Higgsless models
- Models of composite W, Z vector bosons
- Top quark condensate
- Unitary Weyl gauge
- Asymptotic safety of some nonlinear sigma models
- Regular Charge Monopole Theory
- Ribbon model

CP scheme	Heavy mass	Interference	POs	Results	conclusions

About interference

Hot @ High mass

$$A_{\tau} = A_{\text{LO}}^{\text{S}} + \exp(i\theta_{s})A_{\text{NLO}}^{\text{S}} + \exp(i\theta_{b})A_{\text{LO}}^{\text{B}}$$

LO = lowest (non zero) order

What's available?

•
$$|A_{\text{LO}}^{\text{S}}|^2$$
, $|A_{\text{NLO}}^{\text{S}}|^2 + \cdots$, $|A_{\text{LO}}^{\text{B}}|^2$
? $|A_{\text{LO}}^{\text{S}} + \exp(i\theta_b) A_{\text{LO}}^{\text{B}}|^2 \rightarrow \text{LO interference}$
! $\sigma_{\text{NLO}} = K \sigma_{\text{LO}}$ does not imply interference_{NLO} = K interference_{LO}

CP scheme	Heavy mass	Interference	POs	Results	conclusions
		000			

About interference II

For

$$\sqrt{s} = 14 \, \text{TeV} \, M_{\!\scriptscriptstyle H} = 600 \, \text{GeV}$$

$$\sigma(gg \rightarrow l\nu l'\nu') = 60 \,\mathrm{fb}$$

$$\sigma_{c}(gg \rightarrow l\nu l'\nu') = 1.4 \,\mathrm{fb}$$

$$\sigma(gg \to H) = 2.4 \,\mathrm{pb}$$

$$BR(H \rightarrow I\nu I'\nu') = 7 \, 10^{-2}$$

- Cut dependence? \implies
- T. Binoth et al. \implies

- $I = \pm 90 |\cos \theta| \%$
- $I_c = \pm 20 |\cos \theta| \%$
- θ = B/S (unknow) phase
 Action needed
- Exact $I(I_c) = -0.7\%(10.6\%)$ at 200 GeV.
- Exact *I*(*I_c*) = -5.2%(-3.8%) at 140 GeV.

CP scheme	Heavy mass	Interference	POs	Results	conclusions
		000			

Example

$$\sigma\left(gg(\to H)\to WW\to I\bar{\nu}\bar{l}'\nu'\right)$$

arXiv:hep-ph/0611170v1 14 TeV

sel.	$\sigma(S)$ [fb]	$\sigma(B_{gg})$ [fb]	$\sigma(S + B_{gg})$ [fb]	$\approx \theta_b$
tot	75.4	60.0	134.5	90.4 ⁰
bkg	1.67	1.74	3.41	84.5 ⁰

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

CP scheme 00000	Heavy mass	Interference ○○●	POs 000000000000000000000000000000000000	Results	conclusions

About interference III

Message

For *I* we need amplitudes *A* (interfacing different codes?) but codes have $|A|^2$ and $I = 2 \operatorname{Re} (A_s A_B^*)$

S known at NLO, *B* at LO \rightsquigarrow *I* = *I*_{app} at NLO

CP scheme	Heavy mass	Interference	POs	Results	conclusions
				000000000000	

Moving towards modernity

Which

best language to simulate intuition?

- production of on-shell Higgs
- intermediate
 Breit–Wigner
- Higgs on-shell decay

- production of a Higgs at its complex pole
- Dyson resummed propagator
- Higgs *decay* at its complex pole

Right column

cannot yet produce fast answers, that's why the PO oblivion

CP scheme	Heavy mass	Interference	POs	Results	conclusions
			000000000000000000000000000000000000000		

LHC example of POs

I WANT YOU

CP scheme	Heavy mass	Interference	POs	Results	conclusions
			0000000000	000000000000	

Subliminal messaging

@ Low masses

CPs are for high-precision physics (after my retirement?)

@ High masses

CPs also tell us that it is difficult to accomodate an heavy Higgs; W, Z, H and t complex poles are solutions of a (coupled) system of equations

$$f_i(\mathbf{s}_W, \mathbf{s}_Z, \mathbf{s}_H, \mathbf{s}_T) = \mathbf{0}, \quad i = W, Z, H, t$$

but for W, Z and (partially) t we can compare with the exp CPs

CP scheme 00000	Heavy mass	Interference	POs ○○●○○○○○	Results	conclusions

 γ_{H} [GeV] for $\gamma_{W,t}$ fixed and complete calculation 🔀

μ_{H} [GeV]	$\gamma_{w,t}$ fixed	complete
200	1.264	1.262
	2.093	1.932
	1.481	1.171
250	3.369	3.364
	2.093	1.822
	1.481	0.923
300	7.721	7.711
	2.093	1.738
	1.481	0.689

CP scheme	Heavy mass	Interference	POs	Results	conclusions
			000000000000000000000000000000000000000	0000000000000	

Bar-scheme vs OS-scheme

μ_{H} [GeV]	Γ_{H}^{OS} [GeV] (YR)	$\gamma_{\scriptscriptstyle H}$ [GeV]	\overline{M}_{H} [GeV]	Γ _{<i>_H</i>[GeV]}
200	1.43	1.26	200	1.26
400	29.2	24.28	400.7	24.24
600	123	102.17	608.6	100.72
700	199	159.54	717.95	155.55
800	304	228.44	831.98	219.66
900	449	307.63	951.12	291.09

CP scheme 00000	Heavy mass	Interference	POs 0000●000	Results	conclusions
Scales					

CP scheme 00000	Heavy mass	Interference	POs ○○○○○●○	Results	conclusions
What is	signal?				

Complete Amplitude (simplified, no p_{τ})

$$A(s) = V_{\text{prod}}(s) \Delta_{\text{prop}}(s) V_{\text{dec}}(s) + A_{\text{bckg}}(s)$$

•
$$V_{\text{prod}} \leftarrow gg \rightarrow H$$

• $V_{\text{dec}} \leftarrow H \rightarrow \gamma\gamma$, 4 f etc.

If no attempt is made to *split* A(s) no ambiguity arises but, usually, the two components are known at different orders.

• Ho to *define* the **Signal**?

CP scheme	Heavy mass	Interference	POs	Results	conclusions
			0000000000000		

Options

at present ONBW

$$A_{sig}(s) = V_{prod}(\mu_H^2) \Delta_{prop}(s) V_{dec}(\mu_H^2)$$

 $\Delta_{prop}(s) = Breit-Wigner$

- in general violates gauge invariance, neglects the Higgs off-shellness and introduces an *ad hoc* BW
- Also possible OFFBW

$$egin{array}{rll} {A_{
m sig}(s)} &= V_{
m prod}(s)\,\Delta_{
m prop}(s)\,V_{
m dec}(s)\ \Delta_{
m prop}(s) &= {
m Breit-Wigner} \end{array}$$

in general violates gauge invariance, and introduces an *ad* hoc BW

CP scheme	Heavy mass	Interference	POs	Results	conclusions
			000000000000000000000000000000000000000		

Options

• improving **ONP**

$$egin{array}{rll} {\cal A}_{
m sig}(s) &= V_{
m prod}(\mu_{\cal H}^2)\,\Delta_{
m prop}(s)\,V_{
m dec}(\mu_{\cal H}^2)\ \Delta_{
m prop}(s) &= {
m propagator} \end{array}$$

- in general violates gauge invariance and neglects the Higgs off-shellness
- Also possible **OFFP**

$$egin{array}{rll} {A_{
m sig}(s)} &= V_{
m prod}(s)\,\Delta_{
m prop}(s)\,V_{
m dec}(s) \ \Delta_{
m prop}(s) &= {
m propagator} \end{array}$$

• in general violates gauge invariance

CP scheme	Heavy mass	Interference	POs	Results	conclusions
			0000000000000		

Options

Ideal CPP

$$A_{sig}(s) = V_{prod}(s_{H}) \Delta_{prop}(s) V_{dec}(s_{H})$$

 $\Delta_{prop}(s) = propagator$

- Only the pole, the residue and the reminder of *A*(*s*) are gauge invariant!
- Furthermore CPP allows to identify POs

$$\sigma_{\rm prod}$$
 $\Gamma_{\rm dec}$

 by putting in one-to-one correspondence robust theoretical quantities and experimental data

CP scheme	Heavy mass	Interference	POs	Results	conclusions
			00000000000000	000000000000	

What id background?

Consistent definition of S, B

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

! the reminder \implies background

CP scheme 00000	Heavy mass	Interference	POs 0000000000	Results	conclusions

Conclusion?

- What is the best choice for heavy Higgs NLO MCs?
- Well,

that all true believers break their eggs at the convenient end.

Jonathan Swift's Travels into Several Remote Nations of the World

But nobody touch QFT. Someone do something quick, before we're all killed. El sueño de la razón produce monstruos

Francisco Goya

CP scheme	Heavy mass	Interference	POs	Results	conclusions
				00000000000	

Short Dialogue of Natural Philosophy

EX In trying to understand MC for a heavy Higgs, I am increasingly suspicious of theoretical treatment for such cases, including cross sections.

TH God could have made the universe any way he wanted to and still made it appear to us the way it does (Galileo, Dialogo sopra i due massimi sistemi del mondo)

among THs: "Who shall go in?" said one. "Not I," said the other. "Nor I," rejoined his companion but numbers are here it appears!

・ロト・日本・日本・日本・日本

00000 0	000000	000	00000000000	000000000000000000000000000000000000000	0000000
Legenda					

Abb.

- FW Breit–Wigner Fixed Width
- **RW** Breit–Wigner Running Width
- **OS** parameters in On-Shell scheme
- Bar parameters in Bar-scheme
 - FS Ren (fact) scales fixed
- RS Ren (fact) scales running (virtuality)

CP scheme	Heavy mass	Interference	POs	Results	conclusions
				00000000000000000	

CP scheme	Heavy mass	Interference	POs	Results	conclusions
			000000000000000	000000000000	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CP scheme	Heavy mass	Interference	POs	Results	conclusions
				000000000000000000000000000000000000000	

CP scheme	Heavy mass	Interference	POs	Results	conclusions
				000000000000000000000000000000000000000	

・ロ・・日・・日・・日・・日・

onclusions

▲ロト▲御ト▲画ト▲画ト 画 のQ@

CP scheme 00000	Heavy mass	Interference	POs 00000000000	Results ○○○○○●○○○○○○	conclusions

The $\mu_{\rm R}$ problem

QED

- Is there a μ_R in QED?
 Yes
- Is it a problem? No,
 q² = 0 is physical!

EW

- Is there a μ_R in EW? **Yes**
- Is it a problem? No!
- Are there large logs?
 Yes
- Use G_F scheme and not α(0), i.e. resum

QCD one(multi)-scale? Once again, **resum** or, at least **minimize**!

▲ロト▲御ト▲画ト▲画ト 画 のQ@

CP scheme	Heavy mass	Interference	POs	Results	conclusions
				000000000000	

CP scheme	Heavy mass	Interference	POs	Results	conclusions
				000000000000000000000000000000000000000	

୍ବର୍ତ୍

CP scheme	Heavy mass	Interference	POs	Results	conclusions
				000000000000000000000000000000000000000	

CP scheme	Heavy mass	Interference	POs	Results	conclusions
				000000000000000000000000000000000000000	

CP scheme	Heavy mass	Interference	POs	Results	conclusions
				00000000000000000	

CP scheme 00000	Heavy mass	Interference	POs 0000000000	Results	conclusions ●○○○○○
PO rec.					

Temporary Entries

- Search for heavy Higgs: address it as *search* for heavy Higgs and *J* = 0, 1 *heavy new resonances* decaying into *VV* → 4 f.

Philippi", Shakespeare's Julius Caesar).

- Assign a *conservative* ±20% uncertainty for missing interference at high masses (≥ 600 GeV).
- Use *running* QCD scales, taking into account the kinematics of final four fermions in gg → H + X → 4 f + X.

P scheme	Heavy mass	Interference

POs Results

conclusions ○●○○○○○

PO conclusions: before, after?

CP scheme	Heavy mass	Interference	POs	Results	conclusions
					000000

Backup: courtesy R. Tanaka

596

CP scheme	Heavy mass	Interference	POs	Results	conclusions
					0000000

Backup: courtesy S. Frixione

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 めんの

CP scheme 00000	Heavy mass	Interference	POs 0000000	Results	conclusions ○○○○●○○
Backup					

CP scheme 00000	Heavy mass	Interference	POs 00000000	Results	conclusions ○○○○○●○
Backup					

CP scheme 00000	Heavy mass	Interference	POs 0000000	Results	conclusions ○○○○○●
Backup					

