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The Problem

the problem

There are � 10 talks on
evaluation of one-loop
diagrams

Question
Can we find a
computationally efficient loop
algorithm to replace the
brute-force methods?

Comment
Brute force is simple, but
may demand very much
patience (or faster hardware)

The sky, not the skull is the
limit

list
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The Problem

About new algorithms

Rating new algorithms

Even disregarding the intrinsic necessity of some new
algorithm, and even in case it has no intrinsic necessity at all, a
probable decision about its truth is possible inductively by
studying its success. Success here means fruitfulness in
consequences, in particular in verifiable consequences, i.e.,
consequences demonstrable without the new algorithm, whose
proofs with the help of the new algorithm, however, are
considerably simpler and easier to discover, and make it
possible to contract into one proof many different proofs.






The Problem

Qualifier s

Definitions

Theorem
Any algorithm aimed at
reducing the analytical
complexity of a (multi - loop)
Feynman diagram is
generally bound to

replace the original
integral with a sum of
many simpler diagrams,

introducing
denominators that show
zeros.

Definition
An algorithm is optimal when

there is a minimal
number of terms,

zeros of denominators
correspond to solutions
of Landau equations

the nature of the
singularities is not badly
overestimated.
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The Problem

Buyer’ s Guide

Do not buy a product if

results are not compact

spurious singularities
are induced

around threshold
(normal, pseudo,
anomalous) behavior is
not treated or not even
understood

extension to complex
poles is not built-in

results stop (well) below
7 legs

tensor integrals are
treated differently

infrared and collinear
behavior is not explicitly
included

terms � � k are difficult
to obtain
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Part II

Smoothness and numerical evaluation
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Prolegomena

all one-loop�
For all one-loop multi-leg diagrams we have developed
computational techniques based on BST relations

Example

We recall the definition of Bernstein - Sato polynomials: if V � x �
is a polynomial in several variables then

there is a non-zero polynomial b ����� and

a differential operator ������� with polynomial coefficients

such that

������� V ��� 1 � x ��� b ����� V � � x �"!
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BST polynomials

BST I

Definition
The Bernstein-Sato polynomial is the monic polynomial of
smallest degree amongst such b ����� . If V � x � is a non-negative
polynomial then V � � x � , initially defined for � with non-negative
real part, can be analytically continued to a meromorphic
distribution-valued function of � by repeatedly using the
functional equation

V � � x ��� 1
b ����� ������� V �$� 1 � x �
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BST polynomials

BST II

Theorem
For any finite set of polynomials Vi � x � , where x �&� x1 ' !(!(! ' xN �
is a vector of Feynman parameters, there exists an identity of
the following form (hereafter a BST identity):

�)� x '(* �
i

V � i � 1
i � x �+� BV

i

V � i
i � x �

where � is a polynomial of x and * i � *-,$* xi ; BV and all
coefficients of � are polynomials of � i and of the coefficients of
Vi � x � .
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BST polynomials

BST III

Quadratic forms
If the polynomial V is of second degree we have a master
formula: write the polynomial as V � x �/� x t H x 0 2 K t x 0 L,
where x t �1� x1 ' !2!2! ' xn � , H is an n 3 n matrix, K is an n vector.
The solution to the problem of determining the polynomial � is
as follows:

� � 1 4 � x 4 XV � t * x

2 ���50 1 � ' BV � L 4 K t H 6 1 K '
XV � 4 H 6 1 K !
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BST polynomials

BST IV

Application

V � � x �+� 1
BV

1 4 � x 4 XV � t * x

2 ���50 1 � V �$� 1 � x � '
V 6 1 � x �+� 1

BV

1 4 1
2
� x 4 XV � t * x ln V � x � !
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Landau equations

B of BST and Landau singularities

One-loop N-point scalar function

GN � �:9
i ; 2 dnq

N

i < 1

� q 0 ki 6 1 � 2 0 m2
i 4 i 0 6 1 '

k0 � 0 ' ki � p1 0=!(!(!>0 pi

Landau equations

?
i � q 0 ki � 2 0 m2

i @ i � 0 '
N

i < 1

� q 0 ki � � @ i � 0
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Landau equations

Equiv alence I

Step I

GN � � 2

;
9CB

N 4 2 0 �
2

3
N 6 1

i < 1

xi D 1

0
dxi V 2 6 N 6 9FE 2

Step II

V � x t H x 0 2 K t x 0 L � y t M y ' y t � x t ' 1 '
M � H K

K t L
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Landau equations

Equiv alence II

Theorem
One can show that

BN � det � M �
det � H � '

The necessary condition for the leading Landau singularity
of GN is det � M ��� 0.
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Landau equations

More on LE

It is easily seen that BN � 0 induces a pinch on the
integration contour at � X1 !(!(! XN 6 1 � .
At BN � 0 we encounter a singularity if

0 I XN 6 1 I&!(!(!JI X1 I 1

otherwise the diagram is regular.
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Summary of singular behavior

To summariz e:

at the leading Landau
singularity of GN , the
so-called anomalous
threshold (AT), we have
BN � 0;

conversely, BN � 0 is the
condition to have a
proper solution for the
system of Landau
equations corresponding
to GN .

Comment
Note that AT is not directly
related through unitarity to
physical processes (cut
diagrams).

Question
For a large class of
applications the relevant
question is whether or not ATLNM=O physical region.
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Summary of singular behavior

AT I

ExampleQ
The solution to this problem, for arbitrary N is technically
complicated; here we illustrate a simple case, a scalar one-loop
vertex with the following configuration (e.g. H R WW ),

mi � m ' p2
2 S 3 �T4 M2 U 0 ' p2

1 �T4 r !
For real vectors it follows that M is defined by

r V 4 M2(s-channel) ' r U 0(t-channel) !
The diagram has an AT at

r � rAT � 4 M2 1 4 M2

4 m2 ' iff M2 � 2 m2 !
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Summary of singular behavior

AT II

The kind of singularity depends on the value of M2:

Classification

if 0 I M2 I 2 m2 there is no AT,

if 2 m2 I M2 I 4 m2 there is an unphysical AT
(0 I rAT I 4 m2) and, finally,

if M2 � 4 m2 there is a physical AT at rAT I 0.
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BST in practice

BST for one-loop I

Definition

Gn
N � � 4 6 n

i ; 2 dnq
N

i < 1

� q 0 ki 6 1 � 2 0 m2
i 4 i 0 6 1

� � 2

;
4 6 n B

N 4 n
2

N 6 1

i < 1

xi D 1

0
dxi V nE 2 6 N
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BST in practice

BST for one-loop II

Recur sion, N I 5

After BST � integration-by-parts

2 BN Gn
N � � N 4 n 0 1 � � 4

; 2 Gn � 2
N

0
N 6 1

l < 0

� Xl 4 Xl � 1 � Gn
N 6 1 Z l [

X0 � 1 ' XN 6 1 � 0

Z l [ removes � q 0 kl 6 1 � 2 0 m2
l
6 1

in Gn
N
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BST in practice

BST for one-loop III

N � 5 ' 6 ' n � 4

Delete the term ] G6 6 9N

N � 5, due to N 4 5 0^�
N � 6, vanishing of
det � H �

N V 7

modify the algorithm
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BST in practice

BST for one-loop IV

Definitions
Let N � 6 0 d , ` k ab�T` k1 !(!(! kd a (arbitrarily chosen); let
H c k d be the 5 3 5 matrix H R H c k d by dropping the d rows
and columns k1 !(!(! kd ;

let M c k d be the 6 3 6 matrix M R M c k d obtained
accordingly

Define

X
c k d
l � detl S 6 M c k d B

c k d
N � det M c k d

where deti S j M is the co-determinant of the element Mij
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BST in practice

BST for one-loop V

N V 7 ' n � 4

Gn
N � 4 1

2 B
c k d
N

B � N 4 3 �
6

l < 0

X
c k d
l 4 X

c k d
l � 1

3
N 6 2

i < 1

xi D 1

0
dxi V 3 6 N Z l [
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Contracting into one proof many different proofs

BST as new algorithm

intrinsic necessity?

Decomposition N R N 4 1 is
known

usefulness
is based on having a
simple prescription for
computing the
coefficients of the
decomposition

whose meaning is easy
to understand

Connection
with leading and sub-leading
Landau singularities

Easy

to iterate, until the exponent
of each polynomial reaches
4g� , 2
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Gram

Public Vices and Priv ate Vir tues of Gram

Problem

Gram 6 k in standard
reduction

Vices
for legs � 5 Gram � 0
close to the physical
boundary

Vir tues
any test is of the form

S � SE
G

� 0

standard reduction is
unbeatable

Comment
for BST zero Gram is a
virtue (BN ] G 6 1

N )



i

Bernstein - Sato - Tkacho v

Gram

BST and smoothness

Where to stop recur sion?

Smoothness for our integrands requires that the kernel and
its first d derivatives be continuous functions

d should be as large as possible

however, in most of the cases we will be satisfied with
absolute convergence, e.g. logarithmic singularities of the
kernel

this is particularly true around the zeros of BN
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BST ready to use

Useful results

Intr oduce

dSn �"` x ak�l�
n

i < 1

xi D 1

0
dxi '

Results I

C0
O G4

3 � 1
B3

dS2 �"` x ak� ln V � x1 ' x2 �

4 1
2

2

i < 0

� Xi 4 Xi � 1 � dS1 � x � ln V Z i [m� x �n0 1
2



o

Bernstein - Sato - Tkacho v

BST ready to use

Useful results I

D0
O G4

4 �T4 3
4 B2

4

dS3 �"` x ak� ln V � x1 ' x2 ' x3 �

4 1
3

3

i < 0

� Xi 4 Xi � 1 � dS2 �"` x ak� ln V Z i [m� x �n0 1
9

0 1
2 B4

3

i < 0

� Xi 4 Xi � 1 � C0 Z i 0 1 [ '

E0
O G4

5 � 1
4 B5

4

i < 0

� Xi 4 Xi � 1 � D0 Z i 0 1 [ '

F0
O G4

6 � 1
6 B6

5

i < 0

� Xi 4 Xi � 1 � E0 Z i 0 1 [
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BST iteration never ends

Useful results II

ExampleQ
If absolute convergence is not enough for your integrator BST
can do! All integrals are of the form

dSk �"` x ak� ln V �"` x ak�

V ln V

2 B1 q 1

0
dx ln V r x s"t q 1

0
dx V r x svu 1 D 3 ln V r x s w

D X V r 0 svu 1 D ln V r 0 s wxD�r 1 D X s V r 1 svu 1 D ln V r 1 s w
2 B2 q dS2 rzy x {|s ln V r x1 } x2 s~t�D 2 q dS2 rzy x {|s V r x1 } x2 s(u 1 D 2 ln V r x1 } x2 s w

� q 1

0
dx

2�
i � 0 � Xi D Xi � 1 � V r��i i

�
1 s(u 1 D ln V r��i i

�
1 s w

etc etc
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Tensor integrals

Same algorithm at work

Easy to prove

tensor integrals R BST R smooth integrands

Sorry, no space left !(!(! , just one example

N � 6 ' k U 5 R N � 6 ' k U 2 N 4 7

2 B6 F � 1 ����� � k �
5

i < 0

� Xi 4 Xi � 1 � E � 1 ����� � k Z i [

0 1
2

5

j < 1

H 6 1
i j 4 H 6 1

i � 1 j E
c � 1 ����� � k D 1 Z i [ p � k d

j n < 6
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Comple x parameter s

Comple x poles

If CP are present, internal m2
i ��� 2

i 4 i � i � i or external
M2

i �1� 2
i 4 i � i

B
i , one should remember that they are lying

on the second Riemann sheet; let

� � V � m2
1 !(!(! m2

i ' M2
1 !(!(! M2

j � x1 !(!(! xn �>4 i 0 '
z � V ��� 2

1 !(!(!�� 2
i ' � 2

1 !(!(!�� 2
j � x1 !(!(! xn ��4 i 0

We must replace

ln
� R ln

� 0 2 i ;����"4 Re z � sign � Im z �
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Additional features

Non deliverab le in this talk

IR
classification of infrared
divergent one-loop virtual
configurations

BST � IR, extraction of IR
pole and IR-finite part

Real
inclusion of real IR divergent
diagrams in the BST scheme

Collinear
collinear divergent one-loop
configurations (à la
Sudakov), e.g.

C0 � s ' 0 ' 0 � m ' m ' m ���
� 1

2
ln2 4 m2

s '
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Infrared

However

p1

p2 pN 6 1

pN

� K �
p1

p2 pN 6 1

pN

� BST computable finite reminder
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Around threshold

BN 0 � BN � 1 0 etc

Drawbac� k
BST violates one of the requirements: if BN   0 then the nature
of the singularity

C0 � ¡ 3 ln B3 ' D0 �¢¡ 4 B 6 1E 2
4 ' etc

is overestimated

Solution
if the (reduced) diagram is regular at � X1 ' !(!(! ' XN 6 1 � Taylor
expand

otherwise use Mellin - Barnes to get as many terms as
possible

or
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The Uccirati Variant
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New integral representations

Beyond Nielsen - Gonc harov

New
FD O integral representations

Theorem

dCk �"` x ak� 1
A

ln 1 0 A
B

or dCk �"` x ak� 1
A

Lin
A
B

where A ' B are multivariate polynomials in the Feynman
parameters. One-(Two-) loop diagrams are always reducible to
combinations of integrals of this type where the usual
monomials that appear in the integral representation of Nielsen
- Goncharov generalized polylogarithms are replaced by
multivariate polynomials of arbitrary degree.
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New integral representations

Example

General C0: definitions

C0 � dS2 V 6 1 6 9FE 2 � x1 ' x2 � '
V � x1 ' x2 �¦� x t H x 0 2 K t x 0 L � Q � x1 ' x2 �n0 B '

Hij � 4 pi § pj ' L � m2
1 '

K1 � 1
2
� p1 § p1 0 m2

2 4 m2
1 � '

K2 � 1
2
� P § P 4 p1 § p1 0 m2

3 4 m2
2 � '
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New integral representations

General C0: result

C0 � 1
2

2

i < 0

� Xi 4 Xi � 1 �

3 1

0

dx

Q � i i 0 1 � ln 1 0 Q � i i 0 1 �
B

Q � 0 1�©� Q � 1 ' x � ' Q � 1 2 �/� Q � x ' x � ' Q � 2 3 �/� Q � x ' 0 �

X t � 4 K t H 6 1 ' X0 � 1 ' X3 � 0
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How to construct it

Basics

Define

«
n � z �l� zn Ln � z �¬� zn dCn

n

i < 1

yi

n 6 1

1 0
n

j < 1

yj z 6 n

� z
n

n

n � 1 Fn �­� n � n � 1 � � n 0 1 � n � 4 z � '

«
1 � z �l� 4 S0 S 1 �"4 z � '«
2 � z �l� S0 S 1 �"4 z ��4 S1 S 1 �"4 z � '

«
3 � z �l� 4 1

2
S0 S 1 �"4 z �:0 3

2
S1 S 1 �"4 z �>4 S2 S 1 �"4 z � '
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How to construct it

Problem

For any quadratic form in n-variables

V � x �©� � x 4 X � t H � x 4 X �n0 B � Q � x �n0 B '
we want to compute

I � n ' ���©� dCn V 6 ��� dCn Q � x �n0 B 6 � !

Definition
Consider the operator

� � � x 4 X � t *¯' satisfying � Q � 2 Q
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How to construct it

Solution

Intr oduce

J ��± ' ���+� 1

0
dy y ² 6 1 W 6 � � y � ' W � y ��� Q � x � y 0 B !

Use

1
2
�³4 y * y W 6 ��� 0 R V 6 ��� ±´0 1

2
� J ��± ' ��� '

I � n ' ��� � dCn ±N0 1
2
� J ��± ' ��� '
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How to construct it

Fur ther definitions

Define

f � Z x [¶�+� f � x1 ' §(§(§ ' xn � '
f � i Z x [¶�+� f � x1 ' §(§(§ ' xi � 0 ' xn � '
f � Z x [ i �¦� f � x1 ' §(§(§ ' xi � 1 ' xn � '

dCn � 1

0

n

i < 1

dxi ' dCn S j �
1

0

n

i < 1 S i ·< j

dxi !
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New integral representations

How to construct it

Results I

Example

For �¹� 1 it is convenient to choose ±º� 1, to obtain

I � n ' 1 �¦� n
2
4 1 dCn L1 � Z x [m�

4 1
2

n

i < 1

dCn S i Xi L1 � i Z x [m�>4¢� 1 4 Xi � L1 � Z x [ i �
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New integral representations

How to construct it

Results II

Example

For �¹� 2 it is more convenient to write

V 6 2 � 2 0 1
2
� 2

J � 2 ' 2 �¬� 2 0 1
2
� 2

L2 !
integration-by-parts follows

additional work (along the same lines) is needed to deal
with surface terms !(!(!
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Conc lusions



¿

½ ¾

Conc lusions

(1, 2, 3, 4, 5,)
1 High-Precision one-loop multi-leg calculations are doable;

do it, do not introduce yet another algorithm!
2 (at least at the parton level)
3 It is a problem of assembling, a huge assembling,

cumbersome and not so challenging,
4 at least no conceptual challenge,
5 unless unstable particles are present (but this would

require another talk !(!(! )
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Have a look
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