Precision Higgs Physics

Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino, Italy

SCALARS 2013, September 13-16, 2013, Warsaw

- Theoretical precision: Missing Higher Orders (MHO)
- On - Off Shell: the Dalitz sector -0.e 0000
- BSM: SM $\oplus \boldsymbol{d}=\mathbf{6}$ operators

Shugar Domer and Studie David

Assertion

Precision Shysics: restricting our attention to the relative merits of realism and instrumentalism.
Do we bave a way of knowing whether "unobservable" theoretical entities really exist, or that their meaning is defined solely through measurable quantities?
Leplin (1984), Sokal (2001)

Byere we yo

Prolegomena

From my Logbook:
 now we must move on to the next step

melting BSM-physics with high-precision SM-technology The question has been repeated many times

- Answers converging around Not yet Meanwhile, it came dangerously close to realizing a
nightmare, of Physics done by sub-sets of diagrams
instead of cuts.

Well, several years ago we avoided that fate, may be THE HISTORY WILL REPEAT ITSELF?

Prolegomena

From my Logbook:
 now we must move on to the next step

melting BSM-physics with high-precision SM-technology The question has been repeated many times

- Answers converging around Nol yet
- Meanwhile, it came dangerously close to realizing a nightmare, of Physics done by sub-sets of diagrams instead of cuts.

WeLL, several years ago we avoided that fate, may be THE HISTORY WILL REPEAT ITSELF?

PO
EFT

What is THU?

The traditional way for estimating THEORETICAL UNCERTAINTIES associated to collider physics is based on the notion of QCD scale variation

We introduce the concept of
 * MHO(MHOU), missing higher order (uncertainty), which has to do with the TRUNCATION ERROR IN THE PERTURBATIVE EXPANSION;

\mathscr{I}_{n} the past 30 years the commonly accepted way for estimating MHOU has been based on scale variations.

Consider an observable $\boldsymbol{\sigma}(\boldsymbol{Q}, \boldsymbol{\mu})$ where

- Q is the typical scale of the process and
- $\boldsymbol{\mu} \equiv\left\{\mu_{\mathrm{R}}, \mu_{\mathrm{F}}\right\}$ are the renormalization and factorization scales. The conventional strategy defines

$$
\begin{aligned}
& \sigma_{\xi}^{-}=\min \left\{\sigma\left(Q, \frac{\mu}{\xi}\right), \sigma(Q, \xi \mu)\right\} \\
& \sigma_{\xi}^{+}=\max \left\{\sigma\left(Q, \frac{\mu}{\xi}\right), \sigma(Q, \xi \mu)\right\}
\end{aligned}
$$

- selects a value for $\boldsymbol{\xi}$ (typically $\boldsymbol{\xi}=\mathbf{2}$) and predicts $\sigma^{-} \leqq \sigma \leqq \sigma^{+}$

There is an open and debatable question on how to assign a probability distribution function (pdf) to the MHOU

- the generally accepted one is based on a Gaussian (or log-normal) distribution centered at $\sigma(Q, Q)$. What to use for the standard deviation, remains an open problem.
- Alternatively, it can be assumed that the pdf is a FLAT-BOX

Recently, there has been a proposal by cacciari and Houdeau, based on a flat (uninformative). Sayesian prior for the MHOU.

More generally, dependence on scales is only part of the problem: indeed, the MHO problem is based on the following fact: given an observable \mathscr{O}, related to a perturbative series

$$
\mathscr{O} \asymp \sum_{n=0}^{\infty} c_{n} g^{n}
$$

\cdots how should we interpret the relation?

- The perturbative expansion is unlikely to converge, simon, 1972
- the asymptotic behavior of the coefficients is expected to be

$$
c_{n} \sim K n^{\alpha} \frac{n!}{S^{n}}, \quad n \rightarrow \infty \quad \text { Vainshtein } 1994
$$

\mathscr{W}_{c} (A. David and I) did not answer general questions (e.g. to prove uniqueness) but concentrated (arXiv:1307.1843 [hep-ph]) on

predicting higher orders

using the well-known concept of "s series acceleration", i.e. one of a collection of sequence transformations (ST) for improving the rate of convergence of a series.

- If the original series is divergent, the ST acts as an extrapolation method
- in the case of infinite sums, STs have the effect that sums that formally diverge may return a result that can be interpreted as evaluation of the analytic extension of the series for the sum.
- the relation between Borel summation (usual method applied for summing divergent series) and these extrapolation methods is known
- Note that the definition of a sum of a factorially divergent series, including those with non-alternating coefficients, is always equivalent to Borel's definition, Suslov 2005

Example

$$
S_{\infty}=\sum_{n=0}^{\infty} n!z^{n+1}=e^{-1 / z} E i\left(\frac{1}{z}\right)
$$

where the exponential integral is a single-valued function in the plane cut along the negative real axis.
However, for $\boldsymbol{z}>\mathbf{0} \mathrm{Ei}(\boldsymbol{z})$ can be computed to great accuracy using several Chebyshev expansions. Note that the r.h.s. is the Borel sum of the series.

Levin $\boldsymbol{\tau}$-transform

given the partial sum
Weniger $\boldsymbol{\delta}$-transform
$S_{n}=\sum_{i=0}^{n} \gamma_{i} z^{i}$, define the τ-transform as

$$
\delta_{k}(\beta)=\frac{\sum_{i=0}^{k} W^{\delta}(k, i, \beta) S_{i}}{\sum_{i=0}^{k} W^{\delta}(k, i, \beta)}
$$

$$
\begin{gathered}
\tau_{k}=\frac{N_{k}}{D_{k}}, \\
N_{k}=\sum_{i=1}^{k} W(k, i) S_{i}, \quad D_{k}=\sum_{i=1}^{m} W(k, i), \\
W(k, i)=(-1)^{i}\binom{k}{i} \frac{(i)_{k-1}}{\Delta S_{i-1}}
\end{gathered}
$$

where $(z)_{a}=\Gamma(z+a) / \Gamma(z)$ is the Pochhammer symbol and Δ is the usual forward-difference operator, $\Delta S_{n}=S_{n+1}-S_{n}$.

$$
W^{\delta}(k, i, \beta)=(-1)^{i}\binom{k}{i} \frac{(\beta+i)_{k-1}}{(\beta+k)_{k-1}} \frac{1}{\gamma_{i+1} z^{i+1}}
$$

The whole strategy is based on the fact that one can predict the coefficients by

- constructing an approximant with the known terms of the series ($\gamma_{0}, \ldots, \gamma_{n}$) and
- expanding the approximant in a Taylor series. The first \boldsymbol{n} terms of this series will exactly agree with those of the original series and
the subsequent terms may be treated as the predicted coefficients. i.e. if S_{1}, \ldots, S_{k} are known, one computes

$$
\tau_{k}-S_{k}=\bar{\gamma}_{k+1} z^{k+1}+\mathscr{O}\left(z^{k+2}\right)
$$

${ }^{\infty} \bar{\gamma}_{k+1}$ is the prediction for γ_{k+1}

How to use it?

Consider a specific example, $\mathbf{g g} \rightarrow \mathbf{H}$. Define

$$
\sigma_{\mathrm{gg}}\left(\tau, M_{\mathrm{H}}^{2}\right)=\sigma_{\mathrm{gg}}^{0}\left(\tau, M_{\mathrm{H}}^{2}\right) K_{\mathrm{gg}}\left(\tau, M_{\mathrm{H}}^{2}, \alpha_{\mathrm{s}}\right)
$$

where $\tau=M_{\mathrm{H}}^{2} / s$ and $\boldsymbol{\sigma}_{\mathrm{gg}}^{0}$ is the LO cross section. The K-factor admits a formal power expansion in $\boldsymbol{\alpha}_{\mathrm{s}}\left(\mu_{\mathrm{R}}\right)$

$$
K_{\mathrm{gg}}\left(\tau, M_{\mathrm{H}}^{2}, \alpha_{\mathrm{s}}\right)=1+\sum_{n=1}^{\infty} \alpha_{\mathrm{s}}^{n}\left(\mu_{\mathrm{R}}\right) K_{\mathrm{gg}}^{n}
$$

Known coefficients are 11.879 and 72.254

In their recent work, Ball et al, (Ball:2013bra) computed (at $\sqrt{s}=8 \mathrm{TeV}$)

$$
\begin{aligned}
\alpha_{\mathrm{s}}^{3}\left(\frac{M_{\mathrm{H}}}{2}\right) K_{\mathrm{gg}}^{3}\left(\mu=\frac{M_{\mathrm{H}}}{2}\right) & =0.323 \pm 0.059 \\
\alpha_{\mathrm{s}}^{3}\left(M_{\mathrm{H}}\right) K_{\mathrm{gg}}^{3}\left(\mu=M_{\mathrm{H}}\right) & =0.527 \pm 0.043 \\
\alpha_{\mathrm{s}}^{3}\left(2 M_{\mathrm{H}}\right) K_{\mathrm{gg}}^{3}\left(\mu=2 M_{\mathrm{H}}\right) & =0.729 \pm 0.032
\end{aligned}
$$

\mathscr{W} arming up with two coefficients

$$
\tau_{2}-S_{2}=\frac{\gamma_{2}^{2}}{\gamma_{1}} z^{3}+\mathscr{O}\left(z^{4}\right)
$$

- applied to the ggF series gives

$$
\begin{aligned}
& 346.42 \leqq \gamma_{3}\left(\mu=M_{\mathrm{H}}\right) \leqq 407.48 \\
& \bar{\gamma}_{3}\left(\mu=M_{\mathrm{H}}\right)=439.48 \quad \text { (Ball:2013bra) }
\end{aligned}
$$

* which has the correct sign and the right order of magnitude.

$$
\begin{gathered}
\text { Introducing } \\
S_{\mathrm{N}, n}=\sum_{k=0}^{n} \gamma_{k} z^{k}+\sum_{k=n+1}^{\mathrm{N}} \bar{\gamma}_{k} z^{k},
\end{gathered}
$$

and $\boldsymbol{\delta}_{\mathrm{N}, \boldsymbol{n}}$ etc, constructed accordingly, our strategy for MHO and MHOU estimating can be summarized as follows:

- we select a scale, $\boldsymbol{\mu}=M_{\mathrm{H}}$ for gg-fusion
- ESTIMATE THE UNCERTAINTY DUE TO HIGHER ORDERS AT THAT SCALE, I.E. THE (SCALE VARIATION) UNCERTAINTY AT THE CHOSEN SCALE IS PART OF THE UNCERTAINTY DUE TO HIGHER ORDERS AND SHOULD NOT BE COUNTED TWICE

\therefore we compare

$$
\begin{aligned}
\sigma_{\mathrm{gg}}^{\mathrm{S}, n} & =\sigma_{\mathrm{gg}}^{0}\left(\mu=M_{\mathrm{H}}\right) S_{n, 3}\left(\mu=M_{\mathrm{H}}\right) \\
\sigma_{\mathrm{gg}}^{\delta, n} & =\sigma_{\mathrm{gg}}^{0}\left(\mu=M_{\mathrm{H}}\right) \delta_{n, 3}\left(\mu=M_{\mathrm{H}}\right)
\end{aligned}
$$

Our conclusion is that, to a very good accuracy,

$$
\sigma_{\mathrm{gg}} \in\left[\sigma_{\mathrm{gg}}^{\mathrm{S}, 3}, \sigma_{\mathrm{gg}}^{\delta, 5}\right]
$$

with a flat interval of $\mathbf{1 6 . 3 7 \%}$.
The uncertainty on the width, induced by the error on the coefficient $\gamma_{3}\left(\mu=M_{H}\right)$ brings it to $\mathbf{2 6 . 0 1 \%}$
$\delta<N^{3}$ LO \& QCD scales var.

$$
\sigma_{\mathrm{gg}} \in[18.90,21.93] p b
$$

$\mathrm{NNLO} \rightarrow+17 \% \rightarrow \mathrm{~N}^{3} \mathrm{LO} \rightarrow \approx+7 \% \rightarrow$ completion

The advantages of the method are that

- the result does not depend on the choice of the parameter expansion (it is based on ${ }^{66}$ PARTIAL SUMS) ${ }^{99} \checkmark$
- it takes into account the nature of the coefficients, i.e. that the known terms of the perturbative expansion in gg-fusion are positive \checkmark

The advantages of the method are that

- the result does not depend on the choice of the parameter expansion (it is based on ${ }^{66}$ PARTIAL SUMS) ${ }^{99} \checkmark$
- it takes into account the nature of the coefficients, i.e. that the known terms of the perturbative expansion in gg-fusion are positive \checkmark

pdf

The corresponding pdf could be derived by following the work of Cacciari and Houdeau giving

$$
\begin{aligned}
& P_{\mathrm{CH}}(\sigma)=N_{\sigma}^{-1}\left\{\begin{array}{lll}
\left(\frac{\Delta \sigma}{\sigma_{+}-\sigma}\right)^{5} & \text { if } & \sigma \leqq \sigma_{-} \\
1 & \text { if } & \sigma_{-} \leqq \sigma \leqq \sigma_{+} \\
\left(\frac{\Delta \sigma}{\sigma-\sigma_{-}}\right)^{5} & \text { if } & \sigma>\sigma_{+}
\end{array}\right. \\
& \sigma_{-}=\sigma_{\mathrm{gg}}^{\mathrm{S}, 3} \quad \sigma_{+}=\sigma_{\mathrm{gg}}^{\delta, 4} \\
& \Delta \sigma=\sigma_{+}-\sigma_{-} \\
& N_{\sigma}=\frac{3}{2} \Delta \sigma
\end{aligned}
$$

Oscudo OPsenvables

What does the term "Higgs decay" mean? A mathematical expression? But what does it mean for such an expression to exist in the physical world? Trying to answer that question immediately raises other questions about the correspondence between mathematical objects and the physical world

from PROPHECY4F

These plots are one of the best examples that

$$
\begin{array}{ccc}
\mathrm{BR}(\mathrm{H} \rightarrow \mathrm{VV}) & \otimes \\
& \neq \\
\mathrm{BR}(\mathrm{H} \rightarrow 4 \mathrm{f}) & & \\
& \mathrm{BR}^{2}(V \rightarrow \mathrm{ff}) \\
\end{array}
$$

Trivial but true, $\rightarrow \mathbf{H} \rightarrow \mathbf{V V}$ is not a physical Observable, eventually it can be defined as " PSEUDO-OBSERVABLE"

$\mathscr{T}_{h c}$ previous plot (couplings \rightleftarrows masses) is another example that

POs can be defined (couplings) Iff the rules of the game are respected

- MODEL-INDEPENDENT couplings are extracted in some effective way that includes QCD but not NLO EW
- If one wants to obtain the SM (the straight line) \rightarrow use RUNNING MASSES $\boldsymbol{m}_{\mathrm{f}}\left(\boldsymbol{M}_{\mathbf{H}}\right)$

Prototyping

Theorem

$$
\nexists \quad \mathrm{H} \rightarrow \mathrm{Z}+\gamma, \mathrm{H} \rightarrow \mathrm{VV} \quad \text { etc. }
$$

do not exist/make sense since $\downarrow \downarrow$
$ふ<\mathrm{V} \notin \quad \mid$ in/out $>\quad$ bases of the Hilbert space

Dalitz Decay?

$$
M_{\mathrm{H}}=125.5 \mathrm{GeV} \quad \mathrm{BR}\left(\mathrm{H} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)=5.1 \times 10^{-9}
$$

while a naive estimate gives

$$
\mathrm{BR}(\mathrm{H} \rightarrow \mathrm{Z} \gamma) \mathrm{BR}\left(\mathrm{Z} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)=5.31 \times 10^{-5}
$$

4 orders of mAGNITUDE larger
How much is the corresponding PO extracted from full Dalitz
Decay?
We could expect $\Gamma\left(\mathbf{H} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \boldsymbol{\gamma}\right)=\mathbf{5 . 7 \%} \Gamma(\mathbf{H} \rightarrow \boldsymbol{\gamma} \boldsymbol{\gamma})$ but photon isolation must be discussed.

Categories

Terminology:

The name Dalitz Decay must be reserved for the full process

$$
\mathrm{H} \rightarrow \overline{\mathrm{f} f} \mathrm{y}
$$

Subcategories:

$$
\begin{cases}\mathrm{H} \rightarrow \mathrm{Z}^{*}(\rightarrow \overline{\mathrm{ff}})+\gamma & 8<\text { unphysical }^{1} \\ \mathrm{H} \rightarrow \gamma^{*}(\rightarrow \overline{\mathrm{ff}})+\gamma & \mathrm{O} \text { unphysical } \\ \mathrm{H} \rightarrow \mathrm{Z}_{\mathrm{c}}(\rightarrow \overline{\mathrm{ff}})+\gamma & \mathrm{PO}^{2}\end{cases}
$$

${ }^{1} Z^{*}$ is the off-shell Z
${ }^{2} Z_{c}$ is the Z at its complex pole

Understanding the problem

$$
\mathrm{H} \rightarrow \overline{\mathrm{f}} \quad \text { or } \quad \mathrm{H} \rightarrow \overline{\mathrm{f}} \mathrm{f}+\boldsymbol{n} \boldsymbol{\gamma} \text { ? }
$$

Go to two-loop, the process is considerably more complex than, say, $\mathrm{H} \rightarrow \gamma \gamma$ because of the role played by QED and QCD corrections.

The ingredients needed are better understood in terms of cuts of the three-loop \mathbf{H} self-energy

Moral: Unless you Isolate photons
you dont fonow which process you are talling about $\mathbf{H} \rightarrow \mathbf{f} \mathbf{f}$ NNLO or $\mathbf{H} \rightarrow \overline{\mathbf{f}} \mathbf{f} \boldsymbol{\gamma} \mathrm{NLO}$

The complete \boldsymbol{S}-matrix element will read as follows:

$$
\begin{aligned}
S & =\left|A^{(0)}(\mathrm{H} \rightarrow \overline{\mathrm{ff}})\right|^{2} \\
& +2 \operatorname{Re}\left[\mathrm{~A}^{(0)}(\mathrm{H} \rightarrow \overline{\mathrm{ff}})\right]^{\dagger} \mathrm{A}^{(1)}(\mathrm{H} \rightarrow \overline{\mathrm{ff}}) \\
& +\left|A^{(0)}(\mathrm{H} \rightarrow \overline{\mathrm{ff}} \gamma)\right|^{2} x \\
& +2 \operatorname{Re}\left[\mathrm{~A}^{(0)}(\mathrm{H} \rightarrow \overline{\mathrm{ff}})\right]^{\dagger} \mathrm{A}^{(2)}(\mathrm{H} \rightarrow \overline{\mathrm{ff}}) \\
& +2 \operatorname{Re}\left[\mathrm{~A}^{(0)}(\mathrm{H} \rightarrow \overline{\mathrm{ff}} \gamma)\right]^{\dagger} \mathrm{A}^{(1)}(\mathrm{H} \rightarrow \overline{\mathrm{ff}} \gamma) x \\
& +\left|A^{(0)}(\mathrm{H} \rightarrow \overline{\mathrm{ff}} \gamma \gamma)\right|^{2} .
\end{aligned}
$$

Don't get trapped by your intuition, the IR/collinear stuff will not survive in the limit $\boldsymbol{m}_{\mathrm{f}} \rightarrow \mathbf{0}$

There are genuinely non-QED(QCD) terms surviving the zero-Yukawa limit (a result known since the '80s)

XOG STIJAG

- Collinear/Virtual cancel in the total \boldsymbol{x}
- Gram and Cayley do not generate real singularities X
- Plonty of hard stuff around \&

Only the total Valax ©ocay has a meaning and can be differentiated through cuts

- The most important is the definition of visible photon to distinguish between $\overline{\mathrm{f}} \mathrm{f}$ and $\overline{\mathrm{f}} \gamma$
- Next cuts are on $\boldsymbol{M}(\overline{\mathrm{f}} \mathrm{f})$ to isolate pseudo-observables
- One has to distinguish:
- $\mathbf{H} \rightarrow \overline{\mathbf{f}} \mathbf{f}+\mathbf{s o f t}($ collinear) photon(s) which is part of the real corrections to be added to the virtual ones in order to obtain $\mathbf{H} \rightarrow \bar{f} f$ at (N)NLO
- a visible photon and a soft $\bar{f} f-$ pair where you probe the Coulomb pole and get large (logarithmic) corrections that must be exponentiated.

Unph_ysical $\mathbf{H} \rightarrow \mathbf{Z} \boldsymbol{\gamma} \rightarrow \mathbf{f} f \boldsymbol{\gamma}$ and $\mathbf{H} \rightarrow \boldsymbol{\gamma} \boldsymbol{\gamma} \rightarrow \overline{\mathrm{f}} \boldsymbol{\gamma}$

- $8<$ None of these contributions them is NOT even gauge invariant. One can put cuts and
- with a small window around the Z-peak the pseudo-observable $\mathbf{H} \rightarrow \mathbf{Z}_{\mathbf{c}} \boldsymbol{\gamma}$ can be enhanced, but there is a contamination due to many non-resonant backgrounds \checkmark
- Beware of generic statements box contamination in $\mathbf{H} \rightarrow \mathbf{Z \gamma}$ is known to be small and of ad-hoc definition of gauge-invariant splittings \checkmark
- at small di-lepton invariant masses $\boldsymbol{\gamma}^{*}$ dominates \checkmark
- $\mathbf{H} \rightarrow \overline{\mathrm{f}} \mathbf{f}$ is well defined and $\mathbf{H} \rightarrow \overline{\mathbf{f}} \mathbf{f}+\boldsymbol{\gamma}(\boldsymbol{\gamma}$ soft+collinear) is part of the corresponding NLO corrections
- $\mathbf{H} \rightarrow \mathbf{Z} \boldsymbol{\gamma}$ is not well defined being a gauge-variant part of $\mathrm{H} \rightarrow \overline{\mathrm{f}} \mathrm{f}+\boldsymbol{\gamma}(\gamma$ visible) and can be extracted (- in a PO sense) by cutting the di-lepton invariant mass.
the best that we can hope to achieve is simply misunderstand at a deeper level

- $\mathbf{H} \rightarrow \overline{\mathrm{f}} \mathbf{f}$ is well defined and $\mathbf{H} \rightarrow \overline{\mathbf{f}} \mathbf{f}+\boldsymbol{\gamma}(\boldsymbol{\gamma}$ soft+collinear) is part of the corresponding NLO corrections
- $\mathbf{H} \rightarrow \mathbf{Z} \boldsymbol{\gamma}$ is not well defined being a gauge-variant part of $\mathrm{H} \rightarrow \overline{\mathrm{f}} \mathrm{f}+\boldsymbol{\gamma}(\gamma$ visible) and can be extracted (- in a PO sense) by cutting the di-lepton invariant mass.
the best that we can hope to achieve is simply misunderstand at a deeper level

- $\mathbf{H} \rightarrow \overline{\mathrm{f}} \mathbf{f}$ is well defined and $\mathbf{H} \rightarrow \overline{\mathbf{f}} \mathbf{f}+\boldsymbol{\gamma}(\boldsymbol{\gamma}$ soft+collinear) is part of the corresponding NLO corrections
- $\mathbf{H} \rightarrow \mathbf{Z} \boldsymbol{\gamma}$ is not well defined being a gauge-variant part of $\mathrm{H} \rightarrow \overline{\mathrm{f}} \mathrm{f}+\boldsymbol{\gamma}(\gamma$ visible) and can be extracted (- in a PO sense) by cutting the di-lepton invariant mass.
the best that we can hope to achieve is simply misunderstand at a deeper level

Results: leptons

$$
\begin{aligned}
& m(\overline{\mathrm{ff}})>0.1 M_{\mathrm{H}} \quad m(\mathrm{f} \gamma)>0.1 M_{\mathrm{H}} \quad m(\overline{\mathrm{f}} \gamma)>0.1 M_{\mathrm{H}} \\
& \Gamma_{\mathrm{NLO}}=0.233 \mathrm{keV} \quad \oplus \begin{cases}\Gamma_{\mathrm{LO}}=0.29 \times 10^{-6} \mathrm{keV} & \mathrm{e} \\
\Gamma_{\mathrm{LO}}=0.012 \mathrm{keV} & \mu \\
\Gamma_{\mathrm{LO}}=3.504 \mathrm{keV} & \tau\end{cases}
\end{aligned}
$$

- LO and NLO do not interfere (as long as masses are neglected in NLO), they belong to different helicity sets. Cuts à la Dicus and Repko

Results: quarks

$$
\begin{aligned}
& m(\overline{\mathrm{ff}})>0.1 M_{\mathrm{H}} \quad m(\mathrm{f} \gamma)>0.1 M_{\mathrm{H}} \quad m(\overline{\mathrm{f}} \gamma)>0.1 M_{\mathrm{H}} \\
& \left\{\begin{array}{lll}
\Gamma_{\mathrm{LO}}=0.013 \mathrm{keV} & \Gamma_{\mathrm{NLO}}=0.874 \mathrm{keV} & \mathrm{~d} \\
\Gamma_{\mathrm{LO}}=8.139 \mathrm{keV} & \Gamma_{\mathrm{NLO}}=0.866 \mathrm{keV} & \mathrm{~b}
\end{array}\right.
\end{aligned}
$$

- Note the effect of $\boldsymbol{m}_{\mathrm{t}}$

Cutting

$$
m(\mathrm{f} \gamma)>0.1 M_{\mathrm{H}} \quad m(\overline{\mathrm{f}} \gamma)>0.1 M_{\mathrm{H}}
$$

$\left\{\begin{array}{lll} & \Gamma_{\text {NLO }}[k e V] & \\ & m(\overline{\mathrm{ff}})>0.1 M_{\mathrm{H}} & m(\overline{\mathrm{ff}})>0.6 M_{\mathrm{H}} \\ 1 & 0.233 & 0.188 \\ \mathrm{~d} & 0.874 & 0.835 \\ \mathrm{~b} & 0.866 & 0.831 \\ & & \\ \hline & & \\ & \Gamma_{\mathrm{LO}}[\mathrm{keV}] & \\ & m(\overline{\mathrm{ff}})>0.1 M_{\mathrm{H}} & m(\overline{\mathrm{f} f})>0.6 M_{\mathrm{H}} \\ \mu & 0.012 & 0.010 \\ \text { d } & 0.013 & 0.011 \\ \mathrm{~b} & 8.139 & 6.745\end{array}\right.$

Observable Pseudo-Observable

$$
\mathrm{H} \rightarrow \gamma \gamma
$$

$$
\mathrm{H} \rightarrow \overline{\mathrm{f}} \boldsymbol{f} \gamma \quad \mathrm{H} \rightarrow \mathrm{Z} \gamma
$$

$$
\mathrm{H} \rightarrow \overline{\mathrm{f}} \mathrm{f}
$$

$$
\mathrm{H} \rightarrow \overline{\mathrm{fff}}^{\prime} \mathrm{f}^{\prime} \quad \quad \mathrm{H} \rightarrow \mathrm{VV}, \mathrm{Z} \gamma
$$

One needs to define when it is $\mathbf{4} \mathbf{f}$ final state and when it is PAIR CORRECTION to $\mathbf{2 f}$ final state (as it was done at LEP2)

EFT

Ciffective ehidel Wheny

Renormalization - group view of the world

Lets consider the following path

The ontology of the SM on its scale should be understood as arising from the "emergent" effects of a more fundamental BSM at a finer scale

$$
\begin{array}{lll}
\mathscr{L}_{\mathrm{ESM}} & = & \mathscr{L}_{\mathrm{SM}}+\sum_{n>4} \sum_{i=1}^{N_{n}} \frac{a_{i}^{n}}{\Lambda^{n-4}} \mathscr{O}_{i}^{(d=n)} \\
\exists(\exists!) & \mathscr{L}_{\mathrm{UCSM}} & \mapsto \mathscr{O}_{i} ?
\end{array}
$$

UV completion of the SM (UCSM) or ESM?

Bottom-up or top-down approach to ESM?

- How many facts the theory explains: it is a draw
- Having the fewer auxiliary hypothesis: SM \rightarrow UCSM superior
- Analogy: SM should be augmented by all possible terms consistent with symmetries \rightarrow ESM

The regulative ideal
of an ultimate theory remains a powerful aesthetic ingredient

Space of Lagrangians (arxiv:1202.3144, arXiv:1202.3415, arxiv:1202.3697)

Wilson coefficients in $\mathscr{L}_{\text {ESM }}$ are assumed to be small enough that they can be treated at leading order.

Strategy

(1) measure к

$$
\frac{\Gamma_{\mathrm{gg}}}{\Gamma_{\mathrm{gg}}^{\mathrm{SM}}\left(m_{\mathrm{H}}\right)}=\frac{\kappa_{\mathrm{t}}^{2} \cdot \Gamma_{\mathrm{gg}}^{\mathrm{tt}}\left(m_{\mathrm{H}}\right)+\kappa_{\mathrm{b}}^{2} \cdot \Gamma_{\mathrm{gg}}^{\mathrm{bb}}\left(m_{\mathrm{H}}\right)+\kappa_{\mathrm{t}} \kappa_{\mathrm{b}} \cdot \Gamma_{\mathrm{gg}}^{\mathrm{tb}}\left(m_{\mathrm{H}}\right)}{\Gamma_{\mathrm{gg}}^{\mathrm{tt}}\left(m_{\mathrm{H}}\right)+\Gamma_{\mathrm{gg}}^{\mathrm{bb}}\left(m_{\mathrm{H}}\right)+\Gamma_{\mathrm{gg}}^{\mathrm{tb}}\left(m_{\mathrm{H}}\right)}
$$

(2) find $\mathscr{O}_{\boldsymbol{i}} \Leftrightarrow \boldsymbol{\kappa}_{\boldsymbol{x}}$ (epistemological stop, true ESM believers stop here)

$$
\mathscr{L}_{\mathrm{ESM}}=\mathscr{L}_{\mathrm{SM}}+\sum_{n>4} \sum_{i=1}^{N_{n}} \frac{a_{i}^{n}}{\Lambda^{n-4}} \mathscr{O}_{i}^{(d=n)}
$$

that produces $\mathscr{O}_{\boldsymbol{i}}$
$\mathbf{k x}_{\mathbf{x}}$ cannot be arbitrary shifts of the SM diagrams

$$
\frac{\Gamma_{\mathrm{gg}}}{\Gamma_{\mathrm{gg}}^{\mathrm{SM}}\left(m_{\mathrm{H}}\right)}=\frac{\kappa_{\mathrm{t}}^{2} \cdot \Gamma_{\mathrm{gg}}^{\mathrm{tt}}\left(m_{\mathrm{H}}\right)+\kappa_{\mathrm{b}}^{2} \cdot \Gamma_{\mathrm{gg}}^{\mathrm{bb}}\left(m_{\mathrm{H}}\right)+\kappa_{\mathrm{t}} \kappa_{\mathrm{b}} \cdot \Gamma_{\mathrm{gg}}^{\mathrm{tb}}\left(m_{\mathrm{H}}\right)}{\Gamma_{\mathrm{gg}}^{\mathrm{tt}}\left(m_{\mathrm{H}}\right)+\Gamma_{\mathrm{gg}}^{\mathrm{bb}}\left(m_{\mathrm{H}}\right)+\Gamma_{\mathrm{gg}}^{\mathrm{tb}}\left(m_{\mathrm{H}}\right)}
$$

\rightarrow they require an underlying (at least effective) theory
define an effective Lagrangian based on

Abstract

a linear representation of the EW gauge symmetry with a Higgs-doublet field, restricting ourselves to dimension-6 operators relevant for Higgs physics Buchmuller:1985jz, Grzadkowski:2010es.

Disclaimer: it is impossible to quote all who have contributed. For what is relevant here:

- Yellow Report HXSWG vol. 3: A. David, A. Denner, M. Dührssen, M. Grazzini, C. Grojean, K. Prokofiev, G. Weiglein, M. Zanetti, S. Dittmaier, G. Passarino and M. SpiraContino:2013kra
- Corbett:2013hia
- Elias-Miro:2013gya
- Lopez-Val:2013yba

Lagrangian

$$
\begin{aligned}
& \mathscr{L}_{\mathrm{eff}}=\mathscr{L}_{\mathrm{SM}}^{(4)}+\frac{1}{\Lambda^{2}} \sum_{k} \alpha_{k} \mathscr{O}_{k}, \\
& \mathscr{L}_{\mathrm{SM}}^{(4)}=-\frac{1}{4} G_{\mu \nu}^{A} G^{A \mu \nu}-\frac{1}{4} \mathrm{~W}_{\mu \nu}^{\prime} \mathrm{W}^{\prime \mu \nu}-\frac{1}{4} \mathrm{~B}_{\mu \nu} \mathrm{B}^{\mu \nu} \\
&+\left(D_{\mu} \Phi\right)^{\dagger}\left(D^{\mu} \Phi\right)+m^{2} \Phi^{\dagger} \Phi-\frac{1}{2} \lambda\left(\Phi^{\dagger} \Phi\right)^{2} \\
&+\mathrm{i} \overline{\mathrm{I}} \mathrm{l}+\mathrm{i} \overline{\mathrm{e}} D \mathrm{e}+\mathrm{i} \overline{\bar{q}} \overline{\mathrm{q}} \mathrm{q}+\mathrm{i} \overline{\bar{u}} \bar{D} \mathrm{u}+\mathrm{i} \overline{\bar{d}} D \mathrm{~d} \\
&-\left(\overline{\mathrm{I}} \Gamma_{\mathrm{e}} \mathrm{e} \Phi+\overline{\mathrm{q}} \Gamma_{\mathrm{u}} \mathrm{u} \bar{\Phi}+\overline{\mathrm{d}} \Gamma_{\mathrm{d}} \mathrm{~d} \Phi+\text { h.c. }\right),
\end{aligned}
$$

Operators

Φ^{6} and $\Phi^{4} D^{2}$	$\psi^{2} \Phi^{3}$	X^{3}
$\mathscr{O}_{\Phi}=\left(\Phi^{\dagger} \Phi\right)^{3}$	$\mathscr{O}_{\mathrm{e} \Phi}=\left(\Phi^{\dagger} \Phi\right)\left(\overline{1} \Gamma_{\mathrm{e}} \mathrm{e} \Phi\right)$	$\mathscr{O}_{G}=f^{A B C} G_{\mu}^{A v} G_{v}^{B \rho} G_{\rho}^{C \mu}$
$\mathscr{O}_{\text {¢ } \square}=\left(\Phi^{\dagger} \Phi\right) \square\left(\Phi^{\dagger} \Phi\right)$	$\mathscr{O}_{\mathrm{u} \Phi}=\left(\Phi^{\dagger} \Phi\right)\left(\overline{\mathrm{q}} \Gamma_{\mathrm{u}} \mathrm{u} \widetilde{\Phi}\right)$	$\mathscr{O}_{\widetilde{G}}=f^{A B C} \widetilde{G}_{\mu}^{A v} G_{v}^{B \rho} G_{\rho}^{C \mu}$
$\mathscr{O}_{\Phi D}=\left(\Phi^{\dagger} D^{\mu} \Phi\right)^{*}\left(\Phi^{\dagger} D_{\mu} \Phi\right)$	$\mathscr{O}_{\mathrm{d} \Phi}=\left(\Phi^{\dagger} \Phi\right)\left(\overline{\mathrm{q}} \Gamma_{\mathrm{d}} \mathrm{d} \Phi\right)$	$\begin{aligned} \mathscr{O}_{\mathrm{W}}^{G} & =\varepsilon^{I J K} \mathrm{~W}_{\mu}^{I v} \mathrm{~W}_{v}^{J \rho} \mathrm{~W}_{\rho}^{K \mu} \\ \mathscr{O}_{\widetilde{\mathrm{W}}} & =\varepsilon^{I J K} \widetilde{\mathrm{~W}}_{\mu}^{I V} \mathrm{~W}_{v}^{J \rho} \mathrm{~W}_{\rho}^{K \mu} \end{aligned}$
$\mathrm{X}^{2} \Phi^{2}$	ψ^{2} Х Φ	$\psi^{2} \Phi^{2} D$
$\mathscr{O}_{\Phi G}=\left(\Phi^{\dagger} \Phi\right) G_{\mu v}^{A} G^{A \mu v}$	$\widetilde{O}_{\mathrm{u} G}=\left(\overline{\mathrm{q}} \sigma^{\mu v} \frac{\lambda^{A}}{2} \Gamma_{\mathrm{u}} u \widetilde{\Phi}\right) G_{\mu v}^{A}$	$\mathscr{O}_{\Phi l}^{(1)}=\left(\Phi^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi\right)\left(\overline{1} \gamma^{\mu}{ }_{l}\right)$
$\mathscr{O}_{\Phi \tilde{G}}=\left(\Phi^{\dagger} \Phi\right) \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu}$	$\mathscr{O}_{\mathrm{d} G}=\left(\overline{\mathrm{q}} \sigma^{\mu v} \frac{\lambda^{A}}{2} \Gamma_{\mathrm{d}} \mathrm{~d} \Phi\right) G_{\mu v}^{A}$	$O_{\Phi l}^{(3)}=\left(\Phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu}^{\prime} \Phi\right)\left(\overline{1} \gamma^{\mu} \tau^{\prime}{ }_{1}\right)$
$\mathscr{O}_{\Phi} \mathrm{WW}=\left(\Phi^{\dagger} \Phi\right) \mathrm{W}_{\mu \nu}^{\prime} \mathrm{W}^{\prime \mu \nu}$	$\mathscr{O}_{\mathrm{eW}}=\left(\overline{\mathrm{I}} \sigma^{\mu v} \Gamma_{\mathrm{e}} \mathrm{e} \tau^{\prime} \Phi\right) \mathrm{W}_{\mu \nu}^{\prime}$	$\mathscr{O}_{\Phi \mathrm{e}}=\left(\Phi^{\dagger} \stackrel{\leftrightarrow}{\mathrm{D}}_{\mu} \Phi\right)\left(\overline{\mathrm{e}} \gamma^{\mu} \mathrm{e}\right)$
$\mathscr{O}_{\Phi \widetilde{\mathrm{W}}}=\left(\Phi^{\dagger} \Phi\right) \widetilde{\mathrm{W}}_{\mu \nu}^{\prime} \mathrm{W}^{\prime \mu \nu}$	$\widehat{O}_{\mathrm{uW}}=\left(\overline{\mathrm{q}} \sigma^{\mu v} \Gamma_{\mathrm{u}} \mathrm{u} \tau^{\prime} \widetilde{\Phi}\right) \mathrm{W}_{\mu v}^{\prime}$	$\mathscr{O}_{\Phi q}^{(1)}=\left(\Phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \Phi\right)\left(\overline{\mathrm{q}} \gamma^{\mu} \mathrm{q}\right)$
$\mathscr{O}_{\text {¢B }}=\left(\Phi^{\dagger} \Phi\right) \mathrm{B}_{\mu \nu} \mathrm{B}^{\mu \nu}$	$\mathscr{O}_{\mathrm{dW}}=\left(\overline{\mathrm{q}} \sigma^{\mu v} \Gamma_{\mathrm{d}} \mathrm{d} \tau^{\prime} \Phi\right) \mathrm{W}_{\mu \nu}^{\prime}$	${O_{\Phi q}}_{(3)}^{(3)}=\left(\Phi^{\dagger} \mathrm{i} \stackrel{\rightharpoonup}{D}_{\mu}^{\prime} \Phi\right)\left(\overline{\mathrm{q}} \gamma^{\mu} \tau^{\prime} \mathrm{q}\right)$
$\mathscr{O}_{\Phi \widetilde{\mathrm{B}}}=\left(\Phi^{\dagger} \Phi\right) \widetilde{\mathrm{B}}_{\mu \nu} \mathrm{B}^{\mu \nu}$	$\mathscr{O}_{\text {eB }}=\left(\overline{\mathrm{I}} \sigma^{\mu \nu} \Gamma_{\mathrm{e}} \mathrm{e} \Phi\right) \mathrm{B} \mathrm{B}_{\mu \nu}$	$\mathscr{O}_{\Phi u}=\left(\Phi^{\dagger} \mathrm{i} \stackrel{\rightharpoonup}{D}_{\mu} \Phi\right)\left(\overline{\mathrm{u}} \gamma^{\mu} \mathrm{u}\right)$
$\mathscr{O}_{\text {¢WB }}=\left(\Phi^{\dagger} \tau^{\prime} \Phi\right) \mathrm{W}_{\mu \nu}^{\prime} \mathrm{B}^{\mu \nu}$	$\mathscr{O}_{\mathrm{uB}}=\left(\overline{\mathrm{q}} \sigma^{\mu v} \Gamma_{\mathrm{u}} \mathrm{u} \widetilde{\Phi}\right) \mathrm{B}_{\mu v}$	$\mathscr{O}_{\Phi d}=\left(\Phi^{\dagger} \stackrel{\leftrightarrow}{i}_{\mu} \Phi\right.$) $\left(\overline{\mathrm{d}} \gamma^{\mu} \mathrm{d}\right)$
$\mathscr{O}_{\Phi \widetilde{\mathrm{W}} \mathrm{B}}=\left(\Phi^{\dagger} \tau^{\prime} \Phi\right) \widetilde{\mathrm{W}}_{\mu \nu}^{\prime} \mathrm{B}^{\mu \nu}$	$\widetilde{O}_{\mathrm{dB}}=\left(\overline{\mathrm{q}} \sigma^{\mu v} \Gamma_{\mathrm{d}} \mathrm{d} \Phi\right) \mathrm{B}_{\mu v}$	$\mathscr{O}_{\text {¢ud }}=\mathrm{i}\left(\widetilde{\Phi}^{\dagger} D_{\mu} \Phi\right)\left(\overline{\mathrm{u}} \gamma^{\mu} \Gamma_{\text {ud }} \mathrm{d}\right)$

IN A COMPLETE ANALYSIS ALL 59 INDEPENDENT OPERATORS OF Grzadkowski:2010es), INCLUDING 25 FOUR-FERMION OPERATORS, HAVE TO BE CONSIDERED IN ADDITION TO THE SELECTED 34 OPERATORS

In weakly interacting theories the dimension-6 operators involving field strengths can only result from loops, while the others also result from tree diagrams (Arz: 1999gp). The operators involving dual field strengths tensors or complex Wilson coefficients violate CP.

10.4.2 Higgs vertices

Here we list the most important Feynman rules for vertices involving exactly one physical Higgs bosor These are given in terms of the above-defined physical fields and parameters. In the coefficients dimension-6 couplings we replaced v^{2} by the Fermi constant via $v^{2}=1 /\left(\sqrt{2} G_{F}\right)$.

The triple vertices involving one Higgs boson read:
Hgg coupling:

HAA coupling:

10.4.2 Higgs vertices

Here we list the most important Feynman rules for vertices involving exactly one physical Higgs bosor These are given in terms of the above-defined physical fields and parameters. In the coefficients dimension-6 couplings we replaced v^{2} by the Fermi constant via $v^{2}=1 /\left(\sqrt{2} G_{F}\right)$.

The triple vertices involving one Higgs boson read:
Hgg coupling:

HAA coupling:

10.4.2 Higgs vertices

Here we list the most important Feynman rules for vertices involving exactly one physical Higgs bosor These are given in terms of the above-defined physical fields and parameters. In the coefficients dimension-6 couplings we replaced v^{2} by the Fermi constant via $v^{2}=1 /\left(\sqrt{2} G_{F}\right)$.

The triple vertices involving one Higgs boson read:
Hgg coupling:

HAA coupling:

10.4.2 Higgs vertices

Here we list the most important Feynman rules for vertices involving exactly one physical Higgs bosor These are given in terms of the above-defined physical fields and parameters. In the coefficients dimension-6 couplings we replaced v^{2} by the Fermi constant via $v^{2}=1 /\left(\sqrt{2} G_{F}\right)$.

The triple vertices involving one Higgs boson read:
Hgg coupling:

HAA coupling:

10.4.2 Higgs vertices

Here we list the most important Feynman rules for vertices involving exactly one physical Higgs bosor These are given in terms of the above-defined physical fields and parameters. In the coefficients dimension-6 couplings we replaced v^{2} by the Fermi constant via $v^{2}=1 /\left(\sqrt{2} G_{F}\right)$.

The triple vertices involving one Higgs boson read:
Hgg coupling:

HAA coupling:

Since $\boldsymbol{\kappa}_{\mathbf{t}}, \boldsymbol{\kappa}_{\mathbf{b}}$ etc. can be made different $\mathbf{O N L Y}$ by inserting \mathscr{O} operators in SM vertices

Vademecum (NLO + EFT) trainee

- the EFT part has to be implemented into existing (EW + QCD) codes: formulation in arbitrary gauge (not U-gauge restricted) is needed
- Renormalization for the full SM + EFT Lagrangian is needed

Ffone restricts the analysis to the calculation of on-shell matrix elements then additional operators are eliminated by the Equations-Of-Motion (EOM).
given a theory with a Lagrangian $\mathscr{L}[\phi]$ consider an effective Lagrangian $\mathscr{L}_{\text {eff }}=\mathscr{L}+g \mathscr{O}+g^{\prime} \mathscr{O}^{\prime \prime}$ where

$$
\mathscr{O}-\mathscr{O}^{\prime \prime}=F[\phi] \delta \mathscr{L} / \delta \phi
$$

and F is some local functional of ϕ. The effect of \mathscr{O}^{\prime} on $\mathscr{L}_{\text {eff }}=\mathscr{L}+g \mathscr{O}$ is
to shift $g \rightarrow g+g^{\prime} \quad$ and to replace $\phi \rightarrow \phi+g^{\prime} F$

Caveat

OnhyS-matrix elements will be the same for equivalent operators but not the Green's functions:

- since we are working with unstable particles,
- since we are inserting operators inside loops,
- since we want to use (off-shell) S, T and U parameters to constrain the Wilson coefficients,
\rightarrow the use of EOM should be taken with extreme caution

[^0]
T, L operators

The $\boldsymbol{d}=\mathbf{6}$ operators are supposed to arise from a local Lagrangian, containing heavy degrees of freedom, ONCE THE

LATTER ARE INTEGRATED OUT (the correspondence Lagrangians \rightarrow effective operators is not bijective) These operators are of two different origins:
$\longrightarrow T$-operators are those that arise from the tree-level exchange of some heavy degree of freedom
\rightarrow L-operators are those that arise from loops of heavy degrees of freedom
The L-operators are usually not included in the analysis.
See recent results in Einhorn:2013kja, Einhorn:2013tja

Insertion of $\boldsymbol{d}=\mathbf{6}$ operators in loops

We have to deal with

- renormalization of composite operators
- absorbing UV divergences to all orders and of maintaining the independence of arbitrary UV scale cutoff, problems that require the introduction of all possible terms allowed by the symmetries Georg:1:199qn,Kaplan:1995uv (EFT renormalization à la BPHZ ?)
- Special care should be devoted in avoiding double-counting when we consider insertion of T-operators in loops and L-operators as well.

Caveat

Note that for
$\Lambda \approx 5 \mathrm{TeV}$
we have

$1 /\left(\sqrt{2} G_{F} \Lambda^{2}\right) \approx g^{2} /(4 \pi)$

i.e. $\mathbb{D} \boldsymbol{t}$ the contributions of $\boldsymbol{d}=\mathbf{6}$ operators are \cong loop effects. $\rightarrow \rightarrow$ For higher scales, loop contributions tend to be more important (\succcurlyeq)

UV

UV Characteristic

- Operators normally alter the UV power-counting of a SM diagram
- but there are operators that do not change the UV POWER-COUNTING: we say that a set of SM diagrams is UV-scalable w.r.t. a combination of $\boldsymbol{d}=\mathbf{6}$ operators if
- their sum is UV finite
- all diagrams in the set are scaled by the same combination of $\boldsymbol{d}=\mathbf{6}$ operators.
- these diagrams are UV admissible

Examplea: S.II loops dressed only with OC -admisisible oporators

$\mathrm{H} \rightarrow \gamma \boldsymbol{\gamma}$

For $\mathrm{H} \rightarrow \gamma \gamma$ the SM amplitude reads

$$
\begin{gathered}
\mathscr{M}_{\mathrm{SM}}=F_{\mathrm{SM}}\left(\delta^{\mu v}+2 \frac{p_{1}^{v} p_{2}^{\mu}}{\overline{\mathrm{M}}_{\mathrm{H}}^{2}}\right) e_{\mu}\left(p_{1}\right) e_{v}\left(p_{2}\right) \\
F_{\mathrm{SM}}=-g \overline{\mathrm{M}} F_{\mathrm{SM}}^{\mathrm{W}}-\frac{1}{2} g \frac{M_{\mathrm{t}}^{2}}{\overline{\mathrm{M}}} F_{\mathrm{SM}}^{\mathrm{t}}-\frac{1}{2} g \frac{M_{\mathrm{b}}^{2}}{\overline{\mathrm{M}}} F_{\mathrm{sM}}^{\mathrm{b}} . \\
F_{\mathrm{SM}}^{\mathrm{W}}=6+\frac{\overline{\mathrm{M}}_{\mathrm{H}}^{2}}{\overline{\mathrm{M}}^{2}}+6\left(\overline{\mathrm{M}}_{\mathrm{H}}^{2}-2 \overline{\mathrm{M}}^{2}\right) C_{0}\left(-\overline{\mathrm{M}}_{\mathrm{H}}^{2}, 0,0 ; \overline{\mathrm{M}}, \overline{\mathrm{M}}, \overline{\mathrm{M}}\right), \\
F_{\mathrm{SM}}^{\mathrm{t}}= \\
-8-4\left(\overline{\mathrm{M}}_{\mathrm{H}}^{2}-4 M_{\mathrm{t}}^{2}\right) C_{0}\left(-\overline{\mathrm{M}}_{\mathrm{H}}^{2}, 0,0 ; M_{\mathrm{t}}, M_{\mathrm{t}}, M_{\mathrm{t}}\right),
\end{gathered}
$$

We only need a subset of operators \curvearrowright

$$
\begin{aligned}
\widetilde{\mathscr{L}} & =A_{\mathrm{V}}^{1}\left(\Phi^{\dagger} \Phi-v^{2}\right) F_{\mu \nu}^{a} F_{\mu \nu}^{a}+A_{V}^{2}\left(\Phi^{\dagger} \Phi-v^{2}\right) F_{\mu \nu}^{0} F_{\mu \nu}^{0} \\
& +A_{V}^{3} \Phi^{\dagger} \tau_{a} \Phi F_{\mu \nu}^{a} F_{\mu \nu}^{0}+\frac{1}{2} A_{\partial \Phi} \partial_{\mu}\left(\Phi^{\dagger} \Phi\right) \partial_{\mu}\left(\Phi^{\dagger} \Phi\right) \\
& +A_{\Phi}^{1}\left(\Phi^{\dagger} \Phi\right)\left(D_{\mu} \Phi\right)^{\dagger} D_{\mu} \Phi+A_{\Phi}^{3}\left(\Phi^{\dagger} D_{\mu} \Phi\right)\left[\left(D_{\mu} \Phi\right)^{\dagger} \Phi\right] \\
& +\frac{1}{4 \sqrt{2}} \frac{M_{\mathrm{t}}}{\overline{\mathrm{M}}} A_{\mathrm{f}}^{1}\left(\Phi^{\dagger} \Phi-v^{2}\right) \psi_{\mathrm{L}} \Phi \mathrm{t}_{\mathrm{R}} \\
& +\frac{1}{4 \sqrt{2}} \frac{M_{\mathrm{b}}}{\overline{\mathrm{M}}} A_{\mathrm{f}}^{2}\left(\Phi^{\dagger} \Phi-v^{2}\right) \psi_{\mathrm{L}} \Phi^{c} \mathrm{~b}_{\mathrm{R}}+\text { h. c. } \\
& A_{\Phi}^{0}=A_{\Phi}^{1}+2 \frac{A_{\Phi}^{3}}{\hat{s}_{\theta}^{2}}+4 A_{\partial \Phi} .
\end{aligned}
$$

B

$$
\begin{aligned}
\mathscr{M}_{\mathrm{H} \rightarrow \gamma \gamma}= & \left(4 \sqrt{2} G_{\mathrm{F}}\right)^{1 / 2}\left\{-\frac{\alpha}{\pi}\left[C_{\mathrm{W}}^{\gamma \gamma} F_{\mathrm{SM}}^{\mathrm{W}}+3 \sum_{\mathrm{q}} Q_{\mathrm{q}}^{2} C_{\mathrm{q}}^{\gamma \gamma} F_{\mathrm{SM}}^{\mathrm{q}}\right]+F_{\mathrm{AC}}\right\} \\
F_{\mathrm{AC}}= & \frac{g_{6}}{\sqrt{2}} \overline{\mathrm{M}}_{\mathrm{H}}^{2}\left(\hat{s}_{\theta}^{2} A_{\mathrm{V}}^{1}+\hat{c}_{\theta}^{2} A_{\mathrm{V}}^{2}+\hat{c}_{\theta} \hat{s}_{\theta} A_{\mathrm{V}}^{3}\right) \\
& g_{6}=\frac{1}{G_{\mathrm{F}} \Lambda^{2}}=0.085736\left(\frac{T e V}{\Lambda}\right)^{2}
\end{aligned}
$$

$\$$ the scaling factors are given by

$$
\begin{aligned}
& C_{\mathrm{W}}^{\gamma \gamma}=\frac{1}{4} \overline{\mathrm{M}}^{2}\left\{1+\frac{g_{6}}{4 \sqrt{2}}\left[8 A_{\mathrm{V}}^{3} \hat{c}_{\theta}\left(\hat{s}_{\theta}+\frac{1}{\hat{s}_{\theta}}\right)+A_{\Phi}^{0}\right]\right\} \\
& C_{\mathrm{t}}^{\gamma \gamma}=\frac{1}{8} M_{\mathrm{t}}^{2}\left\{1+\frac{g_{6}}{4 \sqrt{2}}\left[8 A_{\mathrm{V}}^{3} \hat{c}_{\theta}\left(\hat{s}_{\theta}+\frac{1}{\hat{s}_{\theta}}\right)+A_{\Phi}^{0}-A_{\mathrm{f}}^{1}\right]\right\} \\
& C_{\mathrm{b}}^{\gamma \gamma}=\frac{1}{8} M_{\mathrm{b}}^{2}\left\{1+\frac{g_{6}}{4 \sqrt{2}}\left[8 A_{\mathrm{V}}^{3} \hat{c}_{\theta}\left(\hat{s}_{\theta}+\frac{1}{\hat{s}_{\theta}}\right)+A_{\Phi}^{0}-A_{\mathrm{f}}^{2}\right]\right\}
\end{aligned}
$$

The amplitude is the sum of

- the W,t and b SM components, each scaled by some combination of Wilson coefficients, and of
- a contact term

The latter is $\mathscr{O}\left(g_{6}\right)$ while the rest of the corrections is $\left.\mathscr{O}\left(\frac{\alpha}{\pi} g_{6}\right)\right)$. However, one should remember that

- $\mathscr{O}_{\mathrm{v}}^{j}$ are operators of L-type, i.e. they arise from loop correction in the complete theory
\therefore, the corresponding coefficients are expected to be very small although this is only an argument about naturalness without a specific quantitative counterpart (apart from a $1 /\left(16 \pi^{2}\right)$ factor from loop integration)

Climpsing at the headlines of the complete calculation for $\mathrm{H} \rightarrow \boldsymbol{\gamma} \boldsymbol{\gamma}$

- SM loops, dressed with admissible operators
- New 33 loop-diagrams
- Counter-terms

Amplitude in internal notations

```
g HAA= -int (q)*Qs(-1,[q]^2+mt^2)*Qs(-1,[q+p1]^2+mt^2)*Qs(-1,[q+p1+p2]^2+mt ^2)* 3*trace *(
    ( -1/2*g*mt/M + L^-2 *( 4*r2^-1*M (2 2*af1 - 2*M*aV1*mt - 1/2*a3K*M*g*mt + 2*adK*M*g*mt))*
    (-i_* (gd (s,q)+gd(s,p1)+gd(s,p2))+mt)*
    VAtt (nu,p2)*(-i_*(gd(s,q)+gd(s,p1))+mt)*
    VAtt (mu, p1)*(-i_*gd (s,q)+mt)+
    (-1/2*g*mt/M + L^-2 *( 4*r2^-1*M^2*af1 - 2*M*aV1*mt - 1/2*a3K*M*g*mt + 2*adK*M*g*mt))*
    ( i_*gd(s,q)+mt)*
    VAtt (mu,p1)*( i_ *(gd(s,q)+gd(s,p1))+mt)*
    VAtt (nu,p2)*( i_ *(gd(s,q)+gd(s,p1)+gd(s,p2))+mt))-
    int (q) *Qs( - 1,[q\mp@subsup{]}{}{\wedge}2+mb^2)*Qs( -1,[q+p1\mp@subsup{]}{}{\wedge}2+mb^2)*Qs( - 1,[q+p1+p2\mp@subsup{]}{}{\wedge}2+mb^2) * trace *(
    (-1/2*g*mb/M + L^-2 * (-4*r2^-1*M^2*af2 - 2*M*aV1*mb - 1/2*a3K*M*g*mb + 2*adK*M*g*mb))*
    (-i_ *(gd (s,q)+gd(s,p1)+gd(s,p2))+mb)*
    VAbb}(nu,p2)*(-i_*(gd(s,q)+gd(s,p1))+mb)*
    VAbb (mu,p1)*(- i_*gd(s,q)+mb)+
    ( -1/2*g*mb/M + L^-2 * (-4*r2^-1*M^2*af2 - 2*M*aV1*mb - 1/2*a3K*M*g*mb + 2*adK*M*g*mb))*
    ( i_*gd(s,q)+mb)*
    VAbb(mu,p1)*( i_ *(gd(s,q)+gd(s,p1))+mb)*
    VAbb}(nu,p2)*( i_ *(gd(s,q)+gd(s,p1)+gd(s,p2))+mb))
    + i_*L^-2 *(
        + 8*M* (sth ^2*aV1 + cth^^2*aV2 + sth * cth*aV3)*(p1(nu)*p2(mu) - d_(mu,nu)*p1.p2))+
    int (q)*Qs(-1,[q\mp@subsup{]}{}{\wedge}2+M^2)*Qs(-1,[q+p1\mp@subsup{]}{}{\wedge}2+M^}2)*Qs(-1,[q+p1+p2\mp@subsup{]}{}{\wedge}2+M^\mp@subsup{M}{}{\wedge}2)*
    dia1 *VHWN(al,be,-q,q+p1+p2)*VAWmWp(nu,be, si , p2,-q-p1-p2,q+p1)*VAWmWp(mu, si, al, p1, -q-p1,q)+
    dia2 *VHWW(be, al , q+p1+p2,-q)*VAWmWp(mu, al, si , p1,q,-q-p1)*VAWmWp(nu, si , be,p2,q+p1, -q-p1-p2)+
    dia3 *VHPmWp(al,-p1-p2,-q)*VAWmWp(nu, al , be , p2, -q-p1-p2, q+p1) *VAPpWm(mu,be, p1, -q-p1)+
```

 \(\operatorname{dia} 30 * \operatorname{VAAWP}(\mathrm{mu}, \mathrm{nu}, \mathrm{al}, \mathrm{p} 1, \mathrm{p} 2) * \operatorname{VHPpWm}(\mathrm{al},-\mathrm{p} 1-\mathrm{p} 2,-\mathrm{q}))+\)
 int \((q) * \operatorname{Qs}\left(-1,[q]^{\wedge} 2+M 0^{\wedge} 2\right) * Q s\left(-1,[q+p 1+p 2]^{\wedge} 2+M 0 \wedge 2\right) *(\)
 \(\operatorname{dia} 31 * \operatorname{VHPOPO}(-p 1-p 2,-q, q+p 1+p 2) * \operatorname{VAAPOPO}(m u, n u, p 1, p 2))+\)
 int \((q) * Q s\left(-1,[q]^{\wedge} 2+m h^{\wedge} 2\right) * Q s\left(-1,[q+p 1+p 2]^{\wedge} 2+m h^{\wedge} 2\right) *(\)
 dia32 *VHHH(-p1-p2, q+p1,-q) *VAAHH(mu, nu , p1, p2)) +
 int \((q) * Q s\left(-1,[q]^{\wedge} 2+M^{\wedge} 2\right) *(\operatorname{dia} 33 * \operatorname{VHAWW}(m u, n u, s i, s i))\);
    ```
id VHPmPp(p1?,p2?,p3?)=
    - 1/2*M^
    + L^-2 * (
    -2*M*mh^2*aV1 - 2*p2.p3*a1K*M*g + 1/2*(mh^2 + 2*p1.p1)*a3K*M*g - 2*(mh^2 + 2*p1.p1)*adK*M*
```

*

id $\operatorname{VHPmWp}(b e ?, p 1 ?, p 2 ?)=$
$-1 / 2 *(p 1(b e)-p 2(b e)) * i_{-}$g
$+L^{\wedge}-2$ *
$-2 * p 2(b e) * i_{-} * a 1 K * M^{\wedge} 2 * g-2 *(p 1(b e)-p 2(b e)) * i_{-} M^{\wedge} 2 * a V 1$
$-1 / 2 *(p 1(b e)-p 2(b e)) * i_{-} * a 3 K * M^{\wedge} 2 * g+2 *\left(p 1(b e \overline{)}-p 2(b e)) * i_{-} * a d K * M^{\wedge} 2 * g\right)$;
id $\mathrm{VHPpWm}(\mathrm{be}$?, p1?,p2?)=
$-1 / 2 *(p 1(b e)-p 2(b e)) * i_{-}$* g
$+L^{\wedge}-2$ *
$-2 * p 2(b e) * i_{-} * a 1 \mathrm{~K} * \mathrm{M}^{\wedge} 2 * g-2 *(\mathrm{p} 1(\mathrm{be})-\mathrm{p} 2(\mathrm{be})) * \mathrm{i}_{-} \mathrm{M}^{\wedge} 2 * \mathrm{aV} 1$
$\left.-1 / 2 *(p 1(b e)-p 2(b e)) * i_{-} * a 3 K * M^{\wedge} 2 * g+2 *(p 1(b e)-p 2(b e)) * i_{-} * a d K * M^{\wedge} 2 * g\right) ;$
*
id $\operatorname{VHMW}(\mathrm{al}$?, be?, p2?, p3?)=
$-d_{-}(a l$, be $) * M * g$
$+L^{\wedge}-2$ *
$-4 * d_{-}(a l, b e) * M^{\wedge} 3 * a V 1-d_{-}(a l, b e) * a 3 K * M^{\wedge} 3 * g+2 * d_{-}(a l, b e) * a 1 K * M^{\wedge} 3 * g$
$\left.+4 * d_{-}(a l, b e) * a d K * M^{\wedge} 3 * g+8 *\left(p 2(b e) * p 3(a l)-d_{-}(a l, b e) * p 2 \cdot p 3\right) * M * a V 1\right)$;
id $\operatorname{VHZZ}(\mathrm{al} ?, \mathrm{be} ?, \mathrm{p} 2 ?, \mathrm{p} 3 ?)=$
$-d_{-}(\mathrm{al}, \mathrm{be}) * \mathrm{M}_{*} \mathrm{cth}^{\wedge}-2 * g$
$+L^{\wedge}-2$ *
$-4 * d_{-}(a l, b e) * M^{\wedge} 3 * a V 1 * \operatorname{cth}^{\wedge}-2+d_{-}(a l, b e) * a 3 K * M^{\wedge} 3 * c t h^{\wedge}-2 * g$
$+2 * d_{-}($al , be $) * a 1 K * M^{\wedge} 3 * \operatorname{cth}^{\wedge}-2 * g+4 * d_{-}(a l, b e) * a d K * M^{\wedge} 3 * c t h^{\wedge}-2 * g$
$-8 *\left(\mathrm{p} 2(\mathrm{be}) * \mathrm{p} 3(\mathrm{al})-d_{-}(\mathrm{al}, \mathrm{be}) * \mathrm{p} 2 \cdot \mathrm{p} 3\right) * M * a V 3 * c t h * s t h$
$+8 *\left(p 2(b e) * p 3(a l)-d_{-}(a l, b e) * p 2 . p 3\right) * M * a V 2 * s t h \wedge 2$
$\left.+8 *\left(p 2(b e) * p 3(a l)-d _(a l, b e) * p 2 \cdot p 3\right) * M * a V 1 * c t h{ }^{\wedge} 2\right) ;$

Figure 1: The three families of diagrams contributing to the amplitude for $\mathrm{H} \rightarrow \gamma \gamma ; \mathrm{W} / \phi$ denotes a W -line or a ϕ-line. $\mathrm{X}^{ \pm}$denotes a FP-ghost line
$\mathcal{O}\left(g^{5}\right)$

Figure 3: Example of one-loop SM diagrams with \mathcal{O}-insertions, contributing to the amplitude for $\mathrm{H} \rightarrow \gamma \gamma$
$\mathcal{O}\left(g_{6}\right)$

Figure 4: Example of one-loop \mathcal{O}-diagrams, contributing to the amplitude for $\mathrm{H} \rightarrow \gamma \gamma$

Figure 5: The photon self-energy with inclusion of \mathcal{O}-operators into SM one-loop diagrams. The last diagram contains vertices, like $\mathrm{AAHH}, \mathrm{AA} \phi^{0} \phi^{0}$, that do not belong to the SM part.

Conclusions?

Data-driven Theory? Or

If you're looking for your lost keys, failing to find them in the kitchen is not evidence against their being somewhere else in the bouse

Conclusions?

- Higgs-landscape: asking the right questions takes as much skill as giving the right answers

Conclusions?

- Higgs-landscape: asking the right questions takes as much skill as giving the right answers
- Dlfe are
 thencule to a Coqical conclusion. (Anne Sullivan Macy)

Conclusions?

- Higgs-landscape: asking the right questions takes as much skill as giving the right answers
- Ole are

 thencule to a logical conclusion. (Anne Sullivan Macy)
- I am turned into a sort of machine for observing facts and grinding out conclusions (chartres Darin)

Conclusions?

- Higgs-landscape: asking the right questions takes as much skill as giving the right answers
- Ole are
 thencegh to a logical conclusion. (Anne Sullivan Macy)
- I am twinned into a sort of machine for observing facts and grinding out conclusions (Charts Darin)
- El sucño de la virion produce monstruas (Francisco Goya)

Thanter for your altention

assumptions/inferences

- Given the (few) known coefficients in the perturbative expansion we estimate the next (few) coefficients and the corresponding partial sums by means of sequence transformations. This is the first step towards * reconstructing " the physical observable.
- The sequence transformations have been tested on a number of test sequences.
- A function can be uniquely determined by its asymptotic expansion if certain conditions are satisfied (Sokal).
- Borel procedure is a summation method which, under the above conditions, determines uniquely the sum of the series. It should be taken into account that there is a large class of series that have Borel sums (analytic in the cut-plane) and there is evidence that Levin-Weniger transforms produce approximations to these Borel sums. This is one of the arguments of plausibility supporting our results.
- The QCD scale variation uncertainty decreases when we include new (estimated) partial sums.
- All known and predicted coefficients are positive and all transforms predict convergence within a narrow interval.
- Missing a formal proof of uniqueness, we assume uninformative prior between the last known partial sum and the (largest) predicted partial sum.

F．Wilczek hep－ph／9311302

typical strong interaction scale we ll be getting higher and higher powers of the strong interactions scale over Q^{2} ．Keeping the first few terms should be a good approximation even at 1.8 GeV ．It is very helpful that the mass dimensions of the gauge invariant operators start at 4 ．

The Wilson coefficients，the operator product coefficients \mathcal{C} above，obey renor－ malization group equations．They can be calculated in perturbation theory in the effective coupling at large Q^{2} ，of course．However，at Q^{2} of approximately m_{τ}^{2} we cannot simply ignore plausible non－perturbative corrections and still guaran－ tee worthwhile accuracy．A term of the form $\Lambda_{\mathrm{QCD}}^{2} / Q^{2}$ would show up，through the mechanism of dimensional transmutation，as a contribution proportional to $\exp \left(-c / \alpha_{s}\right)$ in this coefficient，where c is a calculable numerical constant．It is an important question whether there is such a contribution，because if there were， and they were not under tight control，it is formally of such a magnitude as to ruin the useful precision of the predictions．Such a correction would be bigger than the ones coming from higher operators because these operators have dimension 4，so their coefficients have Q^{2} over Λ^{2} squared，which is a priori smaller．

Mueller［7］has given an important，although not entirely rigorous，argument that no Λ^{2} / Q^{2} term can appear．The argument is a little technical，so I won＇t be able to do it full justice here but I will attempt to convey the main idea．The argument is based on the idea that at each successive power of 1 over Q^{2} one can make the perturbation series in QCD，which is a badly divergent series in general， at least almost convergent，that is Borel summable，by removing a finite number of obstructions．Furthermore the obstructions are captured and parameterized by the low dimension operators mentioned before．Once these obstructions are removed， the remaining（processed）perturbation expression converges on the correct result for the full theory．Neither in the obstructions nor in the residual perturbative expression do the potentially dangerous terms occur－which means that they don＇t occur at all．

Maybe I should draw a picture of this［Figure 4］．One has the current prod－ uct，and one is doing an analysis of its behavior when large virtual momentum is flowing through the current lines．The principle of the operator product ex－ pansion is to exhibit the powers of Q^{2} by breaking the propagators in the graph into hard and soft parts．Any soft part costs you a power of one over Q^{2} so you want the minimal number．If you just take out a couple of lines you have one of those low dimension operators，so those are interpreted as the operators，with the
causality and unitarity. The usual demonstrations that these properties hold order by order in perturbation theory can be adapted to the re-processed version, which is more complicated but has the virtue of actually defining an answer. In fact we can agree that it gives the answer, since after all the whole point of quantum field theory is to give non-trivial realizations of the axioms, and that is what we have found.

QCD is not quite so favorable as this ideal, which occurs only for massive super-renormalizable theories in low dimensions. There are several known obstructions to Borel summability in QCD, which go by frightening names: ultraviolet and infrared renormalons, instantons, and threshold-induced oscillations. What Mueller did was to analyze these known sources of possible dangerous terms. He argued that the infrared renormalons are essentially just the higher-order terms in the operator product expansion, the ultraviolet renormalons generate singularities in $g(\alpha)$ away from the real axis whose influence on the truncated form of $g(\alpha)$ one actually computes can be minimized by judicious mappings in the α plane, that the threshold-induced oscillations are negligible quantitatively, and that the instanton contribution is both small and in principle calculable.

So now I have fleshed out my earlier description of Mueller's argument a bit. The key underlying assumption is that the known obstacles to Borel summability are the only ones. In principle, one can test this circle of ideas by calculating the operator product coefficients directly in the full theory (i.e. numerically, using lattice gauge theory techniques). If they were to fail, it would signify that there is an important gap in our understanding of quantum field theory.

On the experimental side, the Aleph group has tested the framework leading to this operator product expansion by comparing the resulting specific predictions for decay into semi-inclusive final states with specific quantum numbers, including the Q^{2} dependence (which you can look at by looking at final states of different mass) [9]. They got a good fit with no one over Q^{2} term and with matrix elements of the lowest dimension relevant operators $m \bar{\psi} \psi, \operatorname{trG}_{\mu \nu} \mathrm{G}_{\mu \nu}$ fitted to other experiments. These quantities also appear in other similar applications, where observed hadron parameters are correlated using the so-called QCD or ITEP sum rules, which arise by saturated various operator products. By taking suitable moments one can define quantities that are insensitive to the higher dimension operators, and for these the predictions of perturbative QCD are especially stringent.

I went into some detail into the analysis of tau decay because I think it's not

Structure of the calculation

- Process: $\mathrm{H} \rightarrow \mathrm{f} f \gamma, \mathrm{f}=1, \mathrm{q}$, including b with non-zero m_{t}
- Setup: $m_{\mathrm{f}}=0$ at NLO. Calculation based on helicity amplitudes
LO and NLO do not interfere (with $m_{\mathrm{f}}=0$)
Cuts available in the H rest-frame
Olease complain but it took years to interface POWHEG and
Prophecy4f......
$\mathrm{gg} \rightarrow \mathrm{ff} \gamma$? Can be done, © ©ut \ldots....

HTO-DALITZ Features

- Internal cross-check, loops are evaluated both analytically and numerically (using BST-algorithm)
- The code makes extensive use of $\mathscr{S}_{m} \mathscr{O}_{\text {lous }}$ abbreviation algorithms (if $a+b$ appears twice or more it receives an abbreviation and it is pre-computed only once).
- All functions are collinear-free
- High performances thanks to gcc-4.8.0
- Open MP/ version under construction, GPU version in a preliminar phase
- Returns the full result and also the unphysical components

Man at work

- Extensions: as it was done during Lep times, there are diagrams where both the Z and the γ propagators should be Dyson-improved, i.e.
$\alpha_{\mathrm{QED}}(0) \rightarrow \alpha_{\mathrm{QED}}$ (virtuality)
ρ_{f} - parameter included
- However, the interested sub-sets are not gauge invariant, \therefore appropriate subtractions must be performed (at virtuality
$=0, s_{Z}$, the latter being the Z complex-pole).

Misunderstandings

- use $M(\overline{\mathrm{f}} \mathrm{f} \gamma)$ and require $\left|M-M_{\mathrm{Z}}\right| \leqq n \Gamma_{\mathrm{Z}}$. This is not the photon we are discussing Photons are collinear to leptons only if emitted by leptons but those are Yukawa-suppressed. In any case $M(\overline{\mathrm{f}} \gamma)=M_{\mathrm{H}}$ or it is Not Dalitz decay
- Requiring a cut on the opening angle between leptons and the photon to define isolated photons is highly recommended, Sul at the moment we are still in the Higgs rest-frame (Mirades tabce a bit longor)

Misunderstandings

- use $M(\overline{\mathrm{f}} \mathrm{f} \gamma)$ and require $\left|M-M_{\mathrm{Z}}\right| \leqq n \Gamma_{\mathrm{Z}}$. This is not the photon we are discussing Photons are collinear to leptons only if emitted by leptons but those are Yukawa-suppressed. In any case $M(\overline{\mathrm{f}} \gamma)=M_{\mathrm{H}}$ or it is Not Dalitz decay
- Requiring a cut on the opening angle between leptons and the photon to define isolated photons is highly recommended, Sul at the moment we are still in the Higgs rest-frame (Mirades tabce a bit longor)
with the physical mass parameters

$$
\begin{aligned}
M_{\mathrm{W}}^{2} & =\frac{1}{4} g^{2} v^{2}\left[1+2 \frac{v^{2}}{\Lambda^{2}} \alpha_{\Phi \mathrm{W}}\right], \\
M_{\mathrm{Z}}^{2} & =\frac{1}{4}\left(g^{2}+g^{\prime 2}\right) v^{2}\left[1+\frac{v^{2}}{2 \Lambda^{2}}\left(4 \alpha_{Z \mathrm{Z}}+\alpha_{\Phi D}\right)\right], \\
M_{\mathrm{H}}^{2} & =\lambda v^{2}\left[1+\frac{v^{2}}{2 \Lambda^{2}}\left(4 \alpha_{\Phi \square}-\frac{6}{\lambda} \alpha_{\Phi}-\alpha_{\Phi D}\right)\right], \\
m_{\mathrm{I}} & =\frac{1}{\sqrt{2}} V^{i} \Gamma_{r} U^{\mathrm{Q}, \dagger} v\left[1-\frac{1}{2} \frac{v^{2}}{\Lambda^{2}} \alpha_{\phi \phi}\right] .
\end{aligned}
$$

In (150) we have used the usual 't Hooft-Feynman gauge-fixing term

$$
\mathcal{L}_{\mathrm{fix}}=-C_{+} C_{-}-\frac{1}{2}\left(C_{\mathrm{Z}}\right)^{2}-\frac{1}{2}\left(C_{\mathrm{A}}\right)^{2}-\frac{1}{2} C_{C} C_{C}^{A}
$$

with

$$
\begin{equation*}
C_{G}^{A}=\partial_{\mu} G^{A \mu}, \quad O_{A}=\partial_{\mu} \mathrm{A}^{\mu}, \quad C_{\mathrm{Z}}=\partial_{\mu} \mathrm{Z}^{\mu}+M_{\mathrm{Z} \phi^{\circ}}, \quad O_{ \pm}=\partial_{\mu} \mathrm{W}^{ \pm \mu} \pm \mathrm{i} M \mathrm{~W}^{ \pm} \tag{153}
\end{equation*}
$$

3202 in terms of the physical fields and parameters, which gives rise to the same propagators as in the SM
In the following, the abbreviations c_{w} and s_{w} are defined via the physical masses

$$
c_{\mathrm{w}}=\frac{M_{\mathrm{W}}}{M_{\mathrm{Z}}}, \quad s_{\mathrm{w}}=\sqrt{1-c_{\mathrm{w}}^{2}}
$$

3203 The parameters of the SM Lagrangian $g, g^{\prime}, \lambda, m^{2}$, and Γ_{r} keep their meaning in the presence of 3204 dimension-6 operators.

3205 10.4.2 Higgs vertices

320 Here we list the most important Feynman rules for vertices involving exactly one physical Higgs boson. 3307 These are given in terms of the above-defined physical fields and parameters. In the coefficients of 3200 dimension-6 couplings we replaced v^{2} by the Fermi constant via $v^{2}=1 /\left(\sqrt{2} G_{F^{*}}\right)$

The triple vertices involving one Higgs boson read:
Hgg coupling:

HAA coupling:
with the physical mass parameters

$$
\begin{aligned}
M_{\mathrm{W}}^{2} & =\frac{1}{4} g^{2} v^{2}\left[1+2 \frac{v^{2}}{\Lambda^{2}} \alpha_{\Phi \mathrm{W}}\right], \\
M_{\mathrm{Z}}^{2} & =\frac{1}{4}\left(g^{2}+g^{\prime 2}\right) v^{2}\left[1+\frac{v^{2}}{2 \Lambda^{2}}\left(4 \alpha_{Z \mathrm{Z}}+\alpha_{\Phi D}\right)\right], \\
M_{\mathrm{H}}^{2} & =\lambda v^{2}\left[1+\frac{v^{2}}{2 \Lambda^{2}}\left(4 \alpha_{\Phi \square}-\frac{6}{\lambda} \alpha_{\Phi}-\alpha_{\Phi D}\right)\right], \\
m_{\mathrm{I}} & =\frac{1}{\sqrt{2}} V^{i} \Gamma_{r} U^{\mathrm{Q}, \dagger} v\left[1-\frac{1}{2} \frac{v^{2}}{\Lambda^{2}} \alpha_{\phi \phi}\right] .
\end{aligned}
$$

In (150) we have used the usual 't Hooft-Feynman gauge-fixing term

$$
\mathcal{L}_{\mathrm{fix}}=-C_{+} C_{-}-\frac{1}{2}\left(C_{\mathrm{Z}}\right)^{2}-\frac{1}{2}\left(C_{\mathrm{A}}\right)^{2}-\frac{1}{2} C_{C} C_{C}^{A}
$$

with

$$
\begin{equation*}
C_{G}^{A}=\partial_{\mu} G^{A \mu}, \quad O_{A}=\partial_{\mu} \mathrm{A}^{\mu}, \quad C_{\mathrm{Z}}=\partial_{\mu} \mathrm{Z}^{\mu}+M_{\mathrm{Z} \phi^{\circ}}, \quad O_{ \pm}=\partial_{\mu} \mathrm{W}^{ \pm \mu} \pm \mathrm{i} M \mathrm{~W}^{ \pm} \tag{153}
\end{equation*}
$$

3202 in terms of the physical fields and parameters, which gives rise to the same propagators as in the SM
In the following, the abbreviations c_{w} and s_{w} are defined via the physical masses

$$
c_{\mathrm{w}}=\frac{M_{\mathrm{W}}}{M_{\mathrm{Z}}}, \quad s_{\mathrm{w}}=\sqrt{1-c_{\mathrm{w}}^{2}}
$$

3203 The parameters of the SM Lagrangian $g, g^{\prime}, \lambda, m^{2}$, and Γ_{r} keep their meaning in the presence of 3204 dimension-6 operators.

3205 10.4.2 Higgs vertices

320 Here we list the most important Feynman rules for vertices involving exactly one physical Higgs boson. 3307 These are given in terms of the above-defined physical fields and parameters. In the coefficients of 3200 dimension-6 couplings we replaced v^{2} by the Fermi constant via $v^{2}=1 /\left(\sqrt{2} G_{F^{*}}\right)$

The triple vertices involving one Higgs boson read:
Hgg coupling:

HAA coupling:
with the physical mass parameters

$$
\begin{aligned}
M_{\mathrm{W}}^{2} & =\frac{1}{4} g^{2} v^{2}\left[1+2 \frac{v^{2}}{\Lambda^{2}} \alpha_{\Phi \mathrm{W}}\right], \\
M_{\mathrm{Z}}^{2} & =\frac{1}{4}\left(g^{2}+g^{\prime 2}\right) v^{2}\left[1+\frac{v^{2}}{2 \Lambda^{2}}\left(4 \alpha_{Z \mathrm{Z}}+\alpha_{\Phi D}\right)\right], \\
M_{\mathrm{H}}^{2} & =\lambda v^{2}\left[1+\frac{v^{2}}{2 \Lambda^{2}}\left(4 \alpha_{\Phi \square}-\frac{6}{\lambda} \alpha_{\Phi}-\alpha_{\Phi D}\right)\right], \\
m_{\mathrm{I}} & =\frac{1}{\sqrt{2}} V^{i} \Gamma_{r} U^{\mathrm{Q}, \dagger} v\left[1-\frac{1}{2} \frac{v^{2}}{\Lambda^{2}} \alpha_{\phi \phi}\right] .
\end{aligned}
$$

In (150) we have used the usual 't Hooft-Feynman gauge-fixing term

$$
\mathcal{L}_{\mathrm{fix}}=-C_{+} C_{-}-\frac{1}{2}\left(C_{\mathrm{Z}}\right)^{2}-\frac{1}{2}\left(C_{\mathrm{A}}\right)^{2}-\frac{1}{2} C_{C} C_{C}^{A}
$$

with

$$
\begin{equation*}
C_{G}^{A}=\partial_{\mu} G^{A \mu}, \quad O_{A}=\partial_{\mu} \mathrm{A}^{\mu}, \quad C_{\mathrm{Z}}=\partial_{\mu} \mathrm{Z}^{\mu}+M_{\mathrm{Z} \phi^{\circ}}, \quad O_{ \pm}=\partial_{\mu} \mathrm{W}^{ \pm \mu} \pm \mathrm{i} M \mathrm{~W}^{ \pm} \tag{153}
\end{equation*}
$$

3202 in terms of the physical fields and parameters, which gives rise to the same propagators as in the SM
In the following, the abbreviations c_{w} and s_{w} are defined via the physical masses

$$
c_{\mathrm{w}}=\frac{M_{\mathrm{W}}}{M_{\mathrm{Z}}}, \quad s_{\mathrm{w}}=\sqrt{1-c_{\mathrm{w}}^{2}}
$$

3203 The parameters of the SM Lagrangian $g, g^{\prime}, \lambda, m^{2}$, and Γ_{r} keep their meaning in the presence of 3204 dimension-6 operators.

3205 10.4.2 Higgs vertices

320 Here we list the most important Feynman rules for vertices involving exactly one physical Higgs boson. 3307 These are given in terms of the above-defined physical fields and parameters. In the coefficients of 3200 dimension-6 couplings we replaced v^{2} by the Fermi constant via $v^{2}=1 /\left(\sqrt{2} G_{F^{*}}\right)$

The triple vertices involving one Higgs boson read:
Hgg coupling:

HAA coupling:
with the physical mass parameters

$$
\begin{aligned}
M_{\mathrm{W}}^{2} & =\frac{1}{4} g^{2} v^{2}\left[1+2 \frac{v^{2}}{\Lambda^{2}} \alpha_{\Phi \mathrm{W}}\right], \\
M_{\mathrm{Z}}^{2} & =\frac{1}{4}\left(g^{2}+g^{\prime 2}\right) v^{2}\left[1+\frac{v^{2}}{2 \Lambda^{2}}\left(4 \alpha_{Z \mathrm{Z}}+\alpha_{\Phi D}\right)\right], \\
M_{\mathrm{H}}^{2} & =\lambda v^{2}\left[1+\frac{v^{2}}{2 \Lambda^{2}}\left(4 \alpha_{\Phi \square}-\frac{6}{\lambda} \alpha_{\Phi}-\alpha_{\Phi D}\right)\right], \\
m_{\mathrm{I}} & =\frac{1}{\sqrt{2}} V^{i} \Gamma_{r} U^{\mathrm{Q}, \dagger} v\left[1-\frac{1}{2} \frac{v^{2}}{\Lambda^{2}} \alpha_{\phi \phi}\right] .
\end{aligned}
$$

In (150) we have used the usual 't Hooft-Feynman gauge-fixing term

$$
\mathcal{L}_{\mathrm{fix}}=-C_{+} C_{-}-\frac{1}{2}\left(C_{\mathrm{Z}}\right)^{2}-\frac{1}{2}\left(C_{\mathrm{A}}\right)^{2}-\frac{1}{2} C_{C} C_{C}^{A}
$$

with

$$
\begin{equation*}
C_{G}^{A}=\partial_{\mu} G^{A \mu}, \quad O_{A}=\partial_{\mu} \mathrm{A}^{\mu}, \quad C_{\mathrm{Z}}=\partial_{\mu} \mathrm{Z}^{\mu}+M_{\mathrm{Z} \phi^{\circ}}, \quad O_{ \pm}=\partial_{\mu} \mathrm{W}^{ \pm \mu} \pm \mathrm{i} M \mathrm{~W}^{ \pm} \tag{153}
\end{equation*}
$$

3202 in terms of the physical fields and parameters, which gives rise to the same propagators as in the SM
In the following, the abbreviations c_{w} and s_{w} are defined via the physical masses

$$
c_{\mathrm{w}}=\frac{M_{\mathrm{W}}}{M_{\mathrm{Z}}}, \quad s_{\mathrm{w}}=\sqrt{1-c_{\mathrm{w}}^{2}}
$$

3203 The parameters of the SM Lagrangian $g, g^{\prime}, \lambda, m^{2}$, and Γ_{r} keep their meaning in the presence of 3204 dimension-6 operators.

3205 10.4.2 Higgs vertices

320 Here we list the most important Feynman rules for vertices involving exactly one physical Higgs boson. 3307 These are given in terms of the above-defined physical fields and parameters. In the coefficients of 3200 dimension-6 couplings we replaced v^{2} by the Fermi constant via $v^{2}=1 /\left(\sqrt{2} G_{F^{*}}\right)$

The triple vertices involving one Higgs boson read:
Hgg coupling:

HAA coupling:

HAZ coupling：

HZZ coupling：

HWW coupling：

Hff coupling：

$$
=-\mathrm{i} \frac{g}{2} \frac{m_{\mathrm{f}}}{M_{\mathrm{W}}}\left[1+\frac{1}{\sqrt{2 G_{F} \Lambda^{2}}}\left(\alpha_{\Phi \mathrm{W}}+\alpha_{\Phi \square}-\frac{1}{4} \alpha_{\Phi D D}-\alpha_{\mathrm{f} \phi}\right)\right] \text {, }
$$

3200 where $f=e, u, d$.
The quadruple vertices involving one Higgs field，one gauge boson and a fermion－antifermion pair are given by $\left(\mathrm{q}=\mathrm{u}, \mathrm{d}, \mathrm{f}=\mathrm{u}, \mathrm{d}, \mathrm{v}_{\mathrm{t}}, \mathrm{e}\right.$ ，and $\hat{\mathrm{f}}=\mathrm{q}$ for $\mathrm{f}=\mathrm{u}, \mathrm{d}$ and $\hat{\mathrm{f}}=1$ for $\left.\mathrm{f}=\mathrm{e}\right)$ ：

Hgqव coupling：

$$
=\mathrm{i} g \frac{m_{q}}{M_{\mathrm{W}}} \mathrm{i} p_{C \nu} \sigma^{\mu \nu} \frac{\lambda^{4}}{2}\left[\frac{1+\gamma_{5}}{2} \alpha_{\mathrm{q} C}+\frac{1-\gamma_{5}}{2} \alpha_{\mathrm{q} C}^{*}\right],
$$

June 27，2013－07：24
DRAFT
161
HAff coupling：

$$
\begin{aligned}
=\mathrm{i} g \frac{m_{f}}{M_{\mathrm{W}}} \mathrm{i} p_{A \nu} \sigma^{\prime \prime} & {\left[\frac{1+\gamma_{5}}{2}\left(\alpha_{\mathrm{rB}} c_{\mathrm{w}}+2 I_{3}^{f} \alpha_{f \mathrm{w}} s_{\mathrm{w}}\right)\right.} \\
& \left.+\frac{1-\gamma_{5}}{2}\left(\alpha_{T \mathrm{~B}}^{+} c_{\mathrm{w}}+2 I_{3}^{f} \alpha_{\mathrm{P}}^{*} s_{\mathrm{w}}\right)\right],
\end{aligned}
$$

HZf \bar{f} coupling：

$\begin{aligned}=\mathrm{i} g \frac{m_{f}}{M_{\mathrm{W}}} \mathrm{i} p_{Z \nu} \sigma^{\prime \mu} & {\left[\frac{1+\gamma_{5}}{2}\left(2 I_{3}^{\mathrm{f}} \alpha_{\mathrm{fW}} c_{\mathrm{w}}-\alpha_{\mathrm{fB}} s_{\mathrm{w}}\right)\right.} \\ & \left.+\frac{1-\gamma_{5}}{2}\left(2 I_{3}^{\mathrm{f}} \alpha_{\mathrm{f}}^{+} c_{\mathrm{w}}-\alpha_{\mathrm{fB}}^{+} s_{\mathrm{w}}\right)\right]\end{aligned}$

HW ${ }^{+}$dII coupling

HW ${ }^{-}$nd coupling：
H

$$
\begin{aligned}
= & \mathrm{i} g \frac{\sqrt{2}}{M_{\mathrm{W}}} \mathrm{i} p \mathrm{~W} \nu \sigma^{\mu \nu} V_{p q}^{\dagger}\left[\frac{1+\gamma_{5}}{2} m_{\mathrm{u}} \alpha_{\mathrm{u}} \mathrm{w}+\frac{1-\gamma_{5}}{2} m_{\mathrm{cl}} \alpha_{\mathrm{d} \mathrm{~W}}^{+}\right] \\
& -\mathrm{i} \sqrt{2} M_{\mathrm{W}} \gamma^{\mu}\left[\frac{1-\gamma_{5}}{2} 2 \alpha_{\phi q}^{(3)} V_{p q}^{\dagger}+\frac{1+\gamma_{5}}{2}\left(\Gamma_{\mathrm{ud}}^{\dagger}\right)_{p q} \alpha_{\Phi \mathrm{udi}}^{+}\right]
\end{aligned}
$$

HW ${ }^{+}$eve coupling：
H

$$
=\mathrm{i} g \frac{\sqrt{2}}{M_{\mathrm{W}}} \mathrm{i} p_{\mathrm{W} \nu} \sigma^{\mu \mu} \frac{1+\gamma_{\pi}}{2} m_{e} \alpha_{e \mathrm{~W}}-\mathrm{i} \sqrt{2} M_{\mathrm{W}} \gamma^{\mu} \frac{1-\gamma_{5}}{2} 2 \alpha_{\phi 1}^{(3)},
$$

HW ${ }^{-} v_{e} e^{+}$coupling：

$$
\begin{equation*}
=\mathrm{i} g \frac{\sqrt{2}}{M_{\mathrm{W}}} \mathrm{i} p \mathrm{~W} \nu \sigma^{\mu \mu} \frac{1-\gamma_{5}}{2} m_{e} \alpha_{e \mathrm{~W}}^{+}-\mathrm{i} \sqrt{2} M \mathrm{~W} \gamma^{\mu} \frac{1-\gamma_{5}}{2} 2 \alpha_{\Phi l}^{(3)} . \tag{167}
\end{equation*}
$$

Decoupling and $S U(2)_{C}$

- Heavy degrees of freedom $\hookrightarrow \mathbf{H} \rightarrow \boldsymbol{\gamma} \boldsymbol{\gamma}$: to be fully general one has to consider effects due to heavy fermions $\in \boldsymbol{R}_{\boldsymbol{f}}$ and heavy scalars $\in \boldsymbol{R}_{s}$ of $\boldsymbol{S U (3)}$. Colored scalars disappear from the low energy physics as their mass increases. However, the same is not true for fermions.

> Renormalization: whenever $\rho_{\mathrm{LO}} \neq 1$, quadratic power-like contribution to $\Delta \rho$ are absorbed by renormalization of the new parameters of the model $\sim \rho$ is not a measure of the custodial symmetry breaking
> Alternatively one could examine models containing $S U(2)_{\mathrm{L}} \otimes S U(2)_{\mathrm{R}}$ multiplets.

Decoupling and $S U(2)_{\mathrm{C}}$

- Heavy degrees of freedom $\hookrightarrow \mathbf{H} \rightarrow \boldsymbol{\gamma} \boldsymbol{\gamma}$: to be fully general one has to consider effects due to heavy fermions $\in \boldsymbol{R}_{f}$ and heavy scalars $\in \boldsymbol{R}_{s}$ of $\boldsymbol{S U (3)}$. Colored scalars disappear from the low energy physics as their mass increases. However, the same is not true for fermions.
- Renormalization: whenever $\rho_{\mathrm{LO}} \neq 1$, quadratic power-like contribution to $\Delta \rho$ are absorbed by renormalization of the new parameters of the model $\leadsto \rho$ is not a measure of the custodial symmetry breaking.
Alternatively one could examine models containing $S U(2)_{\mathrm{L}} \otimes S U(2)_{\mathrm{R}}$ multiplets.

[^0]: 驮 (Wudka:1994ny) even if the S-matrix elements cannot distinguish between two equivalent operators \mathscr{O} and \mathscr{O}^{\prime}, there is a large quantitative difference whether the underlying theory can generate \mathscr{O}^{\prime} or not. It is equally reasonable not to eliminate redundant operators and, eventually, exploit redundancy to check S-matrix elements.

