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The Problem

the problem

There are > 10 talks on Comment
evaluation of one-loop Brute force is simple, but
diagrams may demand very much

patience (or faster hardware)

Can we find a The sky, not the skull is the
computationally efficient loop limit

algorithm to replace the

brute-force methods? ' é
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About new algorithms

Rating new algorithms

Even disregarding the intrinsic necessity of some new
algorithm, and even in case it has no intrinsic necessity at all, a
probable decision about its truth is possible inductively by
studying its success. Success here means fruitfulness in
consequences, in particular in verifiable consequences, i.e.,
consequences demonstrable without the new algorithm, whose
proofs with the help of the new algorithm, however, are
considerably simpler and easier to discover, and make it
possible to contract into one proof many different proofs.
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Qualifier s

Definitions

Any algorithm aimed at An algorithm is optimal when
complexity of a (multi - loop) number of terms,

Feynman diagram is

@ zeros of denominators
generally bound to

correspond to solutions

° _replace th_e original of Landau equations
integral with a sum of o the nature of the

many suppler cheifeimi; singularities is not badly
@ introducing ~ overestimated. %

denominators that show
Zeros.
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Buyer's Guide

Do not buy a product if

@ results are not compact

@ spurious singularities
are induced

@ around threshold
(normal, pseudo,
anomalous) behavior is
not treated or not even
understood

@ extension to complex
poles is not built-in

results stop (well) below
7 legs

tensor integrals are
treated differently

infrared and collinear
behavior is not explicitly
included

terms O (¥) are difficult
to obtain
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Smoothness and numerical evaluation
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Prolegomena

all one-laop

For all one-loop multi-leg diagrams we have developed
computational technigues based on BST relations

Example

We recall the definition of Bernstein - Sato polynomials: if V (x)
is a polynomial in several variables then

@ there is a non-zero polynomial b(x) and
@ a differential operator P () with polynomial coefficients
such that

P(i)V#+1(x) = b(u) V#(x).
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BST polynomials

BST |

Definition

The Bernstein-Sato polynomial is the monic polynomial of
smallest degree amongst such b(u). If V(x) is a non-negative
polynomial then V#(x), initially defined for 1. with non-negative
real part, can be analytically continued to a meromorphic
distribution-valued function of i by repeatedly using the
functional equation

VH(x) = T P(p) VI (x)
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BST polynomials

BST I

Theorem

For any finite set of polynomials Vj(x), where x = (Xg,...,Xy)
is a vector of Feynman parameters, there exists an identity of
the following form (hereafter a BST identity):

PO [[ V) = By [ V()

where P is a polynomial of x and &, = 9/9x;; By and all
coefficients of P are polynomials of y; and of the coefficients of

Vi (x). %
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BST polynomials

BST lI

Quadratic forms

If the polynomial V is of second degree we have a master
formula: write the polynomial as V (x) = x'Hx + 2K'x + L,
where x' = (x1,...,Xp), H is an n x n matrix, K is an n vector.
The solution to the problem of determining the polynomial P is
as follows:

(X — Xy )t Ok

p = 1LV oX B, =L—-K'H 'K,
2(u+1) Y

Xy = —HK. %
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BST polynomials

BST IV

Application

. t
Vix) = Bi [1—%(x—xv)tax InV(x)}.
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Landau equations

B of BST and Landau singularities

One-loop N-point scalar function

€ N -1
Gy — i“?/d“qﬂ[(q+ki_l)2+mi2—io] ,
i=1
ko = 0, kk=p1+ ... +pi

Landau equations

Vi ((q +ki)2+mi2) a =0,

N
> (a+k) a;=0
i—1
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Landau equations

Equiv alence |

V = x'Hx+2K'x+L=y'My, y'=(x', 1), %

H K
i i)
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Landau equations

Equiv alence |l

One can show that

det(M)

By det(H)’

@ The necessary condition for the leading Landau singularity
of Gy is det(M) = 0.
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Landau equations

More on LE

@ |t is easily seen that B, = 0 induces a pinch on the
integration contour at (X ... Xy—_1)-

@ At B, = 0 we encounter a singularity if

O< Xy1 < ...< X3 <1

otherwise the diagram is regular.
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Summary of singular behavior

To summariz e;:

@ at the leading Landau
singularity of G, the
so-called anomalous
threshold (AT), we have
By = 0;

@ conversely, By = 0 is the
condition to have a
proper solution for the
system of Landau
equations corresponding
to Gy.

Comment

Note that AT is not directly
related through unitarity to
physical processes (cut
diagrams).

Question

For a large class of
applications the relevant
question is whether or not AT
€ R = physical region.
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Summary of singular behavior

AT |

Example

The solution to this problem, for arbitrary N is technically
complicated; here we illustrate a simple case, a scalar one-loop
vertex with the following configuration (e.g. H — WW),

2 2 2
m = m,p533=-M"<0,p7=-r.

For real vectors it follows that R is defined by

r > 4M?(s-channel), r < O(t-channel).

The diagram has an AT at %

M2 ; 2 2
W)’ iff M<>2m-.

I = r=4M? (1—
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Summary of singular behavior

AT Il

The kind of singularity depends on the value of M?: J

Classification

@ if 0 < M2 < 2m? there is no AT,

@ if 2m? < M? < 4m? there is an unphysical AT
(0 < 1,y < 4m?) and, finally,

@ if M? > 4m? there is a physical AT at r,; < 0.
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BST in practice

BST for one-loop |

4

pt " L 2 5 o
G[} = iﬂ-z / dnq H |:(q+k|_l) +mi *|O:|
i=1

2 4-n L .
— ! | | : n/z2—
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BST in practice

BST for one-loop I

After BST @ integration-by-parts

4
2ByG! = (N—nJrl)%G’N‘+2

N—1
+ (X1 — Xi41) Gu_4I]
1=0
Xo = 1, Xn_1—0

. &
[I] removes |(q+k_1)*+ mf] inGy
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BST in practice

BST for one-loop Il

Delete the term oc GS~° @ modify the algorithm

@ N=5duetoN —5 +¢

@ N = 6, vanishing of
det(H)
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BST in practice

BST for one-loop IV

@ LetN =6+d, {k} ={k; ... kg } (arbitrarily chosen); let
Hik, be the 5 x 5 matrix H — Hyc, by dropping the d rows
and columns k; ... Kq;

® let My, be the 6 x 6 matrix M — My, obtained
accordingly

X" = detigMpg B =detMp, %

where det; ; M is the co-determinant of the element M;
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BST in practice

BST for one-loop V

6

1 k k
Gy = _WF(N_S)Z (xl{}_xl{+1}>
2BN 1=0

N—2 Xifl
< ] / dx; V3N]I]
i=1 0
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Contracting into one proof many different proofs

BST as new algorithm

intrinsic necessity?

Decomposition N — N — 1 is
known

usefulness

@ is based on having a
simple prescription for
computing the
coefficients of the
decomposition

@ whose meaning is easy

to understand

Connection

with leading and sub-leading
Landau singularities

to iterate, until the exponent
of each polynomial reaches
—€/2
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Gram

Public Vices and Private Virtues of Gram

@ Gram~X in standard
reduction

@ forlegs =5 Gram =0
close to the physical

boundary

@ any test is of the form

@ standard reduction is
unbeatable

@ for BST zero Gram is a
virtue (By « Gy1)
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Gram

BST and smoothness

Where to stop recur sion?

@ Smoothness for our integrands requires that the kernel and
its first d derivatives be continuous functions

@ d should be as large as possible

@ however, in most of the cases we will be satisfied with
absolute convergence, e.g. logarithmic singularities of the
kernel

@ this is particularly true around the zeros of By
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BST ready to use

Useful results

[ dsatixp) - 11 | e
64 = - [ [ dsalix)) NV, x)

2
_ % Z (Xi — Xit1) / dSy(x) InVIi](x) + %] %

i=0

Co
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BST ready to use

Useful results

Do = GZ‘—

482 /dS3({X}) INV (Xq, X2, X3)

: 1
-2 ; Xi+1)/d82({x}) InVi(x)+ 5]

3
+ = Z (Xi — Xiy1) Coli +1],
-0

2By -
1 4
Eo=G: = 5 > (Xi — Xit1) Doli + 1],
i=0
1< %
Fo=G§ = 6B Z (Xi — Xi41) Eoli +1]
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BST iteration never ends

Useful results I

Example

If absolute convergence is not enough for your integrator BST
can do! All integrals are of the form

/ dS, ({x}) InV ({x})

2B, /01 dx InV(x) = /01 dx V(x) [173 InV(x)}

—  XV(0) [1 — |nv(o)} — @ =X)V() [1 — |nv(1)}

n1 2 . -
+ /Ddxg(xi—xm)v(ii+1)[1—|nv(ii+1)}

28, [ dS;(x}) V(%) = —2 [ dS2({x)VOxa,30) [1 = 2 0V (kg %) %

etc etc
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Tensor integrals

Same algorithm at work

Easy to prove
tensor integrals — BST — smooth integrands
@ Sorry, no space left ..., just one example

N=6k<5—-N>6k<2N-7

5
i=0

158
= E {1 - 1[|]p“k}
- 33 (o)

e
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Comple x parameter s

Comple x poles

@ If CP are present, internal m2 = p2 — i ; 4; or external
M2 = AZ — i \; Tj, one should remember that they are lying
on the second Riemann sheet; let
¢ = V(mi..m? M7.. .M ... X)) —i0,
z = Vg ... AN X LX) =0

@ We must replace

In¢ — In¢(+2in0(—Rez)sign(lmz) %
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Additional features

Non deliverab le in this talk

R
classification of infrared collinear divergent one-loop
divergent one-loop virtual configurations (a la
configurations Sudakov), e.g.

BST & IR, extraction of IR Sl O O 5 10, ) -

2
pole and IR-finite part _ 1,2 < m ) ’

S

inclusion of real IR divergent é
diagrams in the BST scheme
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Infrared

However

p1 Pn P21 Pn

pp —— 77 Pn—1 P2 =% T Pn-1

...--‘

@ BST computable finite reminder ' é
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Around threshold

By ~0,B,_1 =0etc

Drawback

BST violates one of the requirements: if By ~ 0 then the nature
of the singularity

Co ~ p3InBg, Do ~ py4 34_1/2, etc

is overestimated

>

@ if the (reduced) diagram is regular at (Xq, ... ,Xy_1) Taylor
expand

@ otherwise use Mellin - Barnes to get as many terms as %
possible

@ or

A\
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New integral representations

Beyond Nielsen - Gonc harov

FD = integral representations

Theorem

/de({X})% In <1+ g) or / de({x})% Lin (g) /

where A, B are multivariate polynomials in the Feynman
parameters. One-(Two-) loop diagrams are always reducible to
combinations of integrals of this type where the usual
monomials that appear in the integral representation of Nielsen %
- Goncharov generalized polylogarithms are replaced by
multivariate polynomials of arbitrary degree.




New integral representations

Example

General Cg: definitions

Co = [ a2V 2, %),
V(x1,X2) = X'HxXx +2K'x +L=Q(x1,x2) +B,
Hi = —pi-p, L=mi
Ki = %(pl'pl+m§_m%)a
%(P'P—pl'lerm%—m%),




New integral representations

General Cq: result

1
2

2
> (Xi = Xis1)
i=0

X/ dx In<+Q(ii/+\1)>
o Q(ii+1) B

Q01) = Q(L.x), Q(12)=Q(x,x), Q(23) = Q(x,0)

Xt = —K'H™L Xo=1, X3=0 %
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How to construct it

Basics

n n-1 n h
Ln(z) = Z"Lp(z)=2" /an (H yi> [1+Hyj Z}
i—1 =1
= (3) maFo (nsri (n+ 2ni —2),
El(Z) = — So’l(—Z),
L>(z) = Soi1(-2)—S11(-2). %
L3(z) = — % So,1(=2) + g S1,1(—2) — S2,.1(~2),
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How to construct it

Problem

@ For any quadratic form in n-variables
V(x) = (x—X)'H (x=X)+B=Q(x)+B,

@ we want to compute

I(n,p) = /anV“:/an [Q(x)+BT“.

Definition
@ Consider the operator

P = (x—X)'9, satisfying PQ=2Q %
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How to construct it

Solution

1
IBu) = /0 dyy?TWH(y), W(y) =Q(x)y +B.

Use

(%P—yay)w—u:o — VE=(g+

(
I(n,p) = /olcn <ﬂ+

7’) I(B, ),

P) 360 @

NI NP




New integral representations
000800

How to construct it

Further definitions

f(X]) = f(xe, -, xn),
fGIx]) = f(xa, -, % =0, Xn),
f(xl)) = f(xa, -, % =1, xn),

1N 1 n
/an = / I dx. /dcn,j:/ I oxi.
0 0

i=1 i=1,i#




New integral representations
0000e0

How to construct it

Results |

@ For p = 1itis convenient to choose g = 1, to obtain

I(n,1) = <g—1) /anLl([X])

— % Zn: / dCp, {Xi La(i [x]) = (1 = Xi) Ll([x]i)}
i—1

4
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How to construct it

Results I

@ For p = 2 it is more convenient to write

. 1 \2 1 \2
VZ2=(2+5P) 322)=(2+5P) Lo

@ integration-by-parts follows

@ additional work (along the same lines) is needed to deal
with surface terms ...




Part IV

Conclusions




Conclusions




Conclusions

(., )

© High-Precision one-loop multi-leg calculations are doable;
do it, do not introduce yet another algorithm!




Conclusions

, )

© High-Precision one-loop multi-leg calculations are doable;
do it, do not introduce yet another algorithm!

Q (at least at the parton level)




Conclusions

(11 21 ] )

© High-Precision one-loop multi-leg calculations are doable;
do it, do not introduce yet another algorithm!

Q (at least at the parton level)

@ Itis a problem of assembling, a huge assembling,
cumbersome and not so challenging,




Conclusions

© High-Precision one-loop multi-leg calculations are doable;
do it, do not introduce yet another algorithm!

Q (at least at the parton level)

@ Itis a problem of assembling, a huge assembling,
cumbersome and not so challenging,

© at least no conceptual challenge,




Conclusions

© High-Precision one-loop multi-leg calculations are doable;
do it, do not introduce yet another algorithm!

Q (at least at the parton level)

@ Itis a problem of assembling, a huge assembling,
cumbersome and not so challenging,

© at least no conceptual challenge,

@ unless unstable particles are present (but this would
require another talk . . .) %
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