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ON STRING AMPLITUDES

``Strings is a mythological story about the son of a king ... ‘’



 String theory expresses on-shell scattering amplitudes of a d-dimensional interacting field 
    theory in terms of correlation functions of operators in a two-dimensional free field theory.

• Master formulas exist for n-point g-loop amplitudes.

 String theory is first-quantized: the number of string loops is fixed at the outset.

• Computations are performed in a d = 2 field theory on a Riemann surface of fixed genus g.

 String theory has an infinite number of massive states.

• Masses are multiples of the string tension  Mn
2   ∝      n/α’  ∝    n T .

• Tuning the limit  α’  →  0  for different strings one may get different effective field theories.

Features of string amplitudes

 In the field theory limit α’  →  0 Riemann
    surfaces degenerate into Feynman-like graphs

• Only massless (or lowest-lying) excitations
       circulate in the loops.

• The g-loop string diagram generates all field 
      theory diagrams from different corners of 
      moduli space.

• Is it practical?

Different limit of a single string diagram



The Schottky parametrization
  A Riemann surface of genus g can be represented by cutting and identifying g pairs of 

   circles on the Riemann sphere, via projective transformations Si. 

•  The Riemann surface is then                                        where          is the genus-g

       Schottky group generated by the transformations Si.

  Each projective transformation has three complex parameters, chosen as its fixed
     points  ηi  and  ξi , and the multiplier ki.

•  The multipliers ki  are proportional to the radii of the circles Ci  and they drive the field  
       theory limit as  ki  →  0.

⌃g = (C [1) /Sg Sg

Building a two-loop Riemann surface in the Schottky representation

  The shape of the genus-g Riemann surface 
     is determined by 3g - 3 complex moduli 
     (subtracting one overall projective 
     trasformation on the sphere)

•  The number of moduli matches the 
        number of propagators for g-loop 
        vacuum bubbles with cubic vertices.

•  Geometric objects on the Riemann 
        surface can be expressed as series over 
        the Schottky group. 



Geometric objects

The string operator formalism provides explicit constructions for geometric objects defined 
on Riemann surfaces, in terms of series on the Schottky group.

Let                               be an element of the Schottky group.  Then one defines 

Abelian Differentials:

Period Matrix:

Prime Form:

Scalar Propagator:

•  In the field theory limit only a handful of Schottky group elements contribute.

•  Relevant terms are easily generated with available software for symbolic manipulations.
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Master formulas
String amplitudes are computed by fixing the quantum numbers of the external states and 
then evaluating correlation functions of the corresponding vertex operators in the 
two-dimensional theory at the relevant genus.

Since the 2-d theory is free, closed form results can be obtained for g-loop, M-point 
amplitudes. For example for open string gluon states one finds

Integration is over a fundamental region of the g-loop moduli space.  Normalization can be
computed in terms of the string slope and coupling, and the space-time dimension d.

The conformal properties of the scalar propagator can be fixed by a choice of local
coordinates  Vi(z)  around the punctures: one writes

where  V’i(0)  is required to have conformal weight   w = -1
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Pluses and minuses
  Remarkably ... 

•  Such formulas exist: no such results in field theory.
•  Quantum numbers are well-managed:

✴  color decomposition is already performed via Chan-Paton factors;
✴  loop momentum integration is already performed, so that helicity methods are

            immediately applicable.
•  Limited off-shell continuation is possible: the gauge chosen by string theory can 

        be identified.
•  While the full perturbative string amplitude is not completely well-defined, the field 

        theory limit is algorithmically implementable.

  However ...

• Only a limited set of quantum field theories can be reached: scalars, massless gauge  
       theories,  gravity, unbroken SUSY.

✴  Non-supersymmetric fermions are difficult to include.
✴  Theories with several mass scales  (SM ...) cannot be handled
•  The problem is reduced to the computation of `scalar integrals with numerators’: the 

        method is not competitive with generalized unitarity in terms of speed.
•  It is however still interesting within string theory and for its own sake: 

✴  non-perturbative applications via D-branes;
✴  new structures at high loop order;
✴  dualities ...



ONE-LOOP GLUON AMPLITUDES



The annulus
At one loop  the Schottky group has only one generator: series and products over the 
group become ordinary Taylor series and products over integers.                            

One may standardize the representation of the annulus by fixing the projective gauge as

                                                                   The Schottky generator is then simply
                                                                   
                                            
                                                                   which implies

                                                                     
                                                                   
                                                                   External states are cyclically ordered along
                                                                   either one of  the boundaries,  AA’ or  BB’.

The integration region is determined by symmetry and modular invariance:

•  The transformation  k → 1/k  does not affect the geometry

•  One may map 
Thus one may simply use   

⌘ = 0 ; ⇠ = 1 ; z1 = 1

The cut annulus in the Schottky representation
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One-loop master formula

The ingredients of the one-loop master formula for gluons are easily determined

Measure of integration

Matching the string and the strong coupling, from tree level

The scalar propagator

where the choice

insures modular invariance
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The field theory limit
  From the string operator formalism we know that Laurent expansion of the integrand in 

     powers of  k  counts the mass level of the state propagating in the loop.

  The master formula has an overall power of  α’.  String moduli defining the shape of the 
     surface must be expressed in units of  α’ , in order to take the limit α’ → 0

•  Hint:  measure of integration is  d log k  ...

  Pedestrian field theory limit (exact for scalars):  

•  Note:  t  and  ti  will be identified with with sums of  Schwinger parameters associated 
        with propagators around the loop.

  For gluons, the overall power  p  of  α’  after the change of variables is not uniform:
     instead,    - M/2 < p < 0 .  One must locate all further sources of positive powers of α’ .

•  Four-point vertices

•  Expansion of the exponential
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Some results
  One-loop diagrammatics is fully developed. 

•  À la Bern-Kosower (no quartic vertex topology).
•  Direct field theory limit distinguishes cubic and quartic vertices, irreducible and 

        reducible topologies.

  Off-shell continuation, with identification of individual topologies, establishes the
     gauge choice naturally performed by string theory

•  For irreducible topologies: Background Field Feynman gauge
•  For reducible topologies tree subdiagrams are computed in the Gervais-Neveu 

        non-linear gauge

  Bosonic string theory is well-defined only in the critical dimension d = 26 . This is a    
     bonus in the field theory limit: amplitudes have the correct d dependence (dimensional 
     regularization à la 't Hooft-Veltman).  We understand this in a D-brane picture.

  Bosonic string theory has a tachyon.  It can be decoupled by hand. Tachyons in loops 
     have IR divergences not regulated dimensionally. Tachyon effects remain as contact 
     interactions. Tachyon amplitudes can be used to compute scalar amplitudes in field 
     theory by the replacement
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TWO-LOOP AMPLITUDES



The double annulus
At two loops the Schottky group has two generators:  however expanding in powers of 
the multipliers remains simple since  Si ( Si (z) ) contributes to order ki

2.                            

One may standardize the representation of the double annulus by choosing the gauge as

                                                                   The Schottky generators are then
                                                                   
                                            
                                                                   and

                                                                     
                                                                   
                                                                   It is possible to identify precisely on which                                                                                    
                                                                   propagator and on which boundary the 
                                                                   punctures are inserted

Insertion on different boundaries yields different expressions for the integrand of the 
amplitude, but the results are related by modular transformations, providing highly 
nontrivial checks on the field theory limit.

⌘1 = 0 ; ⇠1 = 1 ; ⇠2 = 1

The cut double annulus in the Schottky representation
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Scalar amplitudes
Some ingredients of the two-loop master formula for scalars are given by

  Matching the string and the scalar coupling, from tree level

  The scalar propagator to leading order in the multipliers k1 and k2

     where 

  The choice of local coordinates around the punctures

     
     with  ai  chosen according to the boundary of insertion, insures modular invariance,
     for example under the transformation exchanging the two inner boundaries
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In the two relevant regions dimensionful proper-time variables are defined as

The integration region is found requiring that Schottky circles do not overlap, and simplifies
in the field theory limit.  Regulating tachyon double poles by treating m2 as generic one finds

which as expected agrees with field theory, including color and symmetry factors.

Vacuum bubbles
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EFFECTIVE ACTIONS



Effective actions are useful to study the geometry of moduli space through `vacuum bubbles’.

Consider coupling an adjoint scalar to a constant background field.

Using a pseudo-abelian constant gauge field (chromo-magnetic) field one may write

In this case the scalar charged propagator can be computed exactly

Formal (unrenormalized) expressions for two-loop vacuum bubbles are readily computed
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A more challenging and interesting calculation is pure Yang-Mills theory, 

With string theory in mind, we pick an intricate gauge (Bern, Dunbar), the background field 
version of the Gervais-Neveu gauge

In this form, it is (almost) the most general gauge choice compatible with the BF method.

As before, we take a block-diagonal gauge field, non-trivial in a fixed plane.

The gluon propagator has charged polarizations, which can be diagonalized

Not withstanding a (well-known) instability, computations can be formally carried out:
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The technology to compute multi-loop
string effective actions in these backgrounds
was recently developed (Russo, Sciuto).

Basic fact: constant backgrounds simply 
modify the boundary conditions for the
world-sheet fields

Twisted boundary conditions lead to new geometric objects on the world sheet: twisted 
determinants,  Prym differentials, a twisted period matrix. They are all computable in the 
Schotty parametrization. The g-loop partition function reads

where a vector of dimensionless fields was defined by

New geometric objects contributing to the partition function, such as

can still be computed perturbatively in the field theory limit.

String theory: master formulas
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The difficulty in extending two-loop calculations
beyond the string ground state can be traced to
a failure of the pedestrian choice of variables for
the field theory limit

A better choice is dictated by geometry, and 
modular invariance: each boundary must be
decomposed as the product of two propagators
in a modularly covariant way

One can postulate an exact factorization of the
multipliers associated with each boundary as

The third definition appears to lead to complicated square-root singularities. Remarkably,
it can be simply inverted as

The field theory limit for this topology is then driven by expanding in pi , using

Picking the right variables
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Further progress stems form reconstructing the origin of individual contributions to the
the string partition function.

•  Contributions to the measure arising from the the determinant of the (b-c) system
        (world-sheet ghosts) correspond to the propagation of space-time ghosts (Polchinski).

•  Contributions of world-sheet scalars correspond to un-magnetized gluon propagation

•  One may distinguish the space-time dimension from the string critical dimension,
        allowing for propagation of adjoint scalars left over from extra-dimensional gluons.
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With this technology all relevant two-loop diagrams can be extracted.   For example

   

 
   
   

Sample results
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With this technology all relevant two-loop diagrams can be extracted.   For example

•  Isolating the four-point vertex requires integrating exactly over η after expanding in ki ,
   discarding tachyon-related singularities.  
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With this technology all relevant two-loop diagrams can be extracted.   For example

•  Isolating the four-point vertex requires integrating exactly over η after expanding in ki ,
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•  Integrals are highly divergent and IR singular.  To test for a physical result we have 
   reproduced the finite renormalized two-loop effective action of scalar electrodynamics
   computed by Ritus in the 70’s.
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OUTLOOK



To summarize
  Our understanding of the field theory limit of perturbative string amplitudes grows at

     widely separated time intervals. 

  Pushing beyond one loop and beyond the string ground state proved difficult so far.

  Studying effective actions in constant background fields at multi-loops is now possible
     and useful to understand the fragmentation of moduli space in the field theory limit.

  We have made significant progress.

•  The proper variables to identify each vacuum bubble topology have been identified,
         in a manner generalizable to higher genera.

•  Reconstructing the origin of each factor of the string partition function it is possible
         to identify not only individual topologies but individual diagrams.

•  String theory naturally computes diagrams in a specific gauge: the Gervais-
         Neveu Background Field (GNBF) gauge with parameter α = 1. This applies
         to all genera.

  Massless and massive scalar fields, massless gauge bosons and ghosts can be handled 
     using the open bosonic string. Gravitons are expected to follow the same pattern in
     the closed string channel. Fermions must await further technical developments for
     superstring amplitudes.

  Applications can be envisaged to perturbative dualities, non-perturbative field theory 
     effects (D-branes and instantons), string phenomenology and further theory developments. 
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