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INTRODUCTION
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Singularities arise only when propagators go on shell

2p · k = 2p0k0(1� cos �pk) = 0 ,

⇤ k0 = 0 (IR); cos �pk = 1 .

➡  Emission is not suppressed at long distances        

➡  Isolated charged particles are not true                  
      asymptotic states of unbroken gauge theories

  A serious problem: the S matrix does not exist in the usual Fock space

  Possible solutions:  construct finite transition probabilities (KLN theorem)
                                 construct better asymptotic states (coherent states)

  Long-distance singularities obey a pattern of exponentiation
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Textbook theory ...



 Higher order QCD calculations at colliders hinge upon cancellation of divergences between  
     virtual corrections and real emission contributions

• Cancellation must be performed analytically before numerical integrations

• Need local counterterms for matrix elements in all singular regions

• State of the art: NLO multileg, NNLO for (some) color singlet processes

 Cancellations leave behind large logarithms: they must be resummed

• For inclusive observables: analytic resummation to high logarithmic accuracy.

• For exclusive final states: parton shower event generators, (N)LL accuracy.

 Resummation probes the all-order structure of perturbation theory

• Power-suppressed corrections to QCD cross sections can be studied

• Links to the strong coupling regime can be established for SUSY gauge theories.
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 ...  and Practice
Just a formal issue in Quantum Field Theory?  Are there practical applications?



66 < Q < 116 GeV

CDF

Impact of resummation

Z-boson qT spectrum at Tevatron  (A. Kulesza et al.)

CDF data on $Z$ production compared with QCD predictions  at fixed  order (dotted), with 
resummation (dashed), and with the inclusion of power corrections (solid).
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Impact of resummation

Z-boson qT spectrum at Tevatron  (A. Kulesza et al.)

CDF data on $Z$ production compared with QCD predictions  at fixed  order (dotted), with 
resummation (dashed), and with the inclusion of power corrections (solid).

Note shift in the distribution 
due to non-perturbative 

corrections extrapolated from 
all-order resummed result



Impact of resummation

Predictions for the Higgs boson qT spectrum at LHC  (M.  Grazzini)

Predictions for the qT spectrum of Higgs bosons produced via gluon fusion at the LHC,  with and 
without resummation, and theoretical uncertainty band of the resummed prediction.



Impact of resummation

Predictions for the Higgs boson qT spectrum at LHC  (M.  Grazzini)

Predictions for the qT spectrum of Higgs bosons produced via gluon fusion at the LHC,  with and 
without resummation, and theoretical uncertainty band of the resummed prediction.

Note size of non-
logarithmic terms at 

NLO: the cross section 
is dominated by 
infrared effects



TOOLS



Dimensional regularization
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Exponentiation of infrared poles requires solving d-dimensional evolution equations. 
The running coupling in d = 4 - 2 ε obeys

The one-loop solution is

The β function develops an IR-free fixed point, so that the coupling 
vanishes at μ = 0 for fixed ε < 0.  The Landau pole is at

➡  Integrations over the scale of the coupling can be
     analytically performed. 
➡  All infrared and collinear poles arise by integration  
     over the scale of the running coupling.

For negative ε the beta function develops
a second zero, O(ε) from the origin. 



All factorizations separating dynamics at different energy scales lead to resummation of 
logarithms of the ratio of scales.

Renormalization is a textbook example.

  Renormalization factorizes cutoff dependence.

  Factorization requires the introduction of an arbitrarily chosen scale μ.

  Results must be independent of the arbitrary choice of μ.

  The simple functional dependence of the factors is dictated by separation of variables.

  Proving factorization is the difficult step: it requires all-order diagrammatic analyses.
     Evolution equations follow automatically.

  Solving RG evolution resums logarithms of Q2/μ2 into αs(μ2).

  

Factorization
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Sudakov Factorization

Leading integration regions in loop momentum space 
for Sudakov factorization 

  Divergences arise in fixed-angle amplitudes
     from leading regions in loop momentum space.

  Soft gluons factorize both form hard (easy)
     and  from collinear (intricate) virtual exchanges.

  Jet functions J represent color singlet
     evolution of external hard partons.

  The soft function S is a matrix mixing
     the available color representations.

  In the planar limit soft exchanges are confined
     to wedges: S is proportional to the identity.

  In the planar limit S can be reabsorbed defining
     jets as square roots of elementary form factors.

  Beyond the planar limit S is determined by an   
     anomalous dimension matrix ΓS.

  Phenomenological applications to jet and heavy
     quark production at hadron colliders .



MULTICOLORED AMPLITUDES



Factorization: pictorial

A pictorial representation of  Sudakov factorization for fixed-angle scattering amplitudes



We introduced factorization vectors                           to define the jets,

Operator Definitions

ML
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The precise functional form of this graphical factorization is 

nµ
i , n2

i �= 0

where  Φn  is the Wilson line operator along the direction nμ ,

The vectors nμ :   Ensure gauge invariance of the jets.
  Separate collinear gluons from wide-angle soft ones.
  Replace other hard partons with a collinear-safe absorber.



Eikonal functions
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The soft function  S  is a matrix, mixing the available color tensors. It is defined by a 
correlator of  Wilson lines.

To avoid double counting, soft-collinear regions are subtracted dividing by eikonal jets J.

  The eikonal functions S and J are pure counterterms in dimensional regularization.

➡ Infrared poles are mapped to ultraviolet singularities.

  Functional dependence of jet and soft factors on the vectors nμi is restricted by the 
     classical invariance of Wilson lines under velocity rescalings,  nμi  → κi nμi.

  Rescaling invariance for light-like velocities,  βi
2 = 0 is broken by quantum corrections.

➡ UV counterterms contain collinear poles, corresponding to soft-collinear singularities.

  Double poles are determined by the cusp anomalous dimension γK (αs).

➡  γK (αs) governs the renormalization of Wilson lines with light-like cusps.



  The anomalous dimension                       for the evolution of       is finite.

  The matrix       must depend on rescaling invariant variables

Soft Matrices
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The soft function  S  obeys a matrix RG evolution equation

  ΓS is singular due to overlapping UV and collinear poles.

S is a pure counterterm.  In dimensional regularization, using   αs(μ2 = 0, ε < 0) = 0 ,  one finds

Double poles cancel in the reduced soft function

S
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  The matrix  ΓS  can be computed from the UV poles of S.

  Computations can be performed directly for the exponent:   
     the relevant  diagrams are called  “webs”.

  ΓS   appears highly complex at high orders.

  g-loop webs directly correlate color and kinematics of 
     up to  g+1  Wilson lines.

Surprising Simplicity
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The two-loop calculation (M. Aybat, L. Dixon, G. Sterman) leads to a surprising result:  for any 
number of light-like eikonal lines

➡  No new kinematic dependence;  no new matrix structure.
➡  κ is the two-loop coefficient of   γK (αs) ,  rescaled by the appropriate quadratic Casimir, 

A web contributing to the soft 
anomalous dimension matrix



Factorization Constraints
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The kinematic dependence of eikonal functions is severely restricted by rescaling invariance. 

  The classical symmetry of Wilson line correlators under βi → κi βi  is violated only through
     the cusp anomaly.

➡  For eikonal jets, no βi dependence is possible at all except through the cusp

  In the reduced soft function,  S/ΠJ , the cusp anomaly cancels
➡  The reduced soft function can depend on βi only through rescaling-invariant

                combinations such as  ρij  .    For n > 3 hard partons, one may also construct

Consider the anomalous dimension matrix for the reduced soft function

Remarkably:   Singular terms in  ΓS  must be diagonal and proportional to  γK  

  Finite diagonal terms in  ΓS   must conspire to construct  ρij’s.
  Off-diagonal terms in  ΓS  must be finite, and must depend only on the 

     cross-ratios  ρijkl



The constraints can be formalized simply by using the chain rule:         can depend on the 
factorization vectors ni only through the eikonal jets,  which are color diagonal.

Defining                                  ,  one finds

Factorization Constraints
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This leads to a linear equation for the dependence of        on its proper arguments,  ρi j.

  The equation relates the kinematic dependence of  Γ to γK , to all orders in perturbation theory
➡ and should remain true at strong coupling as well

  It correlates color and kinematics for any number of hard partons

  It admits a unique solution for amplitudes with up to three hard partons.
➡  For n > 3 hard partons, functions of  ρi j k l  solve the homogeneous equation.
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RESULTS



Results for Form Factors
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The simplest, well-known example is the Sudakov form factor

In dimensional regularization, it exponentiates exactly, including constant terms (G. Sterman, LM).

The exponentiation is non trivial: only poles up to (1/ε)n+1 appear in the exponent at n loops.
• All poles are generated by the integration over the scale of the d-dimensional coupling.
• All poles beyond (1/ε)2  are due to the running of the four-dimensional coupling.

In a conformal gauge theory (regulated by ε < 0) all integrations are trivial.

All divergences of planar amplitudes are given by the form factor.  
Exact results can be derived (L. Dixon, G. Sterman LM).

They can be checked at strong coupling using  AdS/CFT (L. Alday, J. Maldacena).



As easily seen using gauge invariance, as embodied by the color identity                 .

Concentrating on the scaling terms, and switching to the notation of color generators, where
gluon insertions are represented by the color operators Ti, and                        , we get  

The Dipole Formula
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Up to three loops,  the cusp anomalous dimension obeys Casimir scaling

Including possible terms that violate the scaling, which may appear beyond three loops, write 

C(i) = Ti · Ti

The solution is provided by the dipole formula (E. Gardi, LM; T. Becher, M. Neubert)

The dipole formula correlates color ad kinematics to all orders in perturbation theory in 
the simplest way: multiparton correlations are absent.  All known results in massless gauge 
theories are of this form. 



The Full Amplitude
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It is possible to construct a dipole formula for the full amplitude, enforcing the cancellation 
of the dependence on the factorization vectors  ni  through

Soft and collinear singularities can then be collected in a matrix Z

Z generates all singularities, and must satisfy its own matrix RG equation

The matrix Γ inherits the dipole structure from the soft matrix. It reads (T. Becher, M. Neubert)

Once again, all singularities are generated by integration over the scale of the coupling.



There are precisely two possible sources of corrections to the dipole formula

  The cusp anomalous dimension may violate Casimir scaling beyond three loops.
         This would add to Γ a contribution satisfying 

  One may add to the dipole formula a solution to the homogeneous equation

         where Δ must be a function of the conformal cross ratios ρijkl ,

•  Δ must directly correlate four partons: by the rules of eikonal exponentiation, 
              it can start contributing at three loops.

•  The functional form of Δ is further constrained by consistency in all collinear
              limits, Bose symmetry and transcendentality bounds. 
              (T. Becher, M. Neubert;  L. Dixon, E. Gardi, LM)

Beyond the Minimal Solution
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  Universality of collinear singularities as two momenta p1 and p2 
     become collinear forces the combination
     to depend only on partons 1 and 2 in the collinear limit.

  The degree of transcendentality of the functions occurring in Δ 
     at L loops is bound by τ < 2 L.

  Kinematic and color tensors in Δ must conspire to obey Bose
     symmetry

Beyond the Minimal Solution
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A three-loop web correlating
four eikonal lines

�n (�ijkl)��n�1 (�ijkl)

As an example,  a generic four-parton correlation takes the form

Considering for simplicity polynomial functions of  Lijkl = log(ρijkl) ,  introducing three-loop color 
tensors, and enforcing Bose symmetry leads to a unique set of solutions

Transcendentality and collinear consistency  imply h1 + h2 + h3 � � � 5 ; hi ⇥ 1 ⇤i .

Functions that satisfy all constraints can be found,  such as the above with  h1 = 1, h2 = h3 = 2 .
Quadrupole corrections to the dipole formula at three loops cannot be ruled out. 



PERSPECTIVE



  Understanding the structure of the multileg exponent.
     (E. Gardi, E. Laenen, G. Stavenga, C. White;  A. Mitov, G. Sterman, I. Sung) 

•  The concept of web has been generalized to correlators of 
         multiple Wilson lines using a “replica trick”.

•  The criterion of two-eikonal-line irreducibility is not sufficient, 
         cancellation of UV subdivergences more intricate.

•  An algorithm exists to compute directly the eikonal exponent

Recent Developments
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  Extending exponentiation beyond the eikonal approximation
     (E. Laenen, LM, G. Stavenga, C. White)

•  Phenomenological evidence that sub-eikonal logs exponentiate.

•  “Feynman rules” for the NE exponent, including “seagull” vertices.

•  Non-factorizable contribution studied using Low’s theorem

  Understanding the structure of the multileg exponent.
     (E. Gardi, E. Laenen, G. Stavenga, C. White;  A. Mitov, G. Sterman, I. Sung) 

•  The concept of web has been generalized to correlators of 
         multiple Wilson lines using a “replica trick”.

•  The criterion of two-eikonal-line irreducibility is not sufficient, 
         cancellation of UV subdivergences more intricate.

•  An algorithm exists to compute directly the eikonal exponent
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Summary

  After O(102)  years, soft and collinear singularities in gauge theories amplitudes 
     are still a fertile field of study.   A definitive solution may be at hand.

✓  We are probing the all-order structure of the nonabelian exponent.
✓  All-order results constrain, test and complement fixed-order calculations.
✓  Understanding singularities has phenomenological applications through resummation.

  Factorization theorems  ⇒  Evolution equations  ⇒  Exponentiation.

  Dimensional continuation is the simplest and most elegant regulator.
✓  Transparent mapping   UV ⇒  IR for `pure counterterm' functions. 

  Remarkable simplifications in N = 4 SYM point to exact results.

  Factorization and velocity rescaling invariance severely constrain soft anomalous 
     dimensions to all orders  and for any number of legs.

  A simple dipole formula may encode all infrared singularites for any massless gauge 
     theory,  a natural generalization of the planar limit.

  The study of possible corrections to the dipole formula is under way.

  Next-to-eikonal contributions to amplitudes and cross sections can be organized.

  Applications to resummations, subtraction methods and parton showers are possible.
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