Can we find a computationally efficient loop algorithm?

Giampiero PASSARINO ${ }^{\dagger}$, Sandro UCCIRATI ${ }^{\dagger}$
\dagger Dipartimento di Fisica Teorica, Università di Torino, Italy
INFN, Sezione di Torino, Italy

Outline of Part I

(1) The Problem

- About new algorithms
- Qualifiers
- Buyer's Guide

Outline of Part II

(2) Bernstein - Sato - Tkachov

- BST polynomials
- Landau equations
- Summary of singular behavior
- BST in practice
- Contracting into one proof many different proofs
- Gram
- BST ready to use
- BST iteration never ends
- Tensor integrals
- Complex parameters
- Additional features
- Infrared
- Around threshold

Outline of Part III

(3) New integral representations

- How to construct it

Outlines

○○○•

Conclusions

Part I

Introduction

the problem

There are > 10 talks on evaluation of one-loop diagrams

Question

Can we find a
computationally efficient loop algorithm to replace the brute-force methods?

Comment

Brute force is simple, but may demand very much patience (or faster hardware)

The sky, not the skull is the limit

Rating new algorithms

Even disregarding the intrinsic necessity of some new algorithm, and even in case it has no intrinsic necessity at all, a probable decision about its truth is possible inductively by studying its success. Success here means fruitfulness in consequences, in particular in verifiable consequences, i.e., consequences demonstrable without the new algorithm, whose proofs with the help of the new algorithm, however, are considerably simpler and easier to discover, and make it possible to contract into one proof many different proofs.

Definitions

Theorem

Any algorithm aimed at reducing the analytical complexity of a (multi - loop)
Feynman diagram is generally bound to

- replace the original integral with a sum of many simpler diagrams,
- introducing denominators that show zeros.

Definition

An algorithm is optimal when

- there is a minimal number of terms,
- zeros of denominators correspond to solutions of Landau equations
- the nature of the singularities is not badly overestimated.

Do not buy a product if

- results are not compact
- spurious singularities are induced
- around threshold (normal, pseudo, anomalous) behavior is not treated or not even understood
- extension to complex poles is not built-in
- results stop (well) below 7 legs
- tensor integrals are treated differently
- infrared and collinear behavior is not explicitly included
- terms $\mathcal{O}\left(\epsilon^{k}\right)$ are difficult to obtain

Part II

Smoothness and numerical evaluation

Prolegomena

all one-loop

For all one-loop multi-leg diagrams we have developed computational techniques based on BST relations

Example

We recall the definition of Bernstein - Sato polynomials: if $V(x)$ is a polynomial in several variables then

- there is a non-zero polynomial $b(\mu)$ and
- a differential operator $\mathcal{P}(\mu)$ with polynomial coefficients such that

$$
\mathcal{P}(\mu) V^{\mu+1}(x)=b(\mu) V^{\mu}(x)
$$

BST I

Definition

The Bernstein-Sato polynomial is the monic polynomial of smallest degree amongst such $b(\mu)$. If $V(x)$ is a non-negative polynomial then $V^{\mu}(x)$, initially defined for μ with non-negative real part, can be analytically continued to a meromorphic distribution-valued function of μ by repeatedly using the functional equation

$$
V^{\mu}(x)=\frac{1}{b(\mu)} \mathcal{P}(\mu) V^{\mu+1}(x)
$$

BST polynomials

BST II

Theorem

For any finite set of polynomials $V_{i}(x)$, where $x=\left(x_{1}, \ldots, x_{N}\right)$ is a vector of Feynman parameters, there exists an identity of the following form (hereafter a BST identity):

$$
\mathcal{P}(x, \partial) \prod_{i} V_{i}^{\mu_{i}+1}(x)=B_{V} \prod_{i} V_{i}^{\mu_{i}}(x)
$$

where \mathcal{P} is a polynomial of x and $\partial_{i}=\partial / \partial x_{i} ; B_{V}$ and all coefficients of \mathcal{P} are polynomials of μ_{i} and of the coefficients of $V_{i}(x)$.

BST III

Quadratic forms

If the polynomial V is of second degree we have a master formula: write the polynomial as $V(x)=x^{t} H x+2 K^{t} x+L$, where $x^{t}=\left(x_{1}, \ldots, x_{n}\right), H$ is an $n \times n$ matrix, K is an n vector. The solution to the problem of determining the polynomial \mathcal{P} is as follows:

$$
\begin{aligned}
\mathcal{P} & =1-\frac{\left(x-X_{v}\right)^{t} \partial_{x}}{2(\mu+1)}, \quad B_{v}=L-K^{t} H^{-1} K \\
X_{v} & =-H^{-1} K
\end{aligned}
$$

BST polynomials

BST IV

Application

$$
\begin{aligned}
V^{\mu}(x) & =\frac{1}{B_{v}}\left[1-\frac{\left(x-X_{v}\right)^{t} \partial_{x}}{2(\mu+1)}\right] V^{\mu+1}(x), \\
V^{-1}(x) & =\frac{1}{B_{v}}\left[1-\frac{1}{2}\left(x-X_{v}\right)^{t} \partial_{x} \ln V(x)\right] .
\end{aligned}
$$

Landau equations

B of BST and Landau singularities

One-loop N-point scalar function

$$
\begin{aligned}
G_{N} & =\frac{\mu^{\epsilon}}{i \pi^{2}} \int d^{n} q \prod_{i=1}^{N}\left[\left(q+k_{i-1}\right)^{2}+m_{i}^{2}-i 0\right]^{-1}, \\
k_{0} & =0, \quad k_{i}=p_{1}+\ldots+p_{i}
\end{aligned}
$$

Landau equations

$$
\begin{aligned}
& \forall i \quad\left(\left(q+k_{i}\right)^{2}+m_{i}^{2}\right) \alpha_{i}=0, \\
& \sum_{i=1}^{N}\left(q+k_{i}\right)^{\mu} \alpha_{i}=0
\end{aligned}
$$

Landau equations

Equivalence I

Step I

$$
\begin{aligned}
G_{N} & =\left(\frac{\mu^{2}}{\pi}\right)^{\epsilon} \Gamma\left(N-2+\frac{\epsilon}{2}\right) \\
& \times \prod_{i=1}^{N-1} \int_{0}^{x_{i-1}} d x_{i} V^{2-N-\epsilon / 2}
\end{aligned}
$$

Step II

$$
\begin{gathered}
V=x^{t} H x+2 K^{t} x+L=y^{t} M y, \quad y^{t}=\left(x^{t}, 1\right), \\
M=\left(\begin{array}{cc}
H & K \\
K^{t} & L
\end{array}\right)
\end{gathered}
$$

Landau equations

Equivalence II

Theorem

One can show that

$$
B_{N}=\frac{\operatorname{det}(M)}{\operatorname{det}(H)},
$$

- The necessary condition for the leading Landau singularity of G_{N} is $\operatorname{det}(M)=0$.

Landau equations

More on LE

- It is easily seen that $B_{N}=0$ induces a pinch on the integration contour at $\left(X_{1} \ldots X_{N-1}\right)$.
- At $B_{N}=0$ we encounter a singularity if

$$
0<X_{N-1}<\ldots<X_{1}<1
$$

otherwise the diagram is regular.

Summary of singular behavior

To summarize:

- at the leading Landau singularity of G_{N}, the so-called anomalous threshold (AT), we have $B_{N}=0$;
- conversely, $B_{N}=0$ is the condition to have a proper solution for the system of Landau equations corresponding to G_{N}.

Comment

Note that AT is not directly related through unitarity to physical processes (cut diagrams).

Question

For a large class of applications the relevant question is whether or not AT $\in \mathcal{R} \equiv$ physical region.

Summary of singular behavior

Example

The solution to this problem, for arbitrary N is technically complicated; here we illustrate a simple case, a scalar one-loop vertex with the following configuration (e.g. $H \rightarrow W W$),

$$
m_{i}=m, p_{2,3}^{2}=-M^{2} \leq 0, p_{1}^{2}=-r .
$$

For real vectors it follows that \mathcal{R} is defined by

$$
r \geq 4 M^{2}(s \text {-channel }), \quad r \leq 0(t \text {-channel }) .
$$

The diagram has an AT at

$$
r=r_{A T}=4 M^{2}\left(1-\frac{M^{2}}{4 m^{2}}\right), \quad \text { iff } \quad M^{2}>2 m^{2}
$$

Summary of singular behavior

The kind of singularity depends on the value of M^{2} :

Classification

- if $0<M^{2}<2 m^{2}$ there is no AT,
- if $2 m^{2}<M^{2}<4 m^{2}$ there is an unphysical AT $\left(0<r_{A T}<4 m^{2}\right)$ and, finally,
- if $M^{2}>4 m^{2}$ there is a physical AT at $r_{A T}<0$.

BST in practice

BST for one-loop I

Definition

$$
\begin{aligned}
G_{N}^{n} & =\frac{\mu^{4-n}}{i \pi^{2}} \int d^{n} q \prod_{i=1}^{N}\left[\left(q+k_{i-1}\right)^{2}+m_{i}^{2}-i 0\right]^{-1} \\
& =\left(\frac{\mu^{2}}{\pi}\right)^{4-n} \Gamma\left(N-\frac{n}{2}\right) \prod_{i=1}^{N-1} \int_{0}^{x_{i-1}} d x_{i} V^{n / 2-N}
\end{aligned}
$$

BST in practice

BST for one-loop II

Recursion, $N<5$
After BST \oplus integration-by-parts

$$
\begin{aligned}
2 B_{N} G_{N}^{n} & =(N-n+1) \frac{\mu^{4}}{\pi^{2}} G_{N}^{n+2} \\
& +\sum_{l=0}^{N-1}\left(X_{l}-X_{l+1}\right) G_{N-1}^{n}[l] \\
X_{0} & =1, \quad X_{N-1}=0
\end{aligned}
$$

[/] removes $\left[\left(q+k_{l-1}\right)^{2}+m_{l}^{2}\right]^{-1}$ in G_{N}^{n}

BST in practice

BST for one-loop III

$N=5,6, n=4$
Delete the term $\propto G_{N}^{6-\epsilon}$

$N \geq 7$

- modify the algorithm
- $N=5$, due to $N-5+\epsilon$
- $N=6$, vanishing of $\operatorname{det}(H)$

BST in practice

BST for one-loop IV

Definitions

- Let $N=6+d,\{k\}=\left\{k_{1} \ldots k_{d}\right\}$ (arbitrarily chosen); let $H_{\{k\}}$ be the 5×5 matrix $H \rightarrow H_{\{k\}}$ by dropping the d rows and columns $k_{1} \ldots k_{d}$;
- let $M_{\{k\}}$ be the 6×6 matrix $M \rightarrow M_{\{k\}}$ obtained accordingly

Define

$$
X_{l}^{\{k\}}=\operatorname{det}_{l, 6} M_{\{k\}} \quad B_{N}^{\{k\}}=\operatorname{det} M_{\{k\}}
$$

where $\operatorname{det}_{i, j} M$ is the co-determinant of the element $M_{i j}$

BST in practice

BST for one-loop V

$$
N \geq 7, n=4
$$

$$
\begin{aligned}
G_{N}^{n} & =-\frac{1}{2 B_{N}^{\{k\}}} \Gamma(N-3) \sum_{l=0}^{6}\left(X_{l}^{\{k\}}-X_{l+1}^{\{k\}}\right) \\
& \times \prod_{i=1}^{N-2} \int_{0}^{x_{i-1}} d x_{i} V^{3-N}[/]
\end{aligned}
$$

BST as new algorithm

intrinsic necessity?

Decomposition $N \rightarrow N-1$ is known

usefulness

- is based on having a simple prescription for computing the coefficients of the decomposition
- whose meaning is easy to understand

Connection

with leading and sub-leading Landau singularities

Easy

to iterate, until the exponent of each polynomial reaches
$-\epsilon / 2$

Gram

Public Vices and Private Virtues of Gram

Problem

- Gram^{-k} in standard reduction

Vices

- for legs $=5$ Gram $=0$ close to the physical boundary

Virtues

- any test is of the form

$$
S=\frac{S E}{G}=0
$$

- standard reduction is unbeatable

Comment

- for BST zero Gram is a virtue $\left(B_{N} \propto G_{N}^{-1}\right)$

Gram

BST and smoothness

Where to stop recursion?

- Smoothness for our integrands requires that the kernel and its first d derivatives be continuous functions
- d should be as large as possible
- however, in most of the cases we will be satisfied with absolute convergence, e.g. logarithmic singularities of the kernel
- this is particularly true around the zeros of B_{N}

BST ready to use

Useful results

Introduce

$$
\int d S_{n}(\{x\})=\prod_{i=1}^{n} \int_{0}^{x_{i-1}} d x_{i}
$$

Results I

$$
\begin{aligned}
C_{0} & \equiv G_{3}^{4}=\frac{1}{B_{3}}\left[\int d S_{2}(\{x\}) \ln V\left(x_{1}, x_{2}\right)\right. \\
& \left.-\frac{1}{2} \sum_{i=0}^{2}\left(X_{i}-X_{i+1}\right) \int d S_{1}(x) \ln V[i](x)+\frac{1}{2}\right]
\end{aligned}
$$

BST ready to use

Useful results I

$$
\begin{aligned}
D_{0} & \equiv G_{4}^{4}=-\frac{3}{4 B_{4}^{2}}\left[\int d S_{3}(\{x\}) \ln V\left(x_{1}, x_{2}, x_{3}\right)\right. \\
& \left.-\frac{1}{3} \sum_{i=0}^{3}\left(X_{i}-X_{i+1}\right) \int d S_{2}(\{x\}) \ln V[i](x)+\frac{1}{9}\right] \\
& +\frac{1}{2 B_{4}} \sum_{i=0}^{3}\left(X_{i}-X_{i+1}\right) C_{0}[i+1], \\
E_{0} \equiv G_{5}^{4} & =\frac{1}{4 B_{5}} \sum_{i=0}^{4}\left(X_{i}-X_{i+1}\right) D_{0}[i+1], \\
F_{0} \equiv G_{6}^{4} & =\frac{1}{6 B_{6}} \sum_{i=0}^{5}\left(X_{i}-X_{i+1}\right) E_{0}[i+1]
\end{aligned}
$$

BST iteration never ends

Useful results II

Example

If absolute convergence is not enough for your integrator BST can do! All integrals are of the form

$$
\int d S_{k}(\{x\}) \ln V(\{x\})
$$

$V \ln V$

$$
\begin{aligned}
& 2 B_{1} \int_{0}^{1} d x \ln V(x)=\int_{0}^{1} d x V(x)[1-3 \ln V(x)] \\
- & x V(0)[1-\ln V(0)]-(1-x) V(1)[1-\ln V(1)] \\
& 2 B_{2} \int d S_{2}(\{x\}) \ln V\left(x_{1}, x_{2}\right)=-2 \int d S_{2}(\{x\}) V\left(x_{1}, x_{2}\right)\left[1-2 \ln V\left(x_{1}, x_{2}\right)\right] \\
+ & \int_{0}^{1} d x \sum_{i=0}^{2}\left(x_{i}-x_{i+1}\right) V(\widehat{i i+1})[1-\ln V(\widehat{i i+1})] \\
& \text { etc }
\end{aligned}
$$

Tensor integrals

Same algorithm at work

Easy to prove

tensor integrals \rightarrow BST \rightarrow smooth integrands

- Sorry, no space left ..., just one example

$$
N=6, k \leq 5 \rightarrow N>6, k \leq 2 N-7
$$

$$
2 B_{6} F^{\mu_{1} \ldots \mu_{k}}=\sum_{i=0}^{5}\left[\left(X_{i}-X_{i+1}\right) E^{\mu_{1} \ldots \mu_{k}[i]}\right.
$$

$$
\left.+\left.\frac{1}{2} \sum_{j=1}^{5}\left(H_{i j}^{-1}-H_{i+1 j}^{-1}\right) E^{\left\{\mu_{1} \ldots \mu_{k-1}\right.}[i] p_{j}^{\left.\mu_{k}\right\}}\right|_{n=6}\right]
$$

Complex parameters

Complex poles

- If CP are present, internal $m_{i}^{2}=\mu_{i}^{2}-i \mu_{i} \gamma_{i}$ or external $M_{i}^{2}=\Lambda_{i}^{2}-i \Lambda_{i} \Gamma_{i}$, one should remember that they are lying on the second Riemann sheet; let

$$
\begin{aligned}
\zeta & =V\left(m_{1}^{2} \ldots m_{i}^{2}, M_{1}^{2} \ldots M_{j}^{2} ; x_{1} \ldots x_{n}\right)-i 0 \\
z & =V\left(\mu_{1}^{2} \ldots \mu_{i}^{2}, \Lambda_{1}^{2} \ldots \Lambda_{j}^{2} ; x_{1} \ldots x_{n}\right)-i 0
\end{aligned}
$$

- We must replace

$$
\ln \zeta \rightarrow \ln \zeta+2 i \pi \theta(-\operatorname{Re} z) \operatorname{sign}(\operatorname{Im} z)
$$

Additional features

Non deliverable in this talk

IR

classification of infrared divergent one-loop virtual configurations

BST \& IR, extraction of IR pole and IR-finite part

Real

inclusion of real IR divergent diagrams in the BST scheme

Collinear

collinear divergent one-loop configurations (à la Sudakov), e.g.

$$
\begin{aligned}
& C_{0}(s, 0,0 ; m, m, m) \sim \\
& =\frac{1}{2} \ln ^{2}\left(-\frac{m^{2}}{s}\right),
\end{aligned}
$$

Infrared

However

\oplus BST computable finite reminder

Around threshold

$$
B_{N} \approx 0, B_{N-1} \approx 0 \text { etc }
$$

Drawback

BST violates one of the requirements: if $B_{N} \approx 0$ then the nature of the singularity

$$
C_{0} \sim \rho_{3} \ln B_{3}, D_{0} \sim \rho_{4} B_{4}^{-1 / 2}, \quad \text { etc }
$$

is overestimated

Solution

- if the (reduced) diagram is regular at $\left(X_{1}, \ldots, X_{N-1}\right)$ Taylor expand
- otherwise use Mellin - Barnes to get as many terms as possible
- Or

Part III

The Uccirati Variant

Beyond Nielsen - Goncharov

New

FD \equiv integral representations

Theorem

$$
\int d C_{k}(\{x\}) \frac{1}{A} \ln \left(1+\frac{A}{B}\right) \quad \text { or } \quad \int d C_{k}(\{x\}) \frac{1}{A} \operatorname{Li}_{n}\left(\frac{A}{B}\right)
$$

where A, B are multivariate polynomials in the Feynman parameters. One-(Two-) loop diagrams are always reducible to combinations of integrals of this type where the usual monomials that appear in the integral representation of Nielsen

- Goncharov generalized polylogarithms are replaced by multivariate polynomials of arbitrary degree.

Example

General C_{0} : definitions

$$
\begin{aligned}
C_{0} & =\int d S_{2} V^{-1-\epsilon / 2}\left(x_{1}, x_{2}\right) \\
V\left(x_{1}, x_{2}\right) & =x^{t} H x+2 K^{t} x+L=Q\left(x_{1}, x_{2}\right)+B, \\
H_{i j} & =-p_{i} \cdot p_{j}, \quad L=m_{1}^{2}, \\
K_{1} & =\frac{1}{2}\left(p_{1} \cdot p_{1}+m_{2}^{2}-m_{1}^{2}\right), \\
K_{2} & =\frac{1}{2}\left(P \cdot P-p_{1} \cdot p_{1}+m_{3}^{2}-m_{2}^{2}\right),
\end{aligned}
$$

General C_{0} : result

$$
\begin{aligned}
c_{0}= & \frac{1}{2} \sum_{i=0}^{2}\left(x_{i}-x_{i+1}\right) \\
& \times \int_{0}^{1} \frac{d x}{Q(\overline{i j+1})} \ln \left(1+\frac{Q(\overline{i j+1})}{B}\right)
\end{aligned}
$$

$$
\begin{gathered}
Q(\widehat{01})=Q(1, x), Q(\widehat{12})=Q(x, x), Q(\widehat{23})=Q(x, 0) \\
x^{t}=-K^{t} H^{-1}, x_{0}=1, x_{3}=0
\end{gathered}
$$

How to construct it

Basics

Define

$$
\begin{aligned}
\mathcal{L}_{n}(z) & =z^{n} L_{n}(z)=z^{n} \int d C_{n}\left(\prod_{i=1}^{n} y_{i}\right)^{n-1}\left[1+\prod_{j=1}^{n} y_{j} z\right]^{-n} \\
& =\left(\frac{z}{n}\right)^{n}{ }_{n+1} F_{n}\left((n)_{n+1} ;(n+1)_{n} ;-z\right),
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}_{1}(z)=-S_{0,1}(-z), \\
& \mathcal{L}_{2}(z)=S_{0,1}(-z)-S_{1,1}(-z), \\
& \mathcal{L}_{3}(z)=-\frac{1}{2} S_{0,1}(-z)+\frac{3}{2} S_{1,1}(-z)-S_{2,1}(-z),
\end{aligned}
$$

Problem

- For any quadratic form in n-variables

$$
V(x)=(x-X)^{t} H(x-X)+B=Q(x)+B,
$$

- we want to compute

$$
I(n, \mu)=\int d C_{n} V^{-\mu}=\int d C_{n}[Q(x)+B]^{-\mu}
$$

Definition

- Consider the operator

$$
\mathcal{P}=(x-X)^{t} \partial, \text { satisfying } \mathcal{P} Q=2 Q
$$

How to construct it

Solution

Introduce

$$
J(\beta, \mu)=\int_{0}^{1} d y y^{\beta-1} W^{-\mu}(y), \quad W(y)=Q(x) y+B
$$

Use

$$
\begin{aligned}
\left(\frac{1}{2} \mathcal{P}-y \partial_{y}\right) W^{-\mu}=0 & \rightarrow V^{-\mu}=\left(\beta+\frac{1}{2} \mathcal{P}\right) J(\beta, \mu) \\
I(n, \mu) & =\int d C_{n}\left(\beta+\frac{1}{2} \mathcal{P}\right) J(\beta, \mu)
\end{aligned}
$$

How to construct it

Further definitions

Define

$$
\begin{aligned}
f([x]) & =f\left(x_{1}, \cdots, x_{n}\right) \\
f\left({ }_{i}[x]\right) & =f\left(x_{1}, \cdots, x_{i}=0, x_{n}\right) \\
f\left([x]_{i}\right) & =f\left(x_{1}, \cdots, x_{i}=1, x_{n}\right) \\
\int d C_{n} & =\int_{0}^{1} \prod_{i=1}^{n} d x_{i}, \quad \int d C_{n, j}=\int_{0}^{1} \prod_{i=1, i \neq j}^{n} d x_{i} .
\end{aligned}
$$

How to construct it

Results I

Example

- For $\mu=1$ it is convenient to choose $\beta=1$, to obtain

$$
\begin{aligned}
I(n, 1) & =\left(\frac{n}{2}-1\right) \int d C_{n} L_{1}([x]) \\
& -\frac{1}{2} \sum_{i=1}^{n} \int d C_{n, i}\left\{X_{i} L_{1}\left(i_{i}[x]\right)-\left(1-X_{i}\right) L_{1}\left([x]_{i}\right)\right\}
\end{aligned}
$$

Results II

Example

- For $\mu=2$ it is more convenient to write

$$
V^{-2}=\left(2+\frac{1}{2} \mathcal{P}\right)^{2} J(2,2)=\left(2+\frac{1}{2} \mathcal{P}\right)^{2} L_{2} .
$$

- integration-by-parts follows
- additional work (along the same lines) is needed to deal with surface terms

Part IV

Conclusions

Conclusions

Conclusions

(1, 2, 3, 4, 5.)

(1) High-Precision one-loop multi-leg calculations are doable; do it, do not introduce yet another algorithm!
(2) (at least at the parton level)
(3) It is a problem of assembling, a huge assembling, cumbersome and not so challenging,
(1) at least no conceptual challenge,
© unless unstable particles are present (but this would require another talk

Conclusions

(1, 2, 3, 4, 5.)

(1) High-Precision one-loop multi-leg calculations are doable; do it, do not introduce yet another algorithm!
(2) (at least at the parton level)
(3) It is a problem of assembling, a huge assembling, cumbersome and not so challenging,
(3) at least no conceptual challenge,
© unless unstable particles are present (but this would require another talk

Conclusions

(1, 2, 3, 4, 5.)

(1) High-Precision one-loop multi-leg calculations are doable; do it, do not introduce yet another algorithm!
(2) (at least at the parton level)
(3) It is a problem of assembling, a huge assembling, cumbersome and not so challenging,
(4) at least no conceptual challenge,
© unless unstable particles are present (but this would require another talk

Conclusions

(1, 2, 3, 4, 5.)

(1) High-Precision one-loop multi-leg calculations are doable; do it, do not introduce yet another algorithm!
(2) (at least at the parton level)
(3) It is a problem of assembling, a huge assembling, cumbersome and not so challenging,
(9) at least no conceptual challenge,
© unless unstable particles are present (but this would require another talk

Conclusions

(1, 2, 3, 4, 5,)

(1) High-Precision one-loop multi-leg calculations are doable; do it, do not introduce yet another algorithm!
(2) (at least at the parton level)
(3) It is a problem of assembling, a huge assembling, cumbersome and not so challenging,
(9) at least no conceptual challenge,
(3) unless unstable particles are present (but this would require another talk ...)

Have a look

back

Numerical evaluation of loop integrals. Charalampos Anastasiou (Zurich, ETH), Alejandro Daleo (Zurich U.) . ZU-TH-22-05, Nov 2005. 38pp. e-Print Archive: hep-ph/0511176

A A Numerical algorithm for efficient computations of one-gluon loop Feynman diagrams in QCD for a large number of external gluons. A.S. Kapoyannis, A.I Karanikas, C.N. Ktorides (Athens U.) . Jul 2005. 26pp. Published in Comput.Phys.Commun.174:631-642,2006 e-Print Archive: hep-th/0507128

Numerical contour integration for loop integrals. Y. Kurihara, T. Kaneko (KEK, Tsukuba) . KEK-CP-159, Mar 2005. 17pp. Published in Comput.Phys.Commun.174:530-539,2006 e-Print Archive: hep-ph/0503003

General subtraction method for numerical calculation of one-loop QCD matrix elements. Z. Nagy (Zurich U.) , D.E. Soper (Oregon U., Dept. Math.) . 2004. 16pp. Prepared for Meeting of the European Network 'Physics at Colliders', Montpellier, France, 26-27 Sep 2004. Published in Acta Phys.Polon.B35:2557-2572,2004

Precise predictions for Higgs production at $\mathrm{e}+\mathrm{e}$-colliders and numerical calculation of one-loop integrals. M.M. Weber (Turin U.) . Oct 2004. 15pp. Talk given at Meeting of the European Network 'Physics at Colliders', Montpellier, France, 26 -27 Sep 2004. Published in Acta Phys.Polon.B35:2655-2669,2004 e-Print Archive: hep-ph/0410166

Numerical evaluation of one-loop diagrams near exceptional momentum configurations. W. Giele (Fermilab) , E.W.N. Glover (Durham U.), G. Zanderighi (Fermilab) . FERMILAB-CONF-04-103-T, DCPT-04-72, IPPP-04-36, Jul 2004. 5pp. Talk given at 7th DESY Workshop on Elementary Particle Theory: Loops and Legs in Quantum Field Theory, Zinnowitz, Germany, 25-30 Apr 2004. Published in Nucl.Phys.Proc.Suppl.135:275-279,2004 Also in *Zinnowitz 2004, Loops and legs in quantum field theory* 275-279 e-Print Archive: hep-ph/0407016

Formulae for a numerical computation of one-loop tensor integrals. Roberto Pittau (Granada U. CAFPE, Granada) . UG-FT-164-04, CAFPE-34-04, Jun 2004. 5pp. Talk given at International Conference on Linear Colliders (LCWS 04), Paris, France, 19-24 Apr 2004. e-Print Archive: hep-ph/0406105

Loop integration results using numerical extrapolation for a non-scalar integral. E. de Doncker (Western Michigan U.), Y. Shimizu, J. Fujimoto, F. Yuasa (KEK, Tsukuba) , K. Kaugars, L. Cucos, J. Van Voorst (Western Michigan U.) . KEK-CP-149, May 2004. 4pp. Published in Nucl.Instrum.Meth.A534:269-273,2004 e-Print Archive: hep-ph/0405098

Recursive numerical calculus of one-loop tensor integrals. F. del Aguila, R. Pittau (CAFPE, Granada) . UG-FT-162-04, CAFPE-32-04, Apr 2004. 23pp. Erratum added online, feb/4/2005. Published in JHEP 0407:017,2004 e-Print Archive: hep-ph/0404120

A Numerical algorithm for computing the complete set of one gluon loop diagrams in QCD on the basis of a single master expression. A.S. Kapoyannis, A.I. Karanikas, C.N. Ktorides (Athens U.) . UA-NPPS-1-04, Mar 2004. 17pp. e-Print Archive: hep-th/0403148

