- THE ANALYTIC VIEWPOINT -

Lorenzo Magnea

University of Torino - INFN Torino

EG&R, DESY, 30/05/12

Outline

- Introducing resummations
- From factorization to resummation
- Recent developments: from theory ...
- ... to phenomenology
- Outlook

A FIRST LOOK

The virtues of large logs

- Solution Multi-scale problems in renormalizable quantum field theories have perturbative corrections of the form $\alpha_s^n \log^k (Q_i^2/Q_j^2)$, which may spoil the reliability of the perturbative expansion. However, they carry important physical information!
 - Renormalization and factorization logs: $\alpha_s^n \log^n (Q^2/\mu^2)$
 - High-energy logs: $\alpha_s^n \log^{n-1} (s/t)$
 - Sudakov logs: $\alpha_s^n \log^{2n-1} (1-z)$, $1-z = W^2/Q^2$, $1-M^2/\hat{s}$, Q_{\perp}^2/Q^2 , ...
- Sudakov logs are universal: they originate from infrared and collinear singularities: they exponentiate and can be resummed

$$\underbrace{\frac{1}{\epsilon}}_{\text{rirtual}} + \underbrace{(Q^2)^{\epsilon} \int_0^{m^2} \frac{dk^2}{(k^2)^{1+\epsilon}}}_{\text{real}} \implies \ln(m^2/Q^2)$$

- For inclusive observables: analytic resummation to high logarithmic accuracy.
- For exclusive final states: parton shower event generators, (N)LL accuracy.
- Resummation probes the all-order structure of perturbation theory.
 - Power-suppressed corrections to QCD cross sections can be studied.
 - Links to the strong coupling regime can be established for SUSY gauge theories.

The perturbative exponent

A classic way to organize Sudakov logarithms is in terms of the Mellin (Laplace) transform of the momentum space cross section (Catani et al. 93),

$$d\sigma(\alpha_s, N) = \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{k=0}^{2n} c_{nk} \log^k N + \mathcal{O}(1/N)$$

= $H(\alpha_s) \exp\left[\log N g_1(\alpha_s \log N) + g_2(\alpha_s \log N) + \alpha_s g_3(\alpha_s \log N) + \dots\right] + \mathcal{O}(1/N)$

This displays the main features of Sudakov resummation

- Predictive: a k-loop calculation determines gk and thus a whole tower of logarithms to all orders in perturbation theory.
- Effective: the range of applicability of perturbation theory is extended (finite order: $\alpha_s \log^2 N$ small. NLL resummed: α_s small);
 - the renormalization scale dependence is naturally reduced.
- Theoretically interesting: resummation ambiguities related to the Landau pole give access to non-perturbative power-suppressed corrections.
- Well understood: NLL Sudakov resummations exist for most inclusive observables at hadron colliders, NNLL and approximate N³LL in simple cases.
 - Different `schools' (USA, Italian, SCET ...) compete, complacency is not an option, active and lively debate.

Color singlet hard scattering

A well-established formalism exists for distributions in processes that are electroweak at tree level (Gardi, Grunberg 07). For an observable r vanishing in the two-jet limit

$$\frac{d\sigma}{dr} = \delta(r) \left[1 + \mathcal{O}(\alpha_s) \right] + C_R \frac{\alpha_s}{\pi} \left\{ \left[-\frac{\log r}{r} + \frac{b_1 - d_1}{r} \right]_+ + \mathcal{O}(r^0) \right\} + \mathcal{O}(\alpha_s^2)$$

The Mellin (Laplace) transform, $\sigma(N) = \int_0^1 dr \, (1-r)^{N-1} \, \frac{d\sigma}{dr}$

exhibits log N singularities that can be organized in exponential form

$$\sigma\left(\alpha_s, N, Q^2\right) = H(\alpha_s) \mathcal{S}\left(\alpha_s, N, Q^2\right) + \mathcal{O}\left(1/N\right)$$

where the exponent of the 'Sudakov factor' is in turn a Mellin transform

$$\mathcal{S}\left(\alpha_{s}, N, Q^{2}\right) = \exp\left\{\int_{0}^{1} \frac{dr}{r} \left[\left(1-r\right)^{N-1} - 1\right] \mathcal{E}\left(\alpha_{s}, r, Q^{2}\right)\right\}$$

and the general form of the kernel is

$$\mathcal{E}\left(\alpha_s, r, Q^2\right) = \int_{r^2Q^2}^{rQ^2} \frac{d\xi^2}{\xi^2} A\left(\alpha_s(\xi^2)\right) + B\left(\alpha_s(rQ^2)\right) + D\left(\alpha_s(r^2Q^2)\right)$$

where A is the cusp anomalous dimension, and B and D have distinct physical characters.

Z-boson qT spectrum at Tevatron (Kulesza et al. 03)

CDF data on \$Z\$ production compared with QCD predictions at fixed order (dotted), with joint resummation (dashed), and with the inclusion of power corrections (solid).

Z-boson qT spectrum at Tevatron (Kulesza et al. 03)

CDF data on \$Z\$ production compared with QCD predictions at fixed order (dotted), with (joint) resummation (dashed), and with the inclusion of power corrections (solid).

Predictions for the Higgs boson qT spectrum at LHC (M. Grazzini, 05)

Predictions for the q_T spectrum of Higgs bosons produced via gluon fusion at the LHC, with and without resummation, and theoretical uncertainty band of the resummed prediction.

Predictions for the Higgs boson qT spectrum at LHC (M. Grazzini, 05)

Predictions for the q_T spectrum of Higgs bosons produced via gluon fusion at the LHC, with and without resummation, and theoretical uncertainty band of the resummed prediction.

Complex observables

Jet veto efficiency in Higgs and Z production (Banfi et al., 03/12)

Comparison of NNLO fixed order results and matched resummed NLL-NNLO results for Higgs production with a jet veto (left) and Z production with a jet veto (right). For inclusion of NNLL, see also Becher and Neubert, 05/12.

Note the sharp reduction of the theoretical uncertaitnty upon resummation

Complex observables

Jet veto efficiency in Higgs and Z production (Banfi et al., 03/12)

Comparison of NNLO fixed order results and matched resummed NLL-NNLO results for Higgs production with a jet veto (left) and Z production with a jet veto (right). For inclusion of NNLL, see also Becher and Neubert, 05/12.

Comparison of NNLO fixed order results and matched resummed NLL-NNLO results for Higgs production with a jet veto (left) and Z production with a jet veto (right). For inclusion of NNLL, see also Becher and Neubert, 05/12.

A SECOND LOOK

Factorization

All factorizations separating dynamics at different energy scales lead to resummation of logarithms of the ratio of scales.

Renormalization is a textbook example.

Renormalization factorizes cutoff dependence.

$$G_0^{(n)}(p_i, \Lambda, g_0) = \prod_{i=1}^n Z_i^{1/2}(\Lambda/\mu, g(\mu)) \ G_R^{(n)}(p_i, \mu, g(\mu))$$

Factorization requires the introduction of an arbitrarily chosen scale **µ**.

Results must be independent of the arbitrary choice of μ .

$$\frac{dG_0^{(n)}}{d\mu} = 0 \quad \rightarrow \quad \frac{d\log G_R^{(n)}}{d\log \mu} = -\sum_{i=1}^n \gamma_i \left(g(\mu)\right) \quad$$

- The simple functional dependence of the factors is dictated by separation of variables.
- Proving factorization is the difficult step: it requires all-order diagrammatic analyses. Evolution equations follow automatically.
- Solving RG evolution resums logarithms of Q^2/μ^2 into $\alpha_s(\mu^2)$.

Soft-collinear factorization

- Sudakov logarithms are remainders of infrared and collinear divergences.
- Divergences arise in scattering amplitudes from leading regions in loop momentum space.
- Power-counting arguments show that soft gluons decouple from the hard subgraph.
- Ward identities decouple soft gluons from jets and restrict color transfer to the hard part.
- Jet functions J represent color singlet evolution of external hard partons.
- The soft function S is a matrix mixing the available color representations.
- In the planar limit soft exchanges are confined to wedges: S is proportional to the identity.
- Beyond the planar limit S is determined by an anomalous dimension matrix Γ_S.
- The matrix Is correlates color exchange with kinematic dependence.

Leading integration regions in loop momentum space for soft-collinear factorization

Color flow

In order to understand the matrix structure of the soft function it is sufficient to consider the simple case of quark-antiquark scattering.

At tree level

Tree-level diagrams and color flows for quark-antiquark scattering

For this process only two color structures are possible. A basis in the space of available color tensors is

$$c_{abcd}^{(1)} = \delta_{ab}\delta_{cd}, \qquad c_{abcd}^{(2)} = \delta_{ac}\delta_{bd}$$

The matrix element is a vector in this space, and the Born cross section is

$$\mathcal{M}_{abcd} = \mathcal{M}_1 c_{abcd}^{(1)} + \mathcal{M}_2 c_{abcd}^{(2)} \longrightarrow \sum_{color} |\mathcal{M}|^2 = \sum_{J,L} \mathcal{M}_J \mathcal{M}_L^* \operatorname{tr} \left[c_{abcd}^{(J)} \left(c_{abcd}^{(L)} \right)^\dagger \right] \equiv \operatorname{Tr} \left[HS \right]_0$$

A virtual soft gluon will reshuffle color and mix the components of this vector

QED:
$$\mathcal{M}_{div} = S_{div} \mathcal{M}_{Born};$$
 QCD: $[\mathcal{M}_{div}]_J = [S_{div}]_{JL} [\mathcal{M}_{Born}]_L$

Sudakov factorization: pictorial

A pictorial representation of Sudakov factorization for fixed-angle scattering amplitudes

Soft Matrices

The soft function S is a matrix, mixing the available color tensors. It is defined by a correlator of Wilson lines.

$$(c_L)_{\{\alpha_k\}} \mathcal{S}_{LK} \left(\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon \right) = \sum_{\{\eta_k\}} \langle 0 | \prod_{i=1}^n \left[\Phi_{\beta_i}(\infty, 0)_{\alpha_k, \eta_k} \right] | 0 \rangle (c_K)_{\{\eta_k\}},$$

The soft function S obeys a matrix RG evolution equation

$$\mu \frac{d}{d\mu} \mathcal{S}_{IK} \left(\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon \right) = - \mathcal{S}_{IJ} \left(\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon \right) \, \Gamma_{JK}^{\mathcal{S}} \left(\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon \right)$$

 $\stackrel{\scriptstyle{\bigvee}}{=}$ Γ^{s} is singular due to overlapping UV and collinear poles.

S is a pure counterterm. In dimensional regularization, using $\alpha_s(\mu^2 = 0, \epsilon < 0) = 0$,

$$\mathcal{S}\left(\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon\right) = P \exp\left[-\frac{1}{2} \int_0^{\mu^2} \frac{d\xi^2}{\xi^2} \Gamma^{\mathcal{S}}\left(\beta_i \cdot \beta_j, \alpha_s(\xi^2, \epsilon), \epsilon\right)\right]$$

The determination of the soft anomalous dimension matrix Γ^{S} is the keystone of the resummation program for multiparton amplitudes and cross sections.

 $\stackrel{\diamond}{\Rightarrow}$ It governs the interplay of color exchange with kinematics in multiparton processes. $\stackrel{\diamond}{\Rightarrow}$ It is the only source of multiparton correlations for singular contributions.

Collinear effects are `color singlet' and can be extracted from two-parton scatterings.

RECENT DEVELOPMENTS

Surprising Simplicity

- \checkmark The matrix Γ_s can be computed from the UV poles of S.
- Computations can be performed directly for the exponent: the relevant diagrams are called "webs".
- \checkmark Γ_s appears highly complex at high orders.
- g-loop webs directly correlate color and kinematics of up to g+1 Wilson lines.

A web contributing to the soft anomalous dimension matrix

The two-loop calculation (Aybat, Dixon, Sterman 06) leads to a surprising result: for any number of external massless partons

$$\Gamma_{S}^{(2)} = \frac{\kappa}{2} \Gamma_{S}^{(1)} \qquad \kappa = \left(\frac{67}{18} - \zeta(2)\right) C_{A} - \frac{10}{9} T_{F} C_{F}.$$

- ➡ No new kinematic dependence; no new matrix structure.
- \Rightarrow K is the two-loop coefficient of $\gamma_{K}(\alpha_{s})$, rescaled by the appropriate quadratic Casimir,

$$\gamma_K^{(i)}(\alpha_s) = C^{(i)} \left[2 \frac{\alpha_s}{\pi} + \kappa \left(\frac{\alpha_s}{\pi} \right)^2 + \mathcal{O} \left(\alpha_s^3 \right) \right] \,.$$

The Dipole Formula

The two-loop result led to an all-order understanding. For massless partons, the soft matrix obeys a set of exact equations that correlate color exchange with kinematics.

The simplest solution to these equations is a sum over color dipoles (Becher, Neubert; Gardi, LM, 09). It leads to an ansatz for the all-order singularity structure of all multiparton fixed-angle massless scattering amplitudes: the dipole formula.

 $\stackrel{\scriptstyle \eq}{\scriptstyle }$ All soft and collinear singularities can be collected in a multiplicative operator Z

$$\mathcal{M}\left(\frac{p_i}{\mu}, \alpha_s(\mu^2), \epsilon\right) = Z\left(\frac{p_i}{\mu_f}, \alpha_s(\mu_f^2), \epsilon\right) \ \mathcal{H}\left(\frac{p_i}{\mu}, \frac{\mu_f}{\mu}, \alpha_s(\mu^2), \epsilon\right) \ ,$$

Z contains both soft singularities from S, and collinear ones from the jet functions. It must satisfy its own matrix RG equation

$$\frac{d}{d\ln\mu} Z\left(\frac{p_i}{\mu}, \alpha_s(\mu^2), \epsilon\right) = -Z\left(\frac{p_i}{\mu}, \alpha_s(\mu^2), \epsilon\right) \Gamma\left(\frac{p_i}{\mu}, \alpha_s(\mu^2)\right).$$

The matrix Γ inherits the dipole structure from the soft matrix. It reads

$$\Gamma_{\rm dip}\left(\frac{p_i}{\mu},\alpha_s(\mu^2)\right) = -\frac{1}{4}\,\widehat{\gamma}_K\left(\alpha_s(\mu^2)\right)\sum_{j\neq i}\,\ln\left(\frac{-2\,p_i\cdot p_j}{\mu^2}\right)\mathbf{T}_i\cdot\mathbf{T}_j \,+\sum_{i=1}^n\,\gamma_{J_i}\left(\alpha_s(\mu^2)\right)\,.$$

Note that all singularities are generated by integration over the scale of the coupling.

Features of the dipole formula

All known results for IR divergences of massless gauge theory amplitudes are recovered.

- The absence of multiparton correlations implies remarkable diagrammatic cancellations.
- Free color matrix structure is fixed at one loop: path-ordering is not needed.
- All divergences are determined by a handful of anomalous dimensions.
- Fre cusp anomalous dimension plays a very special role: a universal IR coupling.

Can this be the definitive answer for IR divergences in massless non-abelian gauge theories? There are precisely two sources of possible corrections.

• Quadrupole correlations may enter starting at three loops: they must be tightly constrained functions of conformal cross ratios of parton momenta.

$$\Gamma\left(\frac{p_i}{\mu}, \alpha_s(\mu^2)\right) = \Gamma_{\rm dip}\left(\frac{p_i}{\mu}, \alpha_s(\mu^2)\right) + \Delta\left(\rho_{ijkl}, \alpha_s(\mu^2)\right) , \qquad \rho_{ijkl} = \frac{p_i \cdot p_j \, p_k \cdot p_l}{p_i \cdot p_k \, p_j \cdot p_l}$$

• The cusp anomalous dimension may violate Casimir scaling beyond three loops.

$$\gamma_K^{(i)}(\alpha_s) = C_i \,\widehat{\gamma}_K(\alpha_s) + \widetilde{\gamma}_K^{(i)}(\alpha_s)$$

- The functional form of Δ is further constrained by: collinear limits, Bose symmetry and transcendentality bounds (Becher, Neubert; Dixon, Gardi, LM, 09).
- A four-loop analysis indicates that Casimir scaling holds (Vernazza, II).

Messages from the dipole formula

- Final structure of virtual corrections is a simple generalization of planar color flow:
 - Sum over all dipoles instead of just the adjacent ones!
 - For virtual corrections the result is accurate at least to NNLL for massless partons.
 - Virtual corrections must equal integrated real emission.
 - At some level this structure must match un-integrated real emission.
- A hierarchical structure emerges when taking collinear limits.
 - A colored splitting amplitude governs pairwise collinear limits

 $\mathcal{M}_n(p_1, p_2, p_j; \mu, \epsilon) \xrightarrow{1\parallel 2} \mathbf{Sp}(p_1, p_2; \mu, \epsilon) \mathcal{M}_{n-1}(P, p_j; \mu, \epsilon)$

• Divergent terms of the splitting amplitude are determined by evolution

$$\mathbf{Sp}(p_1, p_2; \mu, \epsilon) = \mathbf{Sp}_{\mathcal{H}}^{(0)}(p_1, p_2; \mu, \epsilon) \exp\left[-\frac{1}{2} \int_0^{\mu^2} \frac{d\lambda^2}{\lambda^2} \Gamma_{\mathbf{Sp}}(p_1, p_2; \lambda)\right]$$

• The splitting anomalous dimension is dictated by the dipole formula

$$\begin{split} \Gamma_{\mathbf{Sp}}(p_1, p_2; \lambda) &= -\frac{1}{2} \,\widehat{\gamma}_K\left(\alpha_s(\lambda^2)\right) \left[\ln\left(\frac{2\left|p_1 \cdot p_2\right| \,\mathrm{e}^{-\mathrm{i}\pi\lambda_{12}}}{\lambda^2}\right) \,\mathbf{T}_1 \cdot \mathbf{T}_2 \,- \mathbf{T}_1 \cdot (\mathbf{T}_1 + \mathbf{T}_2) \ln z \right. \\ &\left. - \mathbf{T}_2 \cdot (\mathbf{T}_1 + \mathbf{T}_2) \ln(1-z) \right] + \gamma_{J_1}\left(\alpha_s(\lambda^2)\right) + \gamma_{J_2}\left(\alpha_s(\lambda^2)\right) - \gamma_{J_P}\left(\alpha_s(\lambda^2)\right) \end{split}$$

• Beware! Full universality breaks down for space-like splitting (Catani et al., II)

Massive particles

Final The striking simplicity of the massless result does not carry over to massive partons.

- The g-loop exponent will generally involve (g+1)-parton correlations.
- An analytic calculation at two loops was carried out (Becher, Neubert; Ferroglia et al.; Mitov et al.; Kidonakis, 09) with interesting results.

$$\Gamma\left(\frac{p_i}{\mu}, M_i, \alpha_s(\mu^2)\right) = \Gamma_{\rm dip}\left(\frac{p_i}{\mu}, M_i, \alpha_s(\mu^2)\right) + {\rm i} \sum_{i,j,k} f_{abc} \,\mathbf{T}_i^a \,\mathbf{T}_j^b \,\mathbf{T}_k^c \,F_1\left(\beta_{ij}, \beta_{jk}, \beta_{ik}\right) + \dots$$

$$F_1^{(2)}(\beta_{ij},\beta_{jk},\beta_{ik}) = \frac{4}{3} \sum_{i,j,k} \epsilon_{ijk} g(\beta_{ij}) \beta_{ki} \coth \beta_{ki}$$

• The result still displays unexpected structure and simplicity: note the factorized dependence on cusp angles.

Soft and Coulomb gluons at two loops

- Another class of singularities of massive amplitudes is understood and resummed.

Three-parton correlations at two loops

- When massive particles are pair-produced near threshold, Coulomb singularities log^pβ/β^k arise.
- They can be organized using effective field theory (NRQCD).
- A novel factorization theorem has been derived and applied to heavy colored particle production (Beneke et al., 09).

$$\hat{\sigma}_{pp'}\left(\hat{s},\mu\right) = \sum_{KL} H_{KL}\left(M,\mu\right) \int dw \sum_{R_{\alpha}} J_{R_{\alpha}}\left(E - \frac{w}{2}\right) S_{KL}^{R_{\alpha}}\left(w,\mu\right)$$

The dipole formula at high energy

Version Introducing Mandelstam' color operators, and using color and momentum conservation

$$\begin{aligned} \mathbf{T}_{s} &= \mathbf{T}_{1} + \mathbf{T}_{2} = -(\mathbf{T}_{3} + \mathbf{T}_{4}), & s + t + u = 0 \\ \mathbf{T}_{t} &= \mathbf{T}_{1} + \mathbf{T}_{3} = -(\mathbf{T}_{2} + \mathbf{T}_{4}), & \\ \mathbf{T}_{u} &= \mathbf{T}_{1} + \mathbf{T}_{4} = -(\mathbf{T}_{2} + \mathbf{T}_{4}), & \\ \mathbf{T}_{s}^{2} + \mathbf{T}_{t}^{2} + \mathbf{T}_{u}^{2} = \sum_{i=1}^{4} C_{i} \end{aligned}$$

it is easy to see that the infrared dipole operator Z factorizes in the high-energy limit

$$Z\left(\frac{p_i}{\mu}, \alpha_s(\mu^2), \epsilon\right) = \widetilde{Z}\left(\frac{s}{t}, \alpha_s(\mu^2), \epsilon\right) Z_1\left(\frac{t}{\mu^2}, \alpha_s(\mu^2), \epsilon\right)$$

- The operator Z_1 is s-independent and proportional to the unit matrix in color space.
- Color dependence and s dependence are collected in the factor

$$\widetilde{Z}\left(\frac{s}{t},\alpha_s(\mu^2),\epsilon\right) = \exp\left\{K\left(\alpha_s(\mu^2),\epsilon\right)\left[\ln\left(\frac{s}{-t}\right)\mathbf{T}_t^2 + \mathrm{i}\pi\,\mathbf{T}_s^2\right]\right\},\,$$

where the coupling dependence is (once again!) completely determined by the cusp anomalous dimension and by the β function, through the function (Korchemsky 94-96)

$$K\left(\alpha_s(\mu^2),\epsilon\right) \equiv -\frac{1}{4} \int_0^{\mu^2} \frac{d\lambda^2}{\lambda^2} \,\widehat{\gamma}_K\left(\alpha_s(\lambda^2,\epsilon)\right)$$

The simple structure of the high-energy operator governs Reggeization and its breaking.

Reggeization of leading logarithms

At leading logarithmic accuracy, the (imaginary) s-channel contribution can be dropped, and the dipole operator becomes diagonal in a t-channel basis.

$$\mathcal{M}\left(\frac{p_i}{\mu}, \alpha_s(\mu^2), \epsilon\right) = \exp\left\{K\left(\alpha_s(\mu^2), \epsilon\right) \ln\left(\frac{s}{-t}\right) \mathbf{T}_t^2\right\} Z_{\mathbf{1}} \mathcal{H}\left(\frac{p_i}{\mu}, \alpha_s(\mu^2), \epsilon\right)$$

 $\stackrel{\scriptstyle\checkmark}{=}$ If, at LO and at leading power in t/s, the scattering is dominated by t-channel exchange, then the hard function is an eigenstate of the color operator T_t^2

$$\mathbf{T}_t^2 \mathcal{H}^{gg \to gg} \xrightarrow{|t/s| \to 0} C_t \mathcal{H}_t^{gg \to gg}$$

Evading-logarithmic Reggeization for arbitrary t-channel color representations follows

$$\mathcal{M}^{gg \to gg} = \left(\frac{s}{-t}\right)^{C_A K\left(\alpha_s(\mu^2), \epsilon\right)} Z_1 \mathcal{H}_t^{gg \to gg}$$

 The LL Regge trajectory is universal and obeys Casimir scaling.
 Scattering of arbitrary color representations can be analyzed Example: let 1 and 2 be antiquarks, 4 a gluon and 3 a sextet; use

 $\overline{\mathbf{3}}\otimes\mathbf{6}\,=\,\mathbf{3}\oplus\mathbf{15}\qquad\qquad \overline{\mathbf{3}}\otimes\mathbf{8}_a\,=\,\overline{\mathbf{3}}\oplus\mathbf{6}\oplus\overline{\mathbf{15}}$

LL Reggeization of the 3 and 15 t-channel exchanges follows.

Scattering for generic color exchange

Beyond leading logarithms

The high-energy infrared operator can be systematically expanded beyond LL, using the Baker-Campbell-Hausdorff formula. At NLL one finds a series of commutators

$$\widetilde{Z}\left(\frac{s}{t},\alpha_{s},\epsilon\right)\Big|_{\mathrm{NLL}} = \left(\frac{s}{-t}\right)^{K(\alpha_{s},\epsilon)} \mathbf{T}_{t}^{2} \left\{1 + \mathrm{i}\,\pi K\left(\alpha_{s},\epsilon\right) \left[\mathbf{T}_{s}^{2} - \frac{K\left(\alpha_{s},\epsilon\right)}{2!}\ln\left(\frac{s}{-t}\right) \left[\mathbf{T}_{t}^{2},\mathbf{T}_{s}^{2}\right]\right. \\ \left. + \frac{K^{2}\left(\alpha_{s},\epsilon\right)}{3!}\ln^{2}\left(\frac{s}{-t}\right) \left[\mathbf{T}_{t}^{2},\left[\mathbf{T}_{t}^{2},\mathbf{T}_{s}^{2}\right]\right] + \dots \right]\right\}$$

Find the real part of the amplitude Reggeizes also at NLL for arbitrary t-channel exchanges. At NNLL Reggeization generically breaks down also for the real part of the amplitude.

• At two loops, terms that are non-logarithmic and non-diagonal in a t-channel basis arise

$$\mathcal{E}_0(\alpha_s,\epsilon) \equiv -\frac{1}{2}\pi^2 K^2(\alpha_s,\epsilon) \left(\mathbf{T}_s^2\right)^2$$

• At three loops, the first Reggeization-breaking logarithms of s/t arise, generated by

$$\mathcal{E}_1\left(\frac{s}{t},\alpha_s,\epsilon\right) \equiv -\frac{\pi^2}{3} K^3(\alpha_s,\epsilon) \ln\left(\frac{s}{-t}\right) \left[\mathbf{T}_s^2, \left[\mathbf{T}_t^2, \mathbf{T}_s^2\right]\right]$$

- NOTE In the planar limit (N_C →∞) all commutators vanish and Reggeization holds also beyond NLL (as perhaps expected from string theory).
 - Possible quadrupole corrections to the dipole formula cannot come to the rescue.

Multiparton webs

- Infrared divergences of gauge scattering amplitudes exponentiate.
- The exponent can be computed directly in terms of a subset of the original diagrams with modified color factors, called `webs'. (Gatheral 83; Frenkel, Taylor 84)
- For amplitudes with two hard partons (color singlet), webs have a precise topological characterization and special properties.
 - Webs are `two-eikonal-irreducible' diagrams.
 - Webs have modified color factors that can be computed recursively.
 - Webs have no nested UV subdivergences.

A web

We are now understanding the structure of the multileg exponent.
 (Gardi et al. 10-11; Mitov, Sterman, Sung 10)

$$\mathcal{Z} \equiv \int [\mathcal{D}A_{\rm s}^{\mu}] \, {\rm e}^{{\rm i}S(A_{\rm s}^{\mu})} \left[\Phi^{(1)} \otimes \cdots \otimes \Phi^{(L)} \right] = \exp \left[\sum_{D} \tilde{C}(D) \, \mathcal{F}(D) \right] \, .$$

- Multiparton webs are sets of diagrams whose kinematic and color structures mix. They are not all irreducible.
- Modified color factors are given by web mixing matrices

$$\widetilde{C}(D) = \sum_{D'} R(D, D') C(D')$$

• All subleading poles are determined by lower-order webs.

Is this a web?

Beyond the eikonal

- Hadronic cross sections near partonic threshold receive non-singular logarithmic corrections α_s^p log^k(1 z), or α_s^p log^kN/N, which may be relevant for phenomenology. Can they also be organized and resummed? (Kraemer et al.; Vogt et al.; Grunberg, ...)
 - For two-parton processes, O(N⁰) contributions exponentiate (Laenen, LM, 03).
 - Phenomenological evidence indicates that also `sub-eikonal' logs partly exponentiate.
 - An ansatz summarizes the resummable for Drell-Yan (and DIS) (Laenen et al., 06).

$$\ln\left[\widehat{\omega}(N)\right] = \mathcal{F}_{DY}\left(\alpha_{s}(Q^{2})\right) + \int_{0}^{1} dz \, z^{N-1} \left\{\frac{1}{1-z} D\left[\alpha_{s}\left(\frac{(1-z)^{2}Q^{2}}{z}\right)\right] + 2 \int_{Q^{2}}^{(1-z)^{2}Q^{2}/z} \frac{dq^{2}}{q^{2}} P_{s}\left[z, \alpha_{s}(q^{2})\right]\right\}_{+}$$

Is THIS a web?

- A systematic study of soft-gluon dynamics beyond the eikonal approximation has been undertaken (Laenen et al. 08, 10).
 - A class of factorizable contributions exponentiate via NE webs

$$\mathcal{M} = \mathcal{M}_0 \exp\left[\sum_{D_{\text{eik}}} \tilde{C}(D_{\text{eik}}) \mathcal{F}(D_{\text{eik}}) + \sum_{D_{\text{NE}}} \tilde{C}(D_{\text{NE}}) \mathcal{F}(D_{\text{NE}})\right]$$

- "Feynman rules" for the NE exponent, including "seagull" vertices.
- Non-factorizable contribution can be studied using Low's theorem.

Beyond the eikonal

- Hadronic cross sections near partonic threshold receive non-singular logarithmic corrections α_s^p log^k(1 z), or α_s^p log^kN/N, which may be relevant for phenomenology. Can they also be organized and resummed? (Kraemer et al.; Vogt et al.; Grunberg, ...)
 - For two-parton processes, O(N⁰) contributions exponentiate (Laenen, LM, 03).
 - Phenomenological evidence indicates that also `sub-eikonal' logs partly exponentiate.
 - An ansatz summarizes the resummable for Drell-Yan (and DIS) (Laenen et al., 06).

$$\ln\left[\widehat{\omega}(N)\right] = \mathcal{F}_{DY}\left(\alpha_{s}(Q^{2})\right) + \int_{0}^{1} dz \, z^{N-1} \left\{\frac{1}{1-z} D\left[\alpha_{s}\left(\frac{(1-z)^{2}Q^{2}}{z}\right)\right] + 2 \int_{Q^{2}}^{(1-z)^{2}Q^{2}/z} \frac{dq^{2}}{q^{2}} P_{s}\left[z, \alpha_{s}(q^{2})\right]\right\}_{+} \left\{\frac{2}{1-z} \longrightarrow \frac{2z}{1-z}\right\}$$

Is THIS a web?

- A systematic study of soft-gluon dynamics beyond the eikonal approximation has been undertaken (Laenen et al. 08, 10).
 - A class of factorizable contributions exponentiate via NE webs

$$\mathcal{M} = \mathcal{M}_0 \exp\left[\sum_{D_{\text{eik}}} \tilde{C}(D_{\text{eik}}) \mathcal{F}(D_{\text{eik}}) + \sum_{D_{\text{NE}}} \tilde{C}(D_{\text{NE}}) \mathcal{F}(D_{\text{NE}})\right]$$

- "Feynman rules" for the NE exponent, including "seagull" vertices.
- Non-factorizable contribution can be studied using Low's theorem.

PHENOMENOLOGY

PHENOMENOLOGY

Electroweak annihilation

- Solution Classic threshold resummation (for σ_{TOT}) is possible to `well-approximated' N³LL.
- At large measured transverse momentum one is again close to partonic threshold.
 - pT-threshold resummation now performed to approximate N³LL (Becher, Schwartz, 11).
- Transverse momentum resummation is available at NNLL (Bozzi et al., 10, Becher, Neubert 11-12).
 - Favorable comparison to Tevatron data.
 - Small theoretical uncertainty.
 - Awaiting LHC data comparison.
- Caveat: detailed SCET analysis
 (Becher and Neubert, II)
 indicates (large) modification of
 3-loop coefficient!
 - Theoretically interesting `collinear anomaly', transverse momentum pdf issues.
- NLL predictions for pT spectrum also from SCET (Mantry, Petriello, 10)

Large pT D0 data vs. `threshold' resummation

 q_T spectrum of Z bosons at Tevatron (D0) compared to NNLL resummation

N³LL resummed cross section for Higgs production via gluon fusion at LHC

- The pT distribution for gg->H is known to NNLL and NNLO (M. Grazzini et al. 07, 10 Ahrens et al. 11)
 - Resummation reduces scale uncertainty
 - A subtle polarization effect uncovered but not implemented yet (Catani, Grazzini, 10)
 - Impact of revised three-loop coefficient must be gauged

Higgs production

- The total cross section for gg->H is known to N³LL and NNLO, with NLO EW corrections.
 - One of the **best-known** observables in the SM.
 - A combined analysis (Ahrens et al. 11) gives

 a 3% (th) + 8% (pdf) + 1% (mq) uncertainty.
 - Ongoing debate on theoretical and pdf uncertainty (Baglio et al. 11).

NNLL resummed pT distribution for Higgs production via gluon fusion at LHC

NNLL top-antitop invariant mass spectrum compared to CDF data

Top distributions

- The calculation of the two-loop massive anomalous dimension matrix makes it possible to perform NNLL resummation for generic distributions (Ahrens et al., 09).
 - Invariant pair mass distribution shows remarkable agreement with CDF data (LHC awaited).
 - Negligible theoretical uncertainty.
 - Different choices of kinematics and frame possible, vast menu of distributions available.

NNLL top-antitop FB asymmetry compared to CDF data

- Resummation can also be used in a simplified way to compute approximate higher order corrections and distributions (Kidonakis, 10-11)
 - Some conceptual and technical issues avoided; partial reduction in scale uncertainties.

The Tevatron top-antitop FB asymmetry can be computed in QCD at NNLL+NLO (Ahrens et al., 09).

• Negligible impact on NLO result: the solution to the Tevatron puzzle is not QCD higher orders.

Top rapidity distribution at approximate NNLO

Event shapes

- First studies of event shapes with exact NNLO information and (well) approximated
 N³LL resummation have appeared (Becher, Schwartz, 08; Schwartz, Cien; Abbate et al. 10).
- The studies deploy neat tricks (Padé approximants, numerical determination of
 2-loop soft coefficients) and great care (hadronization, b-mass, QED corrections).
- Perturbative agreement between SCET and standard resummation (Gehrmann et al., 11).
- Significant differences remain in the final results for the strong coupling.

$\alpha_s(M_Z^2)$	=	0.1172 ± 0.0022	$\mathrm{thrust}(\mathrm{BS})$
$\alpha_s(M_Z^2)$	=	0.1220 ± 0.0031	jet mass (SC)
$\alpha_s(M_Z^2)$	=	0.1135 ± 0.0010	$\mathrm{thrust}\left(\mathrm{AFHMS}\right)$

Many possible sources of discrepancy, the main suspect remains hadronization/MC.

For the problem is still not fully understood: do we really know α_s to percent accuracy?

Comparing the α_s fit quality for thrust and heavy jet mass at N³LL (SC)

Joint fit of α_s and hadronization parameter Ω_1 from N³LL thrust (AFHMS)

Miscellanea

NLL K-factors for squarks and gluinos

NNLL vs. NLO ϕ^* distribution

- New observables, designed by experiments, require (and get) soft gluon resummation (Banfi et al. 09-11).
 - Variables related to the angle between leptons are more accurately measured than the pT of the lepton pair.
 - Resummation is crucial close to Born configuration.
- Somplex jet observables are designed and resummed.
 - Jet shapes to study internal structure of jets, useful for boosted heavy particle production (Ellis et al. 09-11).

Soft gluon resummations are being applied to SUSY particles.

• SUSY particles are heavy (and getting heavier ...), close

• Gaugino and slepton production (singlets) (Klasen 06-11).

to threshold: corrections useful for exclusion limits.

Colored sparticle production (requires soft matrices)

(Kulesza et al. 09-11; Beneke et al., general color, 10).

• Dijet mass distribution with fixed `background' event shape (`N-jettiness'), extension of SCET (Bauer et al. 11).

NLL dijet mass distribution for fixed N-jettiness

Jactuum caveat emptor

Spectator interaction via Glauber gluon

Non-global logarithms for energy flow

- A striking example of the impact of NG logs on jet shapes.
 - Jet shapes measure properties of a single jet in a multijet event. They are generically affected by NG logs.
 - For a typical jet shape (`in-jet angularity') NG logs change the height of the (formally NLL) distribution by 15-20% in the small-R limit (Banfi et al., 10).

The impact of non-global logarithms on jet shapes

- As the jet observables proliferate and are resummed, several caveats must be kept in mind.
 - Glauber gluons: they cancel in inclusive jet cross sections (Aybat, Sterman 09), but no proof if jets are opened up. They are not in SCET, might be added (Bauer et al., 10).
 - Non-global logarithms: arise whenever gluon emission phase space is cut up (Dasgupta, Salam, 01); affect observables at single logarithmic level; resummable only at large N_C.
 - Jet algorithms: the choice of jet algorithm affects both nonglobal and ordinary Sudakov logarithms. Clustering correlates `independent' gluons, except for anti-kT (Banfi et al., 05-06).

Hadronic event shapes

- An interesting alternative to the use of jets, which bypasses the need for an algorithm, is to introduce global event shapes, in analogy to those used in e⁺e⁻ annihilation.
 - The hadronic environment requires suppressing the beam region.
- NLL+NLO resummation can be performed numerically with the program Caesar recently generalized to hadron collisions (Banfi, Salam, Zanderighi, 10).
- Numerically resummable event shapes are carefully characterized:
 - Functional constraints.
 - Continuous globalness.
 - Recursive IR safety.
- A vast variety of event shapes is introduced, categorized and resummed.
 - Simple example: transverse thrust.
- Relevant issues for NLL+NLO resummation of event shapes are dealt with in detail.
 - Control of non-global logs.
 - Transition particle-jet (algorithm issues).
 - Possible superleading logs.
 - Matching to NLOJET++.
 - Power corrections (analytic and MC).
 - Impact of underlying event.

A menu of NLL-resummed hadronic event shapes

OUTLOOK

- Resummations are a powerful tool both for theory and for phenomenology.
 - Explore the boundary between perturbative and non-perturbative physics.
 - \checkmark Are necessary for precision phenomenology.
- Resummations have a long history, but
 - ✓ past few years have seen very intense LHC-motivated activity and theoretical progress.
- Factorization theorems \Rightarrow Evolution equations \Rightarrow Exponentiation.
 - ✓ Sudakov factorization \Rightarrow soft-gluon resummation (also formalized by SCET).
 - ✓ Multiparton processes require anomalous dimension matrices.
- Remarkable progress on the theory side.
 - ✓ We are understanding the all-order structure of the perturbative exponent.
 - ✓ For massless partons the dipole formula may give the definitive answer.
 - \checkmark For massive partons the general two-loop anomalous dimension matrix is known.
 - ✓ SCET provides new insights: momentum space resummation, `collinear anomaly'.
 - \checkmark Ongoing efforts to go beyond the eikonal approximation.
- A vast array of phenomenological applications, many vital for LHC precision physics.
 - ✓ Electroweak annihilation processes are known to high logarithmic accuracy.
 - ✓ Top distributions can be computed with unprecedented theoretical precision.
 - \checkmark The strong coupling can be precisely determined from resummed event shapes.
 - ✓ Hadronic event shapes provide a flexible alternative tool for hadron collisions.
- We have come a long way, but each step forward brings new insight and new questions ...

THANK YOU