The Higgs Boson Intrinsic Width

Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino, Italy

SM @ LHC, 9 April 2014 Madrid

$$
d \sigma^{\text {off }}=\mu r d \sigma \text { peak } \quad r=\frac{\Gamma_{\mathrm{H}}}{\Gamma_{\mathbf{H}}^{S M}} \leftrightarrow \quad \text { assume } \mu=1 \leadsto \text { measure } r
$$

Combined limit ~peak, exp resolution / SM width $2-3 \mathrm{GeV} / 4 \mathrm{MeV}$
 Conloinca linit pention

- Combined observed (expected) values
> $\mathrm{r}=\Gamma / \Gamma_{\mathrm{SM}}<4.2$ (8.5) @ 95\% CL (p -value $=0.02$)
b $\mathrm{r}=\Gamma / \Gamma_{\mathrm{SM}}=0.3^{+1.5}{ }_{-0.3}$
- equivalent to:
- $\Gamma<17.4$ (35.3) MeV @ 95\% CL
- $\Gamma=\left(1.4^{+6.1}{ }_{-1.4}\right) \mathrm{MeV}$
R. Covarelli
$2 M_{W}$

The big picture @ 8TeV

* Peak at Z mass due to singly resonant diagrams.
* Interference is an important effect.
* Destructive at large mass, as expected.
* With the standard model width, \$H challenging to see enhancement/deficit due to Higgs channel.
$\mu_{T_{\mu}}>5 \mathrm{GeV},\left|\eta_{\mu}\right|<2.4$,
$p_{T, *}>7 \mathrm{GeV},\left|\left.\right|_{k}\right|<2.5$,

dynamic
QCD scales

A short History of beyond ZWA (don't try fixing something that is already broken in the first place)
(1) There is an enhanced Higgs tail kauer-Passarino (arxiv:1206.4803): away from the narrow peak the propagator and the off-shell H width behave like $\boldsymbol{\rightarrow}$

$$
\Delta_{\mathrm{H}} \approx \frac{1}{\left(M_{\mathrm{VV}}^{2}-\mu_{\mathrm{H}}^{2}\right)^{2}}, \quad \boldsymbol{\nu} \frac{\Gamma_{\mathrm{H} \rightarrow \mathrm{VV}}\left(M_{\mathrm{VV}}\right)}{M_{\mathrm{VV}}} \sim G_{\mathrm{F}} M_{\mathrm{VV}}^{2}
$$

(2) Introduce the notion of ∞-degenerate solutions for the Higgs couplings to SM particles Dixon - Li (arXiv:1305.3854), Caola -

[^0](3) Observe that the enhanced tail is obviously γ_{H}-independent and that this could be exploited to constrain the Higgs width model-independently
(4) Use a matrix element method (e.g. MELA) to construct a kinematic discriminant to sharpen the constraint Campbell, Ellis and Williams (arXiv:1311.3589)

Off-shellness forever

(1) On-shell ∞-degeneracy: allow for a scaling of the Higgs couplings and of the total Higgs width defined by

$$
\sigma_{i \rightarrow \mathrm{H} \rightarrow f}=(\sigma \cdot \mathrm{BR})=\frac{\sigma_{i}^{\operatorname{prod}_{\Gamma_{f}}}}{\gamma_{\mathrm{H}}} \quad \sigma_{i \rightarrow \mathrm{H} \rightarrow f} \propto \frac{g_{i}^{2} g_{f}^{2}}{\gamma_{\mathrm{H}}} \quad g_{i, f}=\xi g_{i, f}^{\mathrm{sM}} \gamma_{\mathrm{H}}=\xi^{4} \gamma_{\mathrm{H}}^{\mathrm{sM}}
$$

Remark Looking for $\boldsymbol{\xi}$-dependent effects in the highly off-shell region is an approach that raises sharp questions on the nature of the underlying extension of the SM; furthermore it does not take into account variations in the SM background
$>$ The signal strength in 41, relative to the expectation for the SM Higgs boson, is measured to be

$$
0.91_{-0.24}^{+0.30} \mathrm{CMS} \quad 1.43_{-0.35}^{+0.40} \text { ATLAS }
$$

(2) Use к-language, allowing for a consistent HEFT interpretation, Passarino:2012cb. Neglecting loop-induced vertices, we have

$$
\begin{aligned}
\frac{\Gamma_{\mathrm{gg}}}{\Gamma_{\mathrm{gg}}^{\mathrm{SM}}\left(\mu_{\mathrm{H}}\right)} & =\frac{\kappa_{\mathrm{t}}^{2} \cdot \Gamma_{\mathrm{gg}}^{\mathrm{tt}}\left(\mu_{\mathrm{H}}\right)+\kappa_{\mathrm{b}}^{2} \cdot \Gamma_{\mathrm{gg}}^{\mathrm{bb}}\left(\mu_{\mathrm{H}}\right)+\kappa_{\mathrm{t}} \kappa_{\mathrm{b}} \cdot \Gamma_{\mathrm{gg}}^{\mathrm{tb}}\left(\mu_{\mathrm{H}}\right)}{\Gamma_{\mathrm{gg}}^{\mathrm{tt}}\left(\mu_{\mathrm{H}}\right)+\Gamma_{\mathrm{gg}}^{\mathrm{bb}}\left(\mu_{\mathrm{H}}\right)+\Gamma_{\mathrm{gg}}^{\mathrm{tb}}\left(\mu_{\mathrm{H}}\right)} \\
\sigma_{i \rightarrow \mathrm{H} \rightarrow f} & =\frac{\kappa_{i}^{2} \kappa_{f}^{2}}{\kappa_{\mathrm{H}}^{2}} \sigma_{i \rightarrow \mathrm{H} \rightarrow f}^{\mathrm{SM}}
\end{aligned}
$$

Remark The measure of off-shell effects can be interpreted as a constraint on γ_{H} only when we scale couplings and total width to keep $\sigma_{\text {peak }}$ untouched, although its value is known with 15-20\% accuracy.

The generalization is AN $\boldsymbol{\infty}^{\mathbf{2}}$-degeneracy, $\boldsymbol{\kappa}_{\boldsymbol{i}} \boldsymbol{\kappa}_{\boldsymbol{f}}=\boldsymbol{\kappa}_{\mathbf{H}}$.

(3) On the whole, we have a constraint in the multidimensional $\boldsymbol{\kappa}$-space, since $\kappa_{\mathrm{g}}^{2}=\mathrm{k}_{\mathrm{g}}^{2}\left(\boldsymbol{\kappa}_{\mathrm{t}}, \kappa_{\mathrm{b}}\right)$ and $\mathrm{k}_{\mathbf{H}}^{2}=\kappa_{\mathbf{H}}^{2}\left(\kappa_{j}, \forall j\right)$.
> Only on the assumption of degeneracy one can prove that off-shell effects measure $\mathbf{k}_{\mathbf{H}}$; a combination of on-shell effects (measuring $\mathbf{k}_{\boldsymbol{i}} \mathbf{k}_{\boldsymbol{f}} / \mathbf{k}_{\mathbf{H}}$) and off-shell effects (measuring $\mathbf{k}_{\boldsymbol{i}} \mathbf{k}_{\boldsymbol{f}}$) gives information on $\mathbf{k}_{\mathbf{H}}$ without prejudices.
> Denoting by \mathbf{S} the signal and by I the interference and assuming that $\mathbf{I}_{\text {peak }}$ is negligible we have

$$
\frac{\mathrm{S}_{\text {off }}}{\mathrm{S}_{\text {peak }}} \kappa_{\mathrm{H}}^{2}+\frac{\mathrm{I}_{\text {off }}}{\mathrm{S}_{\text {peak }}} \frac{\kappa_{\mathrm{H}}}{x_{i f}}, \quad x_{i f}=\frac{\kappa_{i} \kappa_{f}}{\kappa_{\mathrm{H}}}
$$

for the normalized $\mathbf{S}+\mathbf{I}$ off-shell cross section.
$>$ The background, e.g. gg $\rightarrow 41$, is also changed by the inclusion of $\boldsymbol{d}=\mathbf{6}$ operators and one cannot claim that New Physics is modifying only the signal

The higher-order correction in gluon-gluon fusion have shown a huge K -factor $\mathrm{K}=\sigma_{\text {prod }}^{\mathrm{NNLO}} / \sigma_{\text {prod }}^{\mathrm{LO}}, \sigma_{\text {prod }}=\sigma_{\mathrm{gg} \rightarrow \mathbf{H}}$.

(1) The zero-knowledge scenario

The soft-knowledge scenario: in a nutshell, one can
$\sigma=\sigma^{\mathrm{Lo}}+\sigma^{\mathrm{Lo}} \frac{\alpha_{\mathrm{s}}}{2 \pi}$ [universal + process dependent + reg]

- where universal (the ${ }^{*}+\boldsymbol{}$ distribution) gives the bulk of the result
- while process dependent (the $\boldsymbol{\delta}$ function) is known up to two loops for the signal but not for the background
- and reg is the regular part.

A possible strategy (Bonvini e tal. axivi:1304.3053) would be to use for background the same process dependent coefficients and allow for their variation within some ad hoc factor.

* The total systematic error is dominated by theoretical uncertainties, therefore one should never accept theoretical predictions that cannot provide uncertainty in a systematic way (i.e. providing an algorithm). vertical morphing conway

$$
\begin{aligned}
& \mathrm{D}_{-}\left(\lambda, M_{41}\right)=\lambda \mathrm{D}_{\mathrm{M}}\left(M_{41}\right)+(1-\lambda) \mathrm{D}_{\mathrm{I}}\left(M_{41}\right) \\
& \mathrm{D}_{+}\left(\lambda, M_{41}\right)=\lambda \mathrm{D}_{\mathrm{I}}\left(M_{41}\right)+(1-\lambda) \mathrm{D}_{\mathrm{A}}\left(M_{41}\right)
\end{aligned}
$$

4fo $1-\varepsilon \leq \lambda \leq 1$, has a flat distribution
[efs We will have $\mathrm{D}_{-}<\mathrm{D}_{\mathrm{I}}<\mathrm{D}_{+}$and a value for $\boldsymbol{\lambda}$ close to one (e.g. 0.9) gives less weight to the additive option, highly disfavored by the eikonal approximation.

THU summary

(1) PDF $+\alpha_{s}$; these have a Gaussian distribution;
(2) $\checkmark \mu_{\mathrm{R}}, \mu_{\mathrm{F}}$ (renormalization and factorization QCD scales) variations; they are the standard substitute for missing higher order uncertainty (MHOU); MHOU are better treated in a Bayesian context with a flat prior;
(3) uncertainty on γ_{H} due to missing higher orders, negligible for a light Higgs;
(4) \checkmark uncertainty for $\boldsymbol{\Gamma}_{\mathbf{H} \rightarrow \mathbf{F}}\left(\boldsymbol{M}_{\mathbf{f}}\right)$ due to missing higher orders (mostly EW), especially for high values of the Higgs virtuality \mathbf{M}_{f} (i.e. the invariant mass in $\mathbf{p p} \rightarrow \mathbf{H} \rightarrow \mathbf{f}+\mathbf{X}$);
(5) \checkmark uncertainty due to missing higher orders (mostly QCD) for the background

FUTURE (Morion EW 2014)

FIG. 2: Effective new physics scales Λ. extracted from the Figs coupling measurements collected in Table I. T for the loop-induced couplings to gluons and photons contain only the contribution of the contact terms, as t of the loop terms are already disentangled at the level of the input values Δ. (The ordering of the columns fr right corresponds to the legend from up to down.)

34

CONCLUSIONS

\& The successful search for the on-shell Higgs-like boson did put little emphasis on the potential of the off-shell events. Wind of change is blowing (CMS-PAS-HIG-14-002), thanks Chiara.

B The associated THU is (almost) dominating the total systematic error and precision Higgs physics requires control of both systematics, not only the experimental one

B Very often THU is nothing more than educated guesswork but a workable falsehood is more useful than a complex incomprehensible truth. In other words, closeness to the whole truth is in part a matter of degree of informativeness of a proposition

What can be said at all can be said clearly and whereof one cannot speak thereof one must be silent Ludwig wittgenstein

Thantes for your attention

[^0]: Melnikov(arXiv:1307.4935)

