TWO-LOOP QFT in the Making

Stefano ACTIS[‡], Giampiero PASSARINO[†], Sandro UCCIRATI[†]

‡Deutsches Electronen - Synchrotron, Zeuthen, Germany †Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino, Italy

<ロ> (四) (四) (三) (三) (三) (三)

Outlines ●○

Part I: General Setting

Outline of Part I

The Project

- Numerical evaluation
- Status:
- Back to renormalization
- Dressed propagators
- Loops with dressed propagators
- New problems with complex poles
- Change of strategy

◆□ → ◆檀 → ◆臣 → ◆臣 → □臣 □

Part II: Numerical Results

Outline of Part II

- **2** The running of α
 - Is there an $\alpha(s)$?
 - Ingredients for $\alpha_{\overline{MS}}$
 - Results for $\alpha_{\overline{MS}}$
 - $\alpha(\mathbf{s}), \quad \xi = \mathbf{1}$
 - Infrared at two loops
 - Examples
 - IR numerica
- Complex poles: numerica
 - Input: on-shell masses
 - Input: complex poles
 - Complex poles handling: more details
- B equations: numerica
 - numbers & renormalization I
 - numbers & renormalization II
- 6 Conclusions

Part II: Numerical Results

Outline of Part II

- **2** The running of α
 - Is there an $\alpha(s)$?
 - Ingredients for $\alpha_{\overline{MS}}$
 - Results for $\alpha_{\overline{MS}}$
 - $\alpha(\mathbf{s}), \quad \xi = \mathbf{1}$
- Infrared at two loops
 - Examples
 - IR numerica
- Complex poles: numerica
 - Input: on-shell masses
 - Input: complex poles
 - Complex poles handling: more details
- 5 R equations: numerica
 - numbers & renormalization I
 - numbers & renormalization I
- 6 Conclusions

Part II: Numerical Results

Outline of Part II

- **2** The running of α
 - Is there an $\alpha(s)$?
 - Ingredients for $\alpha_{\overline{MS}}$
 - Results for $\alpha_{\overline{MS}}$
 - $\alpha(\mathbf{s}), \quad \xi = \mathbf{1}$
- Infrared at two loops
 - Examples
 - IR numerica
- 4
- Complex poles: numerica
- Input: on-shell masses
- Input: complex poles
- Complex poles handling: more details
- R equations: numerica
 - numbers & renormalization I
 - numbers & renormalization I
- 6 Conclusions

Part II: Numerical Results

Outline of Part II

- **2** The running of α
 - Is there an $\alpha(s)$?
 - Ingredients for $\alpha_{\overline{MS}}$
 - Results for $\alpha_{\overline{MS}}$
 - $\alpha(\mathbf{s}), \quad \xi = \mathbf{1}$
- Infrared at two loops
 - Examples
 - IR numerica
- 4

Complex poles: numerica

- Input: on-shell masses
- Input: complex poles
- Complex poles handling: more details
- 5 R equations: numerica
 - numbers & renormalization I
 - numbers & renormalization II
 - Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Part II: Numerical Results

Outline of Part II

- **2** The running of α
 - Is there an $\alpha(s)$?
 - Ingredients for $\alpha_{\overline{MS}}$
 - Results for $\alpha_{\overline{MS}}$
 - $\alpha(\mathbf{s}), \quad \xi = \mathbf{1}$
- Infrared at two loops
 - Examples
 - IR numerica
- 4

Complex poles: numerica

- Input: on-shell masses
- Input: complex poles
- Complex poles handling: more details
- 5 R equations: numerica
 - numbers & renormalization I
 - numbers & renormalization II
 - Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Part I

Goals and perspectives

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

the project

Problem

HO perturbative QFT is a rather challenging field requiring: *clever ideas and new algorithms*

Solutions

- Develop portable graph generators
- import new ideas from functional analysis into EW physics to confront the practical difficulties there,
- especially as concerns massive Feynman diagrams.

The road map for an NNLO process

(1, 2, 3,)

- A variety of important processes will benefit from NLO(NNLO) computations
- two-loop accuracy in conjuction with resummation
- Ideally, one would like a fast and reliable (general) NNLO program

Complexity: *n* | **growth**

Different diagrams interfere

a, b, c,

tree level (obvious)
 1 L with finite 1 L renormalization
 2 L, but beware:

Example

The road map for an NNLO process

(1, 2, 3,)

- A variety of important processes will benefit from NLO(NNLO) computations
- 2 two-loop accuracy in conjuction with resummation
- Ideally, one would like a fast and reliable (general) NNLO program

Complexity: *n* | **growth**

Different diagrams interfere

tree level (obvious)
 1 L with finite 1 L renormalization
 2 L, but beware:

Example

(日)

The road map for an NNLO process

(1, <mark>2</mark>, 3,)

- A variety of important processes will benefit from NLO(NNLO) computations
- two-loop accuracy in conjuction with resummation
- Ideally, one would like a fast and reliable (general) NNLO program

Complexity: *n* | **growth**

Different diagrams interfere

tree level (obvious)
 1 L with finite 1 L renormalization
 2 L, but beware:

Example

(日)

The road map for an NNLO process

(1, 2, <mark>3</mark>,)

- A variety of important processes will benefit from NLO(NNLO) computations
- two-loop accuracy in conjuction with resummation
- Ideally, one would like a fast and reliable (general) NNLO program

Complexity: *n* | **growth**

Different diagrams interfere

<mark>(a</mark>, b, c,)

- tree level (obvious)
- 3 1 L with finite 1 L renormalization
- 2 L, but beware:

Example

2 *L* renormalization is (much) more than ———

ヘロン 人間 とくほど 人間 と

э

The road map for an NNLO process

(1, 2, 3,)

- A variety of important processes will benefit from NLO(NNLO) computations
- two-loop accuracy in conjuction with resummation
- Ideally, one would like a fast and reliable (general) NNLO program

Complexity: *n* | **growth**

Different diagrams interfere

(a, b, c,**)**

- tree level (obvious)
- 1 L with finite 1 L renormalization
- 2 L, but beware:

Example

2 *L* renormalization is (much) more than ———

ヘロン 人間 とくほど 人間 と

э

The road map for an NNLO process

(1, 2, 3,)

- A variety of important processes will benefit from NLO(NNLO) computations
- two-loop accuracy in conjuction with resummation
- Ideally, one would like a fast and reliable (general) NNLO program

Complexity: *n* | **growth**

Different diagrams interfere

(a, b, c,)

- tree level (obvious)
- 1 L with finite 1 L renormalization
- 3 2 L, but beware:

Example

ヘロア ヘロア ヘロア

э

Status:

Deliverable now

Generation

Diagrams are generated & manipulated by Graphshot (Form 3.1)

Evaluation

Observables are computed by LoopBack

No external Black Box

Solutions

- A Fortran 95 code has been written (LoopBack)
- with huge gains in CPU time
- array handling, assignment overloading, vector/recursive functions, etc.

Back to renormalization

two-loop R

Counter-terms

Not needed, but useful for dealing with overlapping divergencies

expansion

The relevant objects beyond 1 *L* are *dressed propagators*

Dogma

• $\{p_R\}$ are **REAL**

- finite R ∈ consistent solution of R -equations
- complex poles
 dressing, but cutting equations must be verified

Dressed propagators

Cutting equations & D propagators

Problem

Use dressed propagators,

Example

$$ar{\Delta}_{v} = rac{\Delta_{v}}{1-i\Delta_{v}\Sigma_{vv}},$$

Theorem

cutting-equations and unitarity of the S -matrix can be proven

Solutions

- 2 $L \overline{\Delta}$ in tree diagrams,
- 1 $L \overline{\Delta}$ in 1 L diagrams,
- tree in 2 L diagrams.
- Δ satisfy the Källen -Lehmann representation.
- only skeleton diagrams are included

Dressed propagators

Proof: Veltman

Proof.

$$\bar{\Delta}_{\nu}^{+}(\boldsymbol{p}^{2}) = \theta(\boldsymbol{p}_{0}) \left[\bar{\Delta}_{\nu}(\boldsymbol{p}^{2})\right]^{2} 2 i \operatorname{Re} \Sigma_{\nu\nu}(\boldsymbol{p}^{2}),$$

while, for a stable particle, the pole term shows up as

$$\bar{\Delta}_{V}^{+}(p^{2}) = \theta(p_{0}) \left[\bar{\Delta}_{V}(p^{2})\right]^{2} 2 i \operatorname{Re} \Sigma_{VV}(p^{2}) + 2 i \pi \delta(p^{2} + m_{V}^{2}).$$

 $\operatorname{Re}\Sigma_{\nu\nu} \rightarrow \operatorname{cut}$ self-energy / repeat ad libidum

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

 \hookrightarrow contributions from cut lines \in stable particles only

Loops with dressed propagators

The consistent way with unstable particles

Problem

Toy model with Φ unstable:

$$L = \frac{g}{2} \Phi(x) \phi^2(x).$$

Example $\overline{\Delta}_{\Phi} = \frac{\Delta_{\Phi}}{1 - \Delta_{\Phi} \Sigma_{\Phi \Phi}},$ $\overline{\Delta}_{\phi} = \frac{\Delta_{\phi}}{1 - \Delta_{\phi} \Sigma_{\phi \phi}},$

Solutions

- Im $\Sigma_{\phi\phi} \neq 0 \longleftarrow 3 p$ cut b)
- With D propagators only

 and c) are retained,
 but a) ← Δ_Φ, C (1 L)

a) skeleton

b) Σ insertion

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 通 - のへで

c) skeleton

Loops with dressed propagators

The consistent way with unstable particles

skpf2

Theorem

1 *L* **FD** with 1 *L* $\overline{\Delta}_{\Phi}$ $\mathcal{O}(g^4) \equiv$ 3 **FD** whith $\Delta_{\Phi}(s_M)$

with

$$Z_p = \frac{g^2}{16 \pi^2} B_0 (-s_{_M}; m, m).$$

Diagrammatica

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

New problems with complex poles

Complex poles

(see also Denner Dittmaier @ 1 L)

Problem

R - equations need M_{exp} ? OS PO are derived by fitting lineshapes \leftarrow experiments

Solutions

define pole PO

$$M_{P} = M_{OS} \cos \psi,$$

$$\Gamma_{P} = \Gamma_{os} \sin \psi,$$

$$\psi = \arctan \frac{\Gamma_{os}}{M_{os}},$$

@ 1 *L* we can use M_{os} . Beyond 1 *L* GI \hookrightarrow

$$\mathbf{s}_{\mathbf{v}} = \mu_{\mathbf{v}}^{\mathbf{2}} - \mathbf{i} \, \gamma_{\mathbf{v}} \, \mu_{\mathbf{v}}$$

Change of strategy

complex poles beyond 1 L

(Jegerlehner Veretin)

Problem

@ 2 *L* R - equations change their structure.

Example

change of perspective: @ 1 *L* one considers M_{OS} as IP independent of s_P and *derive* s_P . @ 2 *L* R - equations are written for real p_R and solved in terms of (among other things) experimental s_P

Solutions

consistently with an order-by-order R, $M_R \hookrightarrow$ real solutions of truncated R - equations,

Theorem

there is no problem with cutting-equations and unitarity.

The running of $lpha$	Infrared at two - loops	Complex poles: numerica	R - equations: numerica	Conclusions

Part II

Numbers, nothing more than numbers

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The running of α

Infrared at two - loops

Complex poles: numerica

R - equations: numerica

What's the running of α ?

Problem

the role played by the running of α has been crucial in the development of precision tests of the SM.

popular wisdom

universal corrections are the important ingredient, non-universal ones should be made as small as possible

once again, problems

- UC should be linked to a set of PO's and data should be presented in the language of PO's
- this language
 ← resummation, against GI
- $\approx M_z$ it is easy to perform a discrimination relevant vs. irrelevant terms, paying a very little price to GI

ヘロト 人間 とくほ とくほう

Conc

The running of α $\bullet \circ \circ \circ \circ$	Infrared at two - loops	Complex poles: numerica	R - equations: <i>numerica</i>	Conclusions
Is there an $\alpha(s)$?				
is it usef	ul?			

Why not?

One (fuzzy) idea is to import from QCD the concept of \overline{MS} couplings

Example

express th. predictions through \overline{MS} couplings. Open for criticism.

- The *MS* parameter seems unambiguos,
- however, it will violate decoupling

another solution

- do the calculation in $R_{|xi|}$,
- select a ξ independent part of S,
- perform resummation while leaving the rest to ensure independence when combined with V & B
- the obvious criticism: it violates uniqueness; then what?

The running of $lpha$	Infrared at two - loops	Complex poles: numerica	R - e
00000			

R - equations: numerica

Ingredients for α_{MS}

what we need for $\alpha_{\overline{MS}}$

fermion \supset 3 lepton generations, a perturbative quark contribution, top or diagrams where light quarks are coupled internally to vector bosons **non-perturbative** \supset diagrams where a light quark couple to a photon, is related to $\Delta \alpha_{had}^5(M_z^2)$

QED and QCD contributions to the light-quark part is always subtracted

main equation

 $\Pi_{\scriptscriptstyle QQ}(0) \ = \ \Pi^{\rm bos}_{\scriptscriptstyle QQ}(0) + \Pi^{\rm lep}_{\scriptscriptstyle QQ}(0) + \Pi^{\rm per}_{\scriptscriptstyle QQ}(0) + \Pi^{\rm had}_{\scriptscriptstyle QQ}(0).$

	00	000	oo	Conclusions
Results for α_{MS}				
Numeric	al results	(see also Degrassi et a	al)	

Definition

$$\alpha_{MSB}^{-1}(\mathbf{s}) = \alpha^{-1} - \frac{1}{4\pi} \Pi_{QQ}^{MSB}(\mathbf{0})\Big|_{\mu^2 = \mathbf{s}}$$

$m_t = 174.3 \mathrm{GeV}$	$M_{H} = 150 \text{GeV}$				
\sqrt{s} [GeV]	Mz	120	160	200	500
one-loop	128.105	127.974	127.839	127.734	127.305
two-loop	128.042	127.967	127.891	127.831	127.586
%					0.22
$m_t = 179.3 \mathrm{GeV}$	$M_{H} = 150 \text{GeV}$				
one-loop	128.113	127.982	127.847	127.742	127.313
two-loop	128.048	127.980	127.911	127.857	127.636
%					0.25
$m_t = 174.3 \text{GeV}$	$M_{H} = 300 \text{GeV}$				
\sqrt{s} [GeV]	Mz	120	160	200	500
one-loop	128.105	127.974	127.839	127.734	127.305
two-loop	128.041	127.914	127.784	127.683	127.266
%					0.03

The running of $lpha$	Infrared at two - loops	Complex poles: numerica	R - equations: numerica	Conclu
00000				

$\alpha(s), \qquad \xi = 1$

Fine points: LQ basis more complex

Definition

$$\alpha^{-1}(\mathbf{s}) = \alpha^{-1} - \frac{1}{4\pi} \Pi_{QQ;ext}^{ren}(\mathbf{s})$$

$$\begin{split} D_{AA} &= s^2 \,\Pi_{QQ\,;\,\mathrm{ext}} \, p^2 = s^2 \,\sum_{n=1}^{\infty} \, \left(\frac{g^2}{16 \,\pi^2}\right)^n \,\Pi_{QQ\,;\,\mathrm{ext}}^{(n)} \, p^2, \\ D_{AZ} &= \frac{s}{c} \,\Sigma_{AZ\,;\,\mathrm{ext}} = \frac{s}{c} \,\sum_{n=1}^{\infty} \, \left(\frac{g^2}{16 \,\pi^2}\right)^n \,\Sigma_{AZ\,;\,\mathrm{ext}}^{(n)}, \\ D_{ZZ} &= \frac{1}{c^2} \,\Sigma_{ZZ\,;\,\mathrm{ext}} = \frac{1}{c^2} \,\sum_{n=1}^{\infty} \, \left(\frac{g^2}{16 \,\pi^2}\right)^n \,\Sigma_{ZZ\,;\,\mathrm{ext}}^{(n)}, \\ \Sigma_{AZ\,;\,\mathrm{ext}}^{(n)} &= \Sigma_{3Q\,;\,\mathrm{ext}}^{(n)} - s^2 \,\Pi_{QQ\,;\,\mathrm{ext}}^{(n)} \, p^2, \\ \Sigma_{ZZ\,;\,\mathrm{ext}}^{(n)} &= \Sigma_{33\,;\,\mathrm{ext}}^{(n)} - 2 \,s^2 \,\Sigma_{3Q\,;\,\mathrm{ext}}^{(n)} + s^4 \,\Pi_{QQ\,;\,\mathrm{ext}}^{(n)} \, p^2. \end{split}$$

sions

The running of α ○○○○●	Infrared at two - loops	Complex poles: numerica	R - equations: <i>numerica</i>	Conclusions
$\alpha(s), \qquad \xi = 1$				
Anatom	/ at 200 Ge\	/		

Definition

$$\frac{\alpha}{\alpha(s)} = 1 + \Delta \alpha(s)$$

$\Delta \alpha$	value at $\sqrt{(s)} = 200 \text{GeV}$	
ReEW	-0.003578(8)	
ImEW	+0.002156(8)	
Rep QCD	-0.0005522(4)	
Imp QCD	+0.0001178(3)	
fin ren	-0.0000977 - 0.0000998 i	
$\operatorname{Re} \alpha(s)$	0.0078782(2)	
Re $\alpha^{-1}(s)$	126.933(4)	
	< □ > < □ > <	■▶ ▲ ■ ▶ ■ の < @

The running of α 00000

Infrared at two - loops

Complex poles: numerica

R - equations: numerica

Conclusions

Vertices: enough for a long talk

New

 $FD \equiv$ integral representations

Theorem

$$\int dC_k(\{x\}) \frac{1}{A} \ln\left(1 + \frac{A}{B}\right) \quad \text{or} \quad \int dC_k(\{x\}) \frac{1}{A} \operatorname{Li}_n\left(\frac{A}{B}\right)$$

where *A*, *B* are multivariate polynomials in the Feynman parameters. Two - loop diagrams are always reducible to combinations of integrals of this type where the usual monomials that appear in the integral representation of Nielsen - Goncharov generalized polylogarithms are replaced by multivariate polynomials of arbitrary degree.

- < u > < du > < き > < き > < き > く い へ む > < の へ い

The running of α 00000	Infrared at two - loops ●○	Complex poles: numerica	R - equations: <i>numerica</i>	Conclusions
Examples				

Examples

Solutions

- IR conf. classified
- Graduation → IR residues and finite part computed

(日) (字) (日) (日) (日)

- suitable also for coll. regions
- fully multi-scale

BST funct. rel. \Rightarrow h.o. transcendental functions

The running of α 00000

Complex poles: numerica

R - equations: numerica

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト … ヨ

Conclusions

IR numerica

Results: just a sample

	\sqrt{s} [GeV]	Re $V_{0,K}$ [GeV ⁻⁴]	$\text{Im } V_{0,K}$ [GeV ⁻⁴]
Our	400	$5.1343(1) imes 10^{-8}$	$1.94009(8) imes 10^{-8}$
DK		5.13445×10^{-8}	1.94008×10^{-8}
Our	300	5.68801×10^{-8}	-1.61218×10^{-8}
DK		5.68801×10^{-8}	-1.61218×10^{-8}
Our	200	9.36340×10^{-8}	-2.84232×10^{-8}
DK		9.36340×10^{-8}	-2.84232×10^{-8}
Our	100	2.94726×10^{-7}	-9.74218×10^{-8}
DK		2.94726×10^{-7}	-9.74218×10^{-8}
	$\sqrt{-t}$ [GeV]	Re $V_{0,K}$ [GeV ⁻⁴]	Im $V_{0,K}$ [GeV ⁻⁴]
Our	$\sqrt{-t}$ [GeV] 100	$\frac{\text{Re }V_{0;K} [\text{GeV}^{-4}]}{-2.85709 \times 10^{-7}}$	$\frac{\text{Im }V_{0;K}}{0} [\text{GeV}^{-4}]$
Our DK	$\frac{\sqrt{-t} [\text{GeV}]}{100}$	$\frac{\text{Re } V_{0;K} [\text{GeV}^{-4}]}{-2.85709 \times 10^{-7}}$ -2.85709×10^{-7}	$ \begin{array}{c} \operatorname{Im} V_{0;K} [\mathrm{GeV}^{-4}] \\ 0 \\ 0 \end{array} $
Our DK Our	$\frac{\sqrt{-t} [\text{GeV}]}{100}$	$ \begin{array}{c c} \text{Re } V_{0;K} & [\text{GeV}^{-4}] \\ \hline -2.85709 \times 10^{-7} \\ -2.85709 \times 10^{-7} \\ \hline -7.61695 \times 10^{-8} \end{array} $	$ \begin{array}{c} \operatorname{Im} V_{0;K} & [\operatorname{GeV}^{-4}] \\ 0 \\ 0 \\ 0 \end{array} $
Our DK Our DK	$\frac{\sqrt{-t} [\text{GeV}]}{100}$ 200	$\frac{\text{Re }V_{0;K} \ [\text{GeV}^{-4}]}{-2.85709 \times 10^{-7}} \\ -2.85709 \times 10^{-7} \\ -7.61695 \times 10^{-8} \\ -7.61695 \times 10^{-8} \\ -7.61695 \times 10^{-8} \\ -8.85709 \\ -8$	$ \begin{array}{c c} \operatorname{Im} V_{0;K} & [\operatorname{GeV}^{-4}] \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} $
Our DK Our DK Our	$\frac{\sqrt{-t} [\text{GeV}]}{100}$ 200 300	$\begin{array}{c c} Re \ V_{0;K} & [GeV^{-4}] \\ \hline -2.85709 \times 10^{-7} \\ -2.85709 \times 10^{-7} \\ \hline -7.61695 \times 10^{-8} \\ -7.61695 \times 10^{-8} \\ \hline -3.29938 \times 10^{-8} \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Our DK Our DK Our DK	$\frac{\sqrt{-t} [\text{GeV}]}{100}$ 200 300	$\begin{array}{c c} Re \ V_{0;K} & [GeV^{-4}] \\ \hline -2.85709 \times 10^{-7} \\ -2.85709 \times 10^{-7} \\ -7.61695 \times 10^{-8} \\ -7.61695 \times 10^{-8} \\ -3.29938 \times 10^{-8} \\ -3.29938 \times 10^{-8} \end{array}$	$ \begin{array}{cccc} Im V_{0,K} & [GeV^{-4}] \\ 0 \\ 0 \\ 0 \\ $
Our DK Our DK Our DK Our	<u>√−t</u> [GeV] 100 200 300 400	$\begin{array}{c c} Re \ V_{0;K} & [GeV^{-4}] \\ \hline -2.85709 \times 10^{-7} \\ -2.85709 \times 10^{-7} \\ -7.61695 \times 10^{-8} \\ -7.61695 \times 10^{-8} \\ -3.29938 \times 10^{-8} \\ -3.29938 \times 10^{-8} \\ -1.74228 \times 10^{-8} \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

 Table:
 Comparison with the results of Davydychev - Kalmykov Only

 the infrared finite part is shown
 Image: Comparison with the results of Davydychev - Kalmykov Only

Complex poles: *numerica* ●○○

R - equations: numerica

Conclusions

Input: on-shell masses

Old fashioned one-loop

Example

$$\mathbf{s}_{\!\scriptscriptstyle H} = \mu_{\scriptscriptstyle H}^2 - \boldsymbol{i}\,\mu_{\scriptscriptstyle H}\,\gamma_{\scriptscriptstyle H}$$

M ^{OS} [GeV]	120	150	300
μ_H	119.96 GeV	149.91 GeV	299.74 GeV
γ_H	5.62 MeV	7.00 MeV	7.90 GeV

au and *b*-quark

input

On-Shell Masses

The running of α 00000	Infrared at two - loops	Complex poles: <i>numerica</i> ○●○	R - equations: <i>numerica</i>	Conclusions
Input: complex poles	;			
The curr	ent fashion			

Example

$$\begin{aligned} \mathbf{s}_{H}^{\mathrm{exp}} &= \mu_{H}^{2} - i \, \mu_{H} \, \gamma_{H} \\ \mathbf{s}_{H}^{\mathrm{th}} &= M_{H}^{2} - i \, M_{H} \, \Gamma_{H} \end{aligned}$$

μ_H	γ_H	M _H	Гн	
300	4	299.96	8.374	\mathbf{X}
300	12	299.87	8.376	
500	40	500.17	63.37	
500	80	500.42	63.34	

Note:

it's the imaginary part that matters finally beyond $m_{H}^{MSB}(s_{H})$

	The running of α	Infrared at two - loops	Complex poles: numerica	R - equations: numerica
			000	

Complex poles handling: more details

Complex poles: details

$$s_V \, - \, m^2 \, + \, \Pi \, \left(s_V \, , \; m^2 \, , \; \ldots \, \right) \; \rightarrow \; s_V = m^2 \, - \, \Pi^{(1)} \, \left(m^2 \, , \; m^2 \; \ldots \, \right) \, + \, \ldots$$

Example

You get complex pole (renorm. mass) an MS concept

Improve :
$$s_V - m^2 + \Pi (s_V, m^2, \{p\}, ...)$$

Solution

 m^2 and $\{p\}$ from R - equations m^2 , $\{p\} = \text{Re } f\left(s_{V_1}, s_{V_2}, \ldots\right)$ No expansion for exp - dependent quantities $\hookrightarrow 2L$ on second R-sheet (try it!) R - equations \hookrightarrow Born in 2L, 1L in 1L

(in principle) masses to complex poles in propagators \Rightarrow prediction if $V \notin \{V_1, V_2, \dots\}$ \Rightarrow consistency of QC if $V \in \{V_1, V_2, \dots\}$ s_V -expansion \triangleright Return Conclusions

The running of α 00000

Infrared at two - loops

Complex poles: numerica

R - equations: *numerica*

Conclusions

R - equations: details

Definition

$$egin{array}{rcl} rac{G_{\scriptscriptstyle F}}{\sqrt{2}} &=& rac{g^2}{8\,M^2}\,(1+\Delta g) \ \Delta g &=& \delta_{\scriptscriptstyle G}+\Delta g^{\scriptscriptstyle S} \end{array}$$

Solutions

$$g^{2} = 8 G \mu_{W}^{2} \left[1 + C_{g}^{(1)} \frac{G}{\pi^{2}} + \dots \right]$$
$$C_{g}^{(1)} = \frac{1}{2} \left[\operatorname{Re} \Sigma_{WW}^{(1)}(s_{W}) - \Sigma_{WW}^{(1)}(0) \right]$$

$$G_{F} \rightarrow G \ \delta_{G}^{(1)} \ \text{finite - } \delta_{G}^{(2)} \ \text{finite after 1 } L \ \text{Ren.}$$

$$G = G_{F} \left\{ 1 - \delta_{G}^{(1)} \ \frac{G_{F} \mu_{W}^{2}}{2 \pi^{2}} + \left[2 (\delta_{G}^{(1)})^{2} - \frac{2}{\mu_{W}^{2}} \delta_{G}^{(1)} C_{g}^{(1)} - \delta_{G}^{(2)} \right] \left(\frac{G_{F} \mu_{W}^{2}}{2 \pi^{2}} \right)^{2} \right\}$$

The running of α 00000

Infrared at two - loops

Complex poles: numerica

R - equations: *numerica* ●○

Conclusions

numbers & renormalization I

The UV, IR finite remainder for G_{F}

$M_{_{\!H}}^{_{ m OS}}$ [GeV]	150	300	500
$\frac{G_F \mu_W^2}{2 \pi^2} \frac{\delta_G^{(2)}}{\delta_G^{(1)}}$	18.29%	8.89%	-24.62%

▲ロト▲園と▲目と▲目と 目 のへで

The running of $lpha$	Infrared at two - loops	Complex poles: numerica	R - equations: numerica	Conclusions
			00	

numbers & renormalization II

Playing with numbers in R - equations

Definition				
Х	=	$x(1 + a_1 x + a_2 x^2)$		
x	=	$rac{G_{F}\mu_{W}^{2}}{2\pi^{2}}, x=rac{g^{2}}{16\pi^{2}}$		
a ₁	=	$\delta_{G}^{(1)} + S^{(1)}$		
a ₂	=	$S^{(1)} \left[\delta_G^{(1)} + S^{(1)} \right] + \delta_G^{(2)} + S^{(2)}$		

PT solution

$$x = X + X^{2} (b_{1} + b_{2} X)$$

$$S^{(n)} = \frac{1}{\mu_{W}^{2}} \Sigma_{WW}^{(n)}(0)$$

PT questionable \hookrightarrow

M ^{OS} [GeV]	150	200	250	300	350
b ₁ X (%)	+3.31	+0.13	-2.30	-4.84	-7.85
b ₁	+12.28	+0.47	-8.51	-17.95	-29.07
b ₂ X	+0.25	-1.31	-1.38	-2.58	- 9.26
$b_2/b_1 X(\%)$	+2.06	-277.81	+16.16	+14.35	+31.85

accidental 1 L cancellation • Return

The running of α 00000

The road map for an NNLO calculation

(, 2, 3, 4, 5,)

- We have created an independent integrated system which
 - uses FORM to generate
 - uses FORTRAN 95 to compute
- Has a built-in Renormalization procedure
- Can deal with multi-scale diagrams (also IR and coll.)
- Is fully operative at two-loop level,
 - expanding & improving PO (two-leg) results
 - classifying & computing three-leg diagrams (d-by-d)
- Is evolving towards PO / O (three-leg) (already implanted in other projects)
 - Yes, I'm slow; no hurry, no worry, I'm going my way

The running of α 00000

The road map for an NNLO calculation

(1, 2, 3, 4, 5,**)**

We have created an independent integrated system which

- uses FORM to generate
- uses FORTRAN 95 to compute
- 3 Has a built-in Renormalization procedure
- Can deal with multi-scale diagrams (also IR and coll.)
- Is fully operative at two-loop level,
 - expanding & improving PO (two-leg) results
 - classifying & computing three-leg diagrams (d-by-d)
- Is evolving towards PO / O (three-leg) (already implanted in other projects)

• Yes, I'm slow; no hurry, no worry, I'm going my way

(1, <mark>2</mark>, 3, 4, 5,)

We have created an independent integrated system which

- uses FORM to generate
- uses FORTRAN 95 to compute
- Has a built-in Renormalization procedure
 - Can deal with multi-scale diagrams (also IR and coll.)
- Is fully operative at two-loop level,
 - expanding & improving PO (two-leg) results
 - classifying & computing three-leg diagrams (d-by-d)
- Is evolving towards PO / O (three-leg) (already implanted in other projects)

• Yes, I'm slow; no hurry, no worry, I'm going my way

(1, 2, <mark>3</mark>, 4, 5,)

- We have created an independent integrated system which
 - uses FORM to generate
 - uses FORTRAN 95 to compute
- Has a built-in Renormalization procedure
- Can deal with multi-scale diagrams (also IR and coll.)
 - Is fully operative at two-loop level,
 - expanding & improving PO (two-leg) results
 - classifying & computing three-leg diagrams (d-by-d)
- Is evolving towards PO / O (three-leg) (already implanted in other projects)
 - Yes, I'm slow; no hurry, no worry, I'm going my way

(1, 2, 3, 4, 5,)

- We have created an independent integrated system which
 - uses FORM to generate
 - uses FORTRAN 95 to compute
- Has a built-in Renormalization procedure
- Can deal with multi-scale diagrams (also IR and coll.)
- Is fully operative at two-loop level,
 - expanding & improving PO (two-leg) results
 - classifying & computing three-leg diagrams (d-by-d)
- Is evolving towards PO / O (three-leg) (already implanted in other projects)
 - Yes, I'm slow; no hurry, no worry, I'm going my way

(1, 2, 3, 4, <mark>5</mark>,)

- We have created an independent integrated system which
 - uses FORM to generate
 - uses FORTRAN 95 to compute
- Has a built-in Renormalization procedure
- Can deal with multi-scale diagrams (also IR and coll.)
- Is fully operative at two-loop level,
 - expanding & improving PO (two-leg) results
 - classifying & computing three-leg diagrams (d-by-d)
- Is evolving towards PO / O (three-leg) (already implanted in other projects)
 - Yes, I'm slow; no hurry, no worry, I'm going my way

