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¬ Before the 2012 discovery the hypothesis was the SM
and mHmHmH the unknown, therefore bounds on mHmHmH were
derived through a comparison with high-precision data.

 At LHC, after the discovery,
the unknowns are SM deviations , given that the SM is
fully specified and deviations are constrainable. Of course,
the definition of SM deviations requires a characterization
of the underlying dynamics1.

Remark Notice that, so far, all the available studies on the couplings of the
new resonance conclude it to be compatible with the Higgs boson of the SM within
present precision, and, as of yet, there is no direct evidence for new physics
phenomena beyond the SM. Waiting for ® Ecco la �era con la coda aguzza

1 every 20 bogus hypotheses you test, one of them will give you a p of < 0.05
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Negative log-likelihood contours at 68%68%68% CL in the [µggF+tt , µVBF+VH[µggF+tt , µVBF+VH[µggF+tt , µVBF+VH] plane for
the combination of ATLAS and CMS, for each of the final state analysed

PH → ZZPH → ZZPH → ZZ, H → WWH → WWH → WW, H → γγH → γγH → γγ , H → ττH → ττH → ττ, H → bbH → bbH → bb, and their combination. The SM
expectation is also shown as a black star.

3/21



Parameter value
1− 0.5− 0 0.5 1 1.5 2 2.5 3 3.5 4

µ

ttH
µ

ZH
µ

WH
µ

VBF
µ

ggF
µ

 Run 1LHC
CMS and ATLAS ATLAS+CMS

ATLAS

CMS

σ1±
σ2±

N
ex

t s
te

p
in

S
M

de
vi

at
io

ns
?

B
es

t f
ra

m
ew

or
k?

Best fit results for the production signal strengths for the combination of
ATLAS and CMS data. Also shown are the results from each experiment.

The error bars indicate the 1σ1σ1σ (thick lines) and 2σ2σ2σ (thin lines) intervals. The
measurements of the global signal strength µµµ are also shown.
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Frameworks for SM deviations2

Definition (kappa framework)
A procedure used at LO, partially accommodating factorizable
QCD a but not electroweak (EW) corrections, to parametrize
SM deviations. It amounts to replace

LSM ({m} , {g})LSM ({m} , {g})LSM ({m} , {g}) with L
(
{m} , {κg g}

)
L
(
{m} , {κg g}

)
L
(
{m} , {κg g}

)
where {m} denotes the SM masses, {g} the SM couplings and
κg are the scaling parameters. This is the framework used
during Run 1.

a In general, there are contributions which induce sizeable corrections unrelated to the SM ones,
[arXiv:1607.06354]

2A theory replaces a framework after testing confirms the hypothesis
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Theory for SM deviations

Definition (EFT/SMEFT)
Exact non-perturbative solutions to quantum field theories are rarely known
and approximate solutions that expand observables perturbatively in a small
coupling constant and in a ratio of scales are generally developed. Such
quantum field theories can be regarded as examples of effective field theory
(EFT), e.g. SM effective field theory (SMEFT):

LLL = LSM + ∑
n>4

Nn

∑
i=1

an
i

Λn−4 O
(d=n)
iLSM + ∑

n>4

Nn

∑
i=1

an
i

Λn−4 O
(d=n)
iLSM + ∑

n>4

Nn

∑
i=1

an
i

Λn−4 O
(d=n)
i

with arbitrary Wilson coefficients an
ian
ian
i which, however, give the leading

amplitudes in an exactly unitary S -matrix at energies far below the scale of
new physics, ΛΛΛ. The theory is (strictly) non-renormalizable, which means that
an infinite number of higher operators must be included. Nevertheless there
is a consistent expansion of amplitudes in power of v/Λ,E/Λv/Λ,E/Λv/Λ,E/Λ, where vvv is the
Higgs VEV and EEE is the typical scale at which we measure the process.
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Frameworks for SM deviations

Definition (Phenomenological Lagrangiansa)

aTheory deals with the well founded theoretical results obtained from first principles, while phenomenology deals
with not so well founded effective models with a smaller domain of application, Hartmann (Studies in History and
Philosophy of Modern Physics)

Any phenomenological approach, e.g. an extension of the SM
Lagrangian with a limited number of interactions (like HVVHVVHVV and
HffHffHff), is a reasonable starting point to describe limits on SM
deviations.
While this outcome is much less desirable than dealing with a consistent
SMEFT it is important to recognize that the difference relates to possibility of
including theory uncertainties and of having a MC tool.
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Frameworks for SM deviations

Definition (PO)
Pseudo observables (POs) are a platform between realistic
observables and theory parameters, allowing experimentalists
and theorists to meet half way between, without theorists
having to run full simulation and reconstruction and
experimentalists fully unfolding to model-dependent parameter
spaces.
Experimenters collapse some “primordial quantities” (say number of
observed events in some pre-defined set-up) into some “secondary
quantities” which we feel closer to the theoretical description of the
phenomena a. In other words, POs answer the question
“how to measure in order to preserve the data for a long time?how to measure in order to preserve the data for a long time?how to measure in order to preserve the data for a long time?”

a[https://cds.cern.ch/record/2138023]
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¶ SM augmented with the inclusion of higher dimensional operators
(T1T1T1); not strictly renormalizable. Although workable to all orders, T1T1T1 fails
above a certain scale, Λ1Λ1Λ1.

· Consider any BSM model that is strictly renormalizable and respects
unitarity (T2T2T2); its parameters can be fixed by comparison with data,
while masses of heavy states are presently unknown. T1 6= T2T1 6= T2T1 6= T2 in the UV
but must have the same IR behavior.

¸ Consider now the whole set of data below Λ1Λ1Λ1.

T1T1T1 should be able to explain them by fitting Wilson
coefficients,
T2T2T2 adjusting the masses of heavy states (as SM did with
the Higgs mass at LEP) should be able to explain the data.

Goodness of both explanations are crucial in understanding how well
they match and how reasonable is to use T1T1T1 instead of the full T2T2T2

¹ Does T2T2T2 explain everything? Certainly not, but it should be able to
explain something more than T1T1T1.

º We could now define T3T3T3 as T2T2T2 augmented with (its own) higher
dimensional operators; it is valid up to a scale Λ2Λ2Λ2.

» · · · · · ·· · · · · ·· · · · · · 9/21



To explain SMEFT in a nutshell (for a complete description see [G. P.,
M. Trott, https://cds.cern.ch/record/2138031]) consider a process described
by some SM amplitude

ASMASMASM = ∑
i=1,n

A
(i)

SM∑
i=1,n

A
(i)

SM∑
i=1,n

A
(i)

SM

where i labels gauge-invariant sub-amplitudes. In the extension the same
process is given by a contact term or a collection of contact terms of dim = 6dim = 6dim = 6;
for instance, direct coupling of HHH to VV(V = γ ,Z,W)VV(V = γ ,Z,W)VV(V = γ ,Z,W). In order to construct the
theory one has to select a set of higher-dimensional operators and to start
the complete procedure of renormalization.

· · · constructing SMEFT

m Experiments occur at finite energy and measure S
eff(Λ)S
eff(Λ)S
eff(Λ)

m Whatever QFT should give low energy S
eff(Λ)S
eff(Λ)S
eff(Λ) , ∀Λ < ∞

m There is no fundamental scale above which S
eff(Λ)S
eff(Λ)S
eff(Λ) is not defined

(K. Costello, Renormalization and EFT, AMS)

m S
eff(Λ)S
eff(Λ)S
eff(Λ) loses its predictive power if a process at E = ΛE = ΛE = Λ requires

∞∞∞ renormalized parameters (J. Preskill, CALT-68-1493)

10/36
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From SM to SMEFT

A LO
SMEFTA LO
SMEFTA LO
SMEFT = ∑

i=1,n
A

(i)
SM + i g6 κc∑

i=1,n
A

(i)
SM + i g6 κc∑

i=1,n
A

(i)
SM + i g6 κc

A NLO
SMEFTA NLO
SMEFTA NLO
SMEFT = ∑

i=1,n
κi A

(i)
SM + i g6 κc +g6 ∑

i=1,N
ai A

(i)
nf∑

i=1,n
κi A

(i)
SM + i g6 κc +g6 ∑

i=1,N
ai A

(i)
nf∑

i=1,n
κi A

(i)
SM + i g6 κc +g6 ∑

i=1,N
ai A

(i)
nf

where g−1
6

=
√

2GF Λ2. The last term collects all loop contributions that do
not factorize and the coefficients ai are Wilson coefficients.

The κiκiκi are linear combinations of the aiaiai .

We conclude that SMEFT gives the correct generalization of
the original κ -framework at the price of introducing additional,
non-factorizable, terms in the amplitude.
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Aγγ

κ = κt A
t

H→γγ
+κb A

b
H→γγ

+κV A bos
H→γγ

Aγγ

κ = κt A
t

H→γγ
+κb A

b
H→γγ

+κV A bos
H→γγ

Aγγ

κ = κt A
t

H→γγ
+κb A

b
H→γγ

+κV A bos
H→γγ

Agg
SMEFT = g gS

π2 ∑q=t,b κ
gg
q A

gg
q +2gS g6

s
M2

W
aφgAgg

SMEFT = g gS
π2 ∑q=t,b κ

gg
q A

gg
q +2gS g6

s
M2

W
aφgAgg

SMEFT = g gS
π2 ∑q=t,b κ

gg
q A

gg
q +2gS g6

s
M2

W
aφg

+
g g2

S g6
π2 ∑q=t,b A

nf ;gg
q aqg+

g g2
S g6

π2 ∑q=t,b A
nf ;gg

q aqg+
g g2

S g6
π2 ∑q=t,b A

nf ;gg
q aqg

Aγγ

PO = εµ ε ′ν εγγ (gµν q ·q′−qµ q
′ν)Aγγ

PO = εµ ε ′ν εγγ (gµν q ·q′−qµ q
′ν)Aγγ

PO = εµ ε ′ν εγγ (gµν q ·q′−qµ q
′ν)

all sets of gauge invariant, dimension d operators,
none of which is redundant, form a basis and
all bases are equivalent
A basis is closed under renormalization [G. P.]

Only a basis should be called a “basis”

Resolved scaling factor in gg → H
κ κ

2
t Xt +κ

2
b Xb +κt κb Xt,b

LO SMEFT Xq +K2 a2
φG +Kaφg Yq

NLO SMEFT PTG κ
2
t Xt +κ

2
b Xb +κt κb Xt,b +

K2 a2
φG +Kaφg κt Yt +Kaφg κb Yb

TOP-DOWN approach
When heavy and light fields mix
beware of subtleties
Matching Matters
[arXiv:1603.03660,arXiv:1607.08251]
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The main message from Run 1: it is important to check the

apparent minimality of the Higgs sector as it is important to

anticipate deviations . Of course, not only is there LHC, there are EWPD.
Measurements of the WWW mass provide an important consistency check of the

SM and constrain BSM physics.

M2
W

M2
Z

= ĉ2
θ

+
α

π
Re
{(

1− 1
2

g6 aφD

)
∆

(4)
B (MW )+ ∑

gen

[(
1+4g6 a(3)

φ l

)
∆

(4)
l (MW )

+
(

1+4g6 a(3)
φq

)
∆

(4)
q (MW )

]
+g6

[
∆

(6)
B (MW )+ ∑

gen

(
∆

(6)
l (MW )+∆

(6)
q (MW )

)]}

Global constraints of the SMEFT have been developed in [arXiv:1606.06693]
with results that show how the SMEFT

theory error should not be neglected in future fit errors .
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The work of [arXiv:1606.06502] has shown that the extra error
introduced in these measurements due to SMEFT higher

dimensional operators is subdominant to the current
experimental systematic errors.

This means that the leading challenge to
interpreting these measurements in the SMEFT is the pure
theoretical uncertainty in how these measurements are
mapped to Lagrangian parameters3.

3There is now an overall consensus on having a “truncation” error in SMEFT, and the recommendation is to quote
it separately.

15/21



Inclusion of EWPD in a global fit deserves additional comments. Usually
bounds on the coefficients are obtained in two ways: individual coefficients

are switched one one at the time, or marginalized in a simultaneous fit.
In [arXiv:1508.05060] the global constraint picture on SMEFT parameters

has been updated with the conclusion that stronger constraints can be
obtained by using some combinations of Wilson coefficients, when making

assumptions on the UV completion of the SM.
Furthermore, strong bounds at the per-mille or sub-per-mille level on some

combinations of Wilson coefficients in the Effective Lagrangian can be
artificially enhanced in fits of this form in detail.
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As discussed in [arXiv:1510.03443,arXiv:1602.05202] a few select kinematic
distributions can be used to collect information on modified Higgs couplings,

for example in the gluon fusion production process.
In the top-gluon-Higgs sector one can compare three different analysis

strategies:

a modified pT spectrum of boosted Higgs production in gluon
fusion [Banfi], [arXiv:1501.04103]
off-shell Higgs production, and
a measurement of the gluon fusion vs t tH production rates.

Unfortunately, explicit threshold effects in boosted Higgs production are too
small to be observable in the near future [arXiv:1604.06096].

Remark Unfortunately, global analyses including kinematic information in all
Higgs channels cannot rely on the kappa framework , but they can be based
on SMEFT. Such analyses provide potentialities and challenges at the same
time.
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Several (theoretical) analyses have been performed with the
available Run I data, as summarized in

[arXiv:1511.05170,arXiv:1512.03429,arXiv:1410.7703].
These analyses always use a subset of the full Warsaw basis
and show a good agreement, with differences due to different

sets of assumptions.

Remark The results can be summarized by saying that current
measurements show good agreement with the zero SM
deviation hypothesis.
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3 Conventional vision : some very different physics occurs
at Planck scale, SM is just an effective field theory. What
about the next SM? A new weakly coupled renormalizable
model? A tower of EFTs4?

3 A different vision : is the SM close to a fundamental
theory?

4 The SMEFT framework is useful because one can set limits on the effective coefficients in a
model-independent way [arXiv:1508.05060]. This is why SMEFT in the bottom-up approach is so useful:
we do not know what the tower of UV completions is (or if it exists at all) but we can formulate the SMEFT and
perform calculations with it without needing to know what happens at arbitrarily high scales. On the other hand
interpreting such limits as bounds on UV models does require some assumption of the UV dynamics
[arXiv:1604.06444].
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Thank you for your attention
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111

known

T2T2T2 (NSM)

to be specified

T1T1T1 (SMEFT)

still useful

T3T3T3 (NSMEFT)

to be constructed

e.g. [arXiv:1603.03660]

M2
H± = Λ

2 +
1
2

v2 (λ4 +λ5) M2
A 0 = Λ

2 +v2
λ5 M2

H = Λ
2− 1

4

[
v2
(

λ1−2λ

)
−M2

h

] v4

Λ4

sinβ = 1− 1
8

v4

Λ4 +O

(
v6

Λ6

)
cosβ =

1
2

v2

Λ2 +O

(
v4

Λ4

)

sin(α −β ) = −1+O

(
v6

Λ6

)
cos(α −β ) =− 1

2

(
M2

h +v2
λ

) v2

Λ4 +O

(
v6

Λ6

)
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methodological antireductionism It is possible that at some very large energy scale, all
nonrenormalizable interactions disappear. This seems unlikely, given the
difficulty with gravity. It is possible that the rules change drastically, it may

even be possible that there is no end, simply more and more scales (Georgi).

This prompts the important question whether there is a last fundamental theory in this
tower of EFTs which supersede each other with rising energies. Some people

conjecture that this deeper theory could be a string theory, i.e. a theory which is not a
field theory any more.

epistemological antifoundationalism Or should one ultimately expect from physics theories that
they are only valid as approximations and in a limited domain? (Hartmann, Castellani)

Or . . . one should not resort to arguments involving gravity: let us banish
further thoughts about gravity and the damage it could do to the weak scale

(J. D. Wells)
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E/ΛE/ΛE/Λ for off-peak

The UV connection

AAA =
∞

∑
n=N

gn A
(4)

n +
∞

∑
n=N6

n

∑
l=1

∞

∑
k=1

gn g l
4+2k A

(4+2k)
n l k

∞

∑
n=N

gn A
(4)

n +
∞

∑
n=N6

n

∑
l=1

∞

∑
k=1

gn g l
4+2k A

(4+2k)
n l k

∞

∑
n=N

gn A
(4)

n +
∞

∑
n=N6

n

∑
l=1

∞

∑
k=1

gn g l
4+2k A

(4+2k)
n l k

where g is the SU(2) coupling constant and g4+2k = 1/(
√

2GF Λ2)k = gk
6 , where GF is the Fermi coupling constant

and Λ is the scale around which new physics (NP) must be resolved. For each process N defines the dim = 4 LO

(e.g. N = 1 for H → VV etc. but N = 3 for H → γ γ ). N6 = N for tree initiated processes and N−2 for loop initiated

ones. Here we consider single insertions of dim = 6 operators, which defines NLO SMEFT.

Ex: HAA (tree) vertex generated by O
(6)
φ W =

(
Φ

†
Φ
)

Fa µν Fa
µν , by

O
(8)
φ W = Φ

† Fa µν Fa
µρ Dρ Dν Φ etc.
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SMEFT ordertable for tree initiated 1→ 2 processes

g /dim −→

↓ g A
(4)

1 + g g6 A
(6)

1,1,1 + g g8 A
(8)

1,1,2

g3 A
(4)

3 + g3 g6 A
(6)

3,1,1 + g3 g2
6 A

(6)
3,2,1

. . . . . . . . . . . . . . . . . .

g g6 A
(6)

1,1,1 LO SMEFT. There is also RG-improved LO

([arXiv:1308.2627]) and MHOU for LO SMEFT
([arXiv:1508.05060])

g3 g6 A
(6)

3,1,1 ([arXiv:1505.03706]) NLO SMEFT

g g8 A
(8)

1,1,2 ([arXiv:1510.00372]), g3 g2
6 A

(6)
3,2,1 MHOU for NLO

SMEFT

N.B. g8 denotes a single O(8) insertion, g2
6 denotes two, distinct, O(6) insertions
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A = gN A
(4)
LO ({p}) + gN g6 A

(6)
LO ({p} , {a}) + 1

16 π
2 gN+2 A

(4)
NLO({p}) + 1

16 π
2 gN+2 g6 A

(6)
NLO({p} , {a})A = gN A

(4)
LO ({p}) + gN g6 A

(6)
LO ({p} , {a}) + 1

16 π
2 gN+2 A

(4)
NLO({p}) + 1

16 π
2 gN+2 g6 A

(6)
NLO({p} , {a})A = gN A

(4)
LO ({p}) + gN g6 A

(6)
LO ({p} , {a}) + 1

16 π
2 gN+2 A

(4)
NLO({p}) + 1

16 π
2 gN+2 g6 A

(6)
NLO({p} , {a})

CT4CT4CT4

CT4,6 +MixCT4,6 +MixCT4,6 +Mix

{p} = {g , gS , sin θW , M , MH , Mf} ∈{p} = {g , gS , sin θW , M , MH , Mf} ∈{p} = {g , gS , sin θW , M , MH , Mf} ∈ SM

{a} ={a} ={a} = Wilson coeff. ∈∈∈ Warsaw basis

{p} , {a} −→{p} , {a} −→{p} , {a} −→ {pren} , {aren} −→{pren} , {aren} −→{pren} , {aren} −→ IPS , {aren(µR)}IPS , {aren(µR)}IPS , {aren(µR)}

︷ ︸︸ ︷

GF , αS , MW , MZ , MH

︷ ︸︸ ︷

GF , αS , MW , MZ , MH

︷ ︸︸ ︷

GF , αS , MW , MZ , MH

րրր

CT = counterterm
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The role of H → VEV

O = Λ
−n

dim︷ ︸︸ ︷
M l

NF

∂
c
︷ ︸︸ ︷
ψ

a
ψ

b (
Φ

†)d
Φ

e Af

codim︸ ︷︷ ︸
3
2

(a+b)+c +d +e + f + l +n = 4

one loop renormalization is controlled by:

dim = 6 codim = 4 NF > 2 (Jargon: LO SMEFT)

The hearth of the problem: a large number of operators implodes into a small
number of coefficients

92 SM vertices ⇐⇒ 28 CP even operators (1 flavor, Nψ = 0,2)
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HHH

γγγ

W/ZW/ZW/Z

HHH

ggg

γγγ ZZZ

fff

µµµ -decay

Self-energies

SHH =
g2

16π2 ΣHH =
g2

16π2

(
Σ

(4)
HH +g6 Σ

(6)
HH

)
Sµν

AA =
g2

16π2 Σ
µν

AA Σ
µν

AA = ΠAA Tµν

Sµν

VV =
g2

16π2 Σ
µν

VV Σ
µν

VV = DVV δ
µν +PVV pµ pν

DVV = D(4)
VV +g6 D(6)

VV PVV = P(4)
VV +g6 P(6)

VV

Sµν

ZA =
g2

16π2 Σ
µν

ZA +g6 Tµν aAZ Σ
µν

ZA = ΠZA Tµν +PZA pµ pν

Sf =
g2

16π2

[
∆f +

(
Vf −Af γ

5) i/p
]
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∆UV = 2
4−n − γ − lnπ− ln

µ2
R

µ2
n is space-time dimension
loop measure µ4−n dnq

µR ren. scale Warsaw basis

ZiZiZi = 1+
g2

16π2

(
dZ(4)

i +g6 dZ(6)
i

)
∆UV1+

g2

16π2

(
dZ(4)

i +g6 dZ(6)
i

)
∆UV1+

g2

16π2

(
dZ(4)

i +g6 dZ(6)
i

)
∆UV

With field/parameter counterterms we can make

SHH,ΠAA,DVV,ΠZASHH,ΠAA,DVV,ΠZASHH,ΠAA,DVV,ΠZA, Vf,AfVf,AfVf,Af and the corresponding Dyson

resummed propagators UV finite at O(g2 g6)O(g2 g6)O(g2 g6) ( Q.E.D.)

which is enough when working under the assumption that gauge bosons
couple to conserved currents

A gauge-invariant description turns out to be mandatory
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Mixing

Field/parameter counterterms are not enough to make UV finite
the Green’s functions with more than two legs. A mixing matrix

among Wilson coefficients is needed:

aiaiai = ∑
j

ZW
ij aren

j∑
j

ZW
ij aren

j∑
j

ZW
ij aren

j ZW
ij = δij +

g2

16π2 dZW
ij ∆UVZW

ij = δij +
g2

16π2 dZW
ij ∆UVZW

ij = δij +
g2

16π2 dZW
ij ∆UV

| gN A
(4)

N +gK g6 A
(6)

K,1,1 |
2 ; | gN A

(4)
N |2 + 2gN+K g6 Re

[
A

(4)
N

]†
A

(6)
K,1,1

Remark negative bin entries judge the validity of the dim = 6 “linear” approach

([arXiv:1511.05170])
Nihil novi: for a similar problem in EWPD see [The standard model in the making]. Quadratize

when/if needed.
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SM
H

W
±/φ±/X

±
W
±/φ±

W
±/φ± t

LO SMEFT

NLO SMEFTW
±/φ±/X

±
∑

•

t
∑

•

W
±/φ± W

±/φ±/H/φ0

W
±/φ± W

±/φ±

t W
±

Diagrams contributing to the amplitude for H → γ γH → γ γH → γ γ in the Rξ
RξRξ -gauge: SM (first row), LO SMEFT (second row), and

NLO SMEFT. Black circles denote the insertion of one dim = 6dim = 6dim = 6 operator. ∑•∑•∑• implies summing over all insertions in
the diagram (vertex by vertex). For triangles with internal charge flow (t,W±,φ

±,X±t,W±,φ
±,X±t,W±,φ
±,X±) only the clockwise orientation

is shown. Non-equivalent diagrams obtained by the exchange of the two photon lines are not shown. Higgs and
photon wave-function factors are not included. The Fadeev-Popov ghost fields are denoted by XXX.
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¶

Define the following combinations of Wilson coefficients (where
sθ (cθ ) denotes the sine(cosine) of the renormalized

weak-mixing angle.
aZZ = s2

θ aφ B +c2
θ aφ W −sθ cθ aφ WB

aAA = c2
θ aφ B +s2

θ aφ W +sθ cθ aφ WB

aAZ = 2cθ sθ

(
aφ W −aφ B

)
+
(

2c2
θ −1

)
aφ WB

and compute the (on-shell) decay H(P)→ A
µ
(p1)Aν

(p2)H(P)→ A
µ
(p1)Aν

(p2)H(P)→ A
µ
(p1)Aν

(p2)

where the amplitude is

Aµν

HAAAµν

HAAAµν

HAA = THAA T µνTHAA T µνTHAA T µν M2
H T µν = pµ

2 pν

1 −p1 ·p2 δ
µνM2

H T µν = pµ

2 pν

1 −p1 ·p2 δ
µνM2

H T µν = pµ

2 pν

1 −p1 ·p2 δ
µν

Remark The amplitude is made UV finite by mixing aAAaAAaAA with
aAA,aAZ,aZZaAA,aAZ,aZZaAA,aAZ,aZZ and aQWaQWaQW Q.E.D.
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·

Compute the (on-shell) decay H(P)→ A
µ
(p1)Zν

(p2)H(P)→ A
µ
(p1)Zν

(p2)H(P)→ A
µ
(p1)Zν

(p2) . After
adding 1PI and 1PR components we obtain

Aµν

HAZAµν

HAZAµν

HAZ = THAZ T µνTHAZ T µνTHAZ T µν M2
H T µν = pµ

2 pν

1 −p1 ·p2 δ
µνM2

H T µν = pµ

2 pν

1 −p1 ·p2 δ
µνM2

H T µν = pµ

2 pν

1 −p1 ·p2 δ
µν

Remark The amplitude is made UV finite by mixing aAZaAZaAZ with
aAA,aAZ,aZZaAA,aAZ,aZZaAA,aAZ,aZZ and aQWaQWaQW Q.E.D.
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¸

Compute the (on-shell) decay H(P)→ Z
µ
(p1)Zν

(p2)H(P)→ Z
µ
(p1)Zν

(p2)H(P)→ Z
µ
(p1)Zν

(p2) . The
amplitude contains

a DHZZDHZZDHZZ part proportional to δ µνδ µν
δ µν and

a PHZZPHZZPHZZ part proportional to pµ

2 pν

1pµ

2 pν

1pµ

2 pν

1 .

Remark Mixing of aZZaZZaZZ with other Wilson coefficients makes
PHZZPHZZPHZZ UV finite, while the mixing of aφ2aφ2aφ2 makes DHZZDHZZDHZZ UV finite
Q.E.D.
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¹

Compute the (on-shell) decay H(P)→ W−
µ
(p1)W+

ν
(p2)H(P)→ W−

µ
(p1)W+

ν
(p2)H(P)→ W−

µ
(p1)W+

ν
(p2) . This

process follows the same decomposition of H → ZZH → ZZH → ZZ and it is UV
finite in the dim = 4dim = 4dim = 4 part. However, for the dim = 6dim = 6dim = 6 one, there

are no Wilson coefficients left free in PHWWPHWWPHWW so that its UV
finiteness follows from gauge cancellations

(H → AA, AZ, ZZ, WW = 6 Lorentz structures controlled by 5 coefficients)

Proposition
This is the first part in proving closure of NLO SMEFT under
renormalization Q.E.D.

Remark Mixing of aφ Daφ Daφ D makes DHWWDHWWDHWW UV finite Q.E.D.
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º

Compute the (on-shell) decay H(P)→ b(p1)b(p2)H(P)→ b(p1)b(p2)H(P)→ b(p1)b(p2) .

Remark

It is dim = 4dim = 4dim = 4 UV finite and

mixing of ad φad φad φ makes it UV finite also at dim = 6dim = 6dim = 6 Q.E.D.
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»

Compute the (on-shell) decay Z(P)→ f(p1)f(p2)Z(P)→ f(p1)f(p2)Z(P)→ f(p1)f(p2) . It is dim = 4dim = 4dim = 4
UV finite and we introduce

al W = sθ al WB +cθ al BW al B = sθ al BW −cθ al WB

ad W = sθ ad WB +cθ ad BW ad B = sθ ad BW −cθ ad WB

au W = sθ au WB +cθ au BW au B = cθ au WB −sθ au BW

a(3)
φ l −a(1)

φ l =
1
2

(aφ l V +aφ l A ) aφ l =
1
2

(aφ l A −aφ l V )

aφu V = a(3)
φq +aφu +a(1)

φq aφu A = a(3)
φq −aφu +a(1)

φq

aφd V = a(3)
φq −aφd −a(1)

φq aφd A = a(3)
φq +aφd −a(1)

φq

and obtain that ( Q.E.D.)

Z → l lZ → l lZ → l l requires mixing of al BW ,aφ l Aal BW ,aφ l Aal BW ,aφ l A and aφ l Vaφ l Vaφ l V with other coefficients,
Z → uuZ → uuZ → uu requires mixing of au BW ,aφu Aau BW ,aφu Aau BW ,aφu A and aφu Vaφu Vaφu V with other coefficients,

Z → ddZ → ddZ → dd requires mixing of ad BW ,aφd Aad BW ,aφd Aad BW ,aφd A and aφd Vaφd Vaφd V with other coefficients,

Z → ννZ → ννZ → νν requires mixing of aφν = 2(a(1)
φ l +a(3)

φ l )aφν = 2(a(1)
φ l +a(3)

φ l )aφν = 2(a(1)
φ l +a(3)

φ l ) with other coefficients.
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¼

At this point we are left with the universality of the electric charge. In QED
there is a Ward identity telling us that eee is renormalized in terms of vacuum
polarization and Ward-Slavnov-Taylor identities allow us to generalize the

argument to the full SM.

We can give a quantitative meaning to the the previous statement by saying
that the contribution from vertices (at zero momentum transfer) exactly cancel

those from (fermion) wave function renormalization factors. Therefore,

Compute the vertex AffAffAff (at q2 = 0q2 = 0q2 = 0) and the fff wave function factor in SMEFT,
proving that the WST identity can be extended to dim = 6dim = 6dim = 6 ; this is non trivial
since there are no free Wilson coefficients in these terms (after the previous

steps); (non-trivial) finiteness of e+e−→ ffe+e−→ ffe+e−→ ff follows.

Proposition
This is the second part in proving closure of NLO SMEFT under
renormalization Q.E.D.
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The IR connection (e.g. Z → llZ → llZ → ll)

= ρ
f
Z γµ

[(
I(3)
f + i aL

)
γ+−2Qf κ

f
Z sin2

θ + i aQ

]
= ρ

f
Z γµ

[(
I(3)
f + i aL

)
γ+−2Qf κ

f
Z sin2

θ + i aQ

]
= ρ

f
Z γµ

[(
I(3)
f + i aL

)
γ+−2Qf κ

f
Z sin2

θ + i aQ

]
A tree

µ = g A
(4)

1 µ
+g g6 A

(6)
1 µ

A
(4)

1 µ
=

1
4cθ

γµ

(
vL + γ

5
)

A
(6)

1 µ
=

1
4

γµ

(
Vl +Al γ

5
)

Vl =
s2

θ

cθ

(
4s2

θ −7
)

aAA +cθ

(
1+4s2

θ

)
aZZ +sθ

(
4s2

θ −3
)

aAZ

+
1

4cθ

(
7−s2

θ

)
aφ D +

2
cθ

aφ l V

Al =
s2

θ

cθ

aAA +cθ aZZ +sθ aAZ −
1

4cθ

aφ D +
2
cθ

aφ L A

After UV renormalization, i.e. after counterterms and mixing have been
introduced, we perform analytic continuation in n (space-time dimension),
n = 4+ ε with ε positive.
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Proposition
The infrared/collinear part of the one-loop virtual corrections
shows double factorization.

Γ
(
Z → l + l

)
|div = − g4

384π3 MZ s2
θ F virt

[
Γ

(4)
0 (1+g6 ∆Γ)+g6 Γ

(6)
0

]
Proposition
The infrared/collinear part of the real corrections shows double
factorization.

Γ
app (Z → l + l +(γ)

)
=

g4

384π3 MZ s2
θ F real

[
Γ

(4)
0 (1+g6 ∆Γ)+g6 Γ

(6)
0

]
Proposition

The total = virtual + real is IR /collinear finite at O(g4 g6)O(g4 g6)O(g4 g6)
( Q.E.D.).
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Assembling everything gives

Γ
l
QED =

3
4

Γ
l
0

α

π

(
1+g6 ∆

(6)
QED

)
Γ

l
0 =

GF M3
Z

24
√

2π

(
v2

l +1
)

∆
(6)
QED = 2

(
2−s2

θ

)
aAA +2s2

θ aZZ +2

(
c3

θ

sθ

+
512
26

vL

v2
L +1

)
aAZ

− 1
2

c2
θ

s2
θ

aφ D +
1

v2
L +1

δ
(6)
QED

δ
(6)
QED =

(
1−6vl −v2

l

) 1
c2

θ

(
sθ aAA −

1
4

aφ D

)
+

(
1+2vl −v2

l

) (
aZZ +

sθ

cθ

aAZ

)
+

2
c2

θ

(
aφ l A +vl aφ l V

)
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