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BUGS AND FEATURES 
OF PERTURBATION THEORY



The bugs in PT

M (Q,↵) = M0


1 +

↵

⇡
C1 (Q) +

⇣↵
⇡

⌘2
C2 (Q) + . . .

�



The bugs in PT

Ck = 1UV �! Ck / log

k

✓
⇤

Q

◆

M
✓
Q

µ
,↵(µ)

◆
= M0

"
1 +

↵(µ)

⇡
C1

✓
Q

µ

◆
+

✓
↵(µ)

⇡

◆2

C2

✓
Q

µ

◆
+ . . .

#

M (Q,↵) = M0


1 +

↵

⇡
C1 (Q) +

⇣↵
⇡

⌘2
C2 (Q) + . . .

�



The bugs in PT

Ck = 1UV �! Ck / log

k

✓
⇤

Q

◆

Ck

✓
Q

µ

◆
= 1IR �! Ck

✓
Q

µ

◆
/ log

k

✓
Q

m

◆

M
✓
Q

µ
,
Q

µf
,↵(µ)

◆
= M0

"
1 +

↵(µ)

⇡
C1

✓
Q

µ
,
Q

µf

◆
+

✓
↵(µ)

⇡

◆2

C2

✓
Q

µ
,
Q

µf

◆
+ . . .

#

M
✓
Q

µ
,↵(µ)

◆
= M0

"
1 +

↵(µ)

⇡
C1

✓
Q

µ

◆
+

✓
↵(µ)

⇡

◆2

C2

✓
Q

µ

◆
+ . . .

#

M (Q,↵) = M0


1 +

↵

⇡
C1 (Q) +

⇣↵
⇡

⌘2
C2 (Q) + . . .

�



The bugs in PT

Ck = 1UV �! Ck / log

k

✓
⇤

Q

◆

Ck

✓
Q

µ

◆
= 1IR �! Ck

✓
Q

µ

◆
/ log

k

✓
Q

m

◆

M
✓
Q

µ
,
Q

µf
,↵(µ)

◆
= M0

"
1 +

↵(µ)

⇡
C1

✓
Q

µ
,
Q

µf

◆
+

✓
↵(µ)

⇡

◆2

C2

✓
Q

µ
,
Q

µf

◆
+ . . .

#

Ck

✓
Q

µ
,
Q

µf

◆
/ k! �!

X

k

⇣↵
⇡

⌘k
Ck ! 1

M (Q,↵) = M
pert. (Q,↵) + M

non pert. (Q,↵)

M
✓
Q

µ
,↵(µ)

◆
= M0

"
1 +

↵(µ)

⇡
C1

✓
Q

µ

◆
+

✓
↵(µ)

⇡

◆2

C2

✓
Q

µ

◆
+ . . .

#

M (Q,↵) = M0


1 +

↵

⇡
C1 (Q) +

⇣↵
⇡

⌘2
C2 (Q) + . . .

�
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The physics behind the bugs

An infinite result in an otherwise sensible theory signals that we have made a mistake

  Quantum mechanical sum over intermediate states.

  Our mistake: control of high energy,  short distances.

  Fix: locality, effective couplings, UV completion

  Quantum mechanical sum over final states.

  Our mistake: wrong asymptotic states.

  Fix: inclusive cross sections, factorization.

  Vacuum state, operator product expansion.

  Our mistake: neglected operators, solutions.

  Fix: include non-perturbative contributions.



Features, not bugs

  Quantum mechanics does not destroy predictivity.

  Ultraviolet physics can be factorized and parametrized.

  Renormalization group predicts asymptotic behaviors.

  Local effective field theories.

  Perturbation theory knows about its own limitations.

  Non-perturbative contributions can be systematically included.

  Power corrections to observables can be computed.

  Condensates, instantons, bound states.

  We do not need exact knowledge of asymptotic states.

  Infrared physics can be factorized and parametrized.

  Infrared and collinear logarithms can be resummed.

  Non-local effective field theories.



A FIRST LOOK



Singularities arise only when propagators go on shell

2p · k = 2p0k0(1� cos �pk) = 0 ,

⇤ k0 = 0 (IR); cos �pk = 1 .

➡  Emission is not suppressed at long distances        

➡  Isolated charged particles are not true                  
      asymptotic states of unbroken gauge theories

  A serious problem: the S matrix does not exist in the usual Fock space

  Possible solutions:  construct finite transition probabilities (KLN theorem)
                                 construct better asymptotic states (coherent states)

  Long-distance singularities obey a pattern of exponentiation
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...  and Practice
Why worry about stuff that cancels in physical observables?



  You still have to actually cancel it.

•  Cancellation must be performed analytically before numerical integrations.

•  One needs local counterterms for matrix elements in all singular regions.

•  State of the art: NLO multileg, NNLO for a few processes.

  The cancellation is incomplete.

•  Singularities leave behind finite but potentially large logarithms. 

•  For inclusive observables: analytic resummation to high logarithmic accuracy.

•  For exclusive final states: parton shower event generators, (N)LL accuracy.

  There is actual (non-perturbative) physics in the IR.

•  We understand infrared radiation to all orders in any gauge theory.

•  Power-suppressed non-perturbative corrections to QCD cross sections can be modeled.

•  Links to the strong coupling regime can be established for SUSY gauge theories.
➡ N = 4 Super Yang-Mills planar amplitudes:  ABDKS ansatz.
➡ Non planar amplitudes: awaiting string theory input.

        

...  and Practice
Why worry about stuff that cancels in physical observables?
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Impact of resummation



66 < Q < 116 GeV

CDF

Impact of resummation

Z-boson qT spectrum at Tevatron  (A. Kulesza et al.)

CDF data on $Z$ production compared with QCD predictions  at fixed  order (dotted), with 
resummation (dashed), and with the inclusion of power corrections (solid).



66 < Q < 116 GeV

CDF

Impact of resummation

Z-boson qT spectrum at Tevatron  (A. Kulesza et al.)

CDF data on $Z$ production compared with QCD predictions  at fixed  order (dotted), with 
resummation (dashed), and with the inclusion of power corrections (solid).

Note shift in the distribution 
due to non-perturbative 

corrections extrapolated from 
all-order resummed result



Impact of resummation

Predictions for the Higgs boson qT spectrum at LHC  (M.  Grazzini)

Predictions for the qT spectrum of Higgs bosons produced via gluon fusion at the LHC,  with and 
without resummation, and theoretical uncertainty band of the resummed prediction.



Impact of resummation

Predictions for the Higgs boson qT spectrum at LHC  (M.  Grazzini)

Predictions for the qT spectrum of Higgs bosons produced via gluon fusion at the LHC,  with and 
without resummation, and theoretical uncertainty band of the resummed prediction.

Note size of non-
logarithmic terms at 

NLO: the cross section 
is dominated by 
infrared effects



FACTORIZATION
EVOLUTION
SUMMATION



All factorizations separating dynamics at different energy scales lead to resummation of 
logarithms of the ratio of scales.

Renormalization is a textbook example.

  Renormalization factorizes cutoff dependence.

  Factorization requires the introduction of an arbitrarily chosen scale μ.

  Results must be independent of the arbitrary choice of μ.

  The simple functional dependence of the factors is dictated by separation of variables.

  Proving factorization is the difficult step: it requires all-order diagrammatic analyses.
     Evolution equations follow automatically.

  Solving RG evolution resums logarithms of Q2/μ2 into αs(μ2).

  

Ultraviolet factorization
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Infrared factorization

A gauge theory Feynman diagram with 
potential soft and collinear enhancements 

  Divergences arise in scattering amplitudes
     from leading regions in loop momentum space.

  For renormalized massless theories only soft
     and collinear regions give divergences.

  Soft and collinear emissions have universal 
     features, common to all hard processes.

  Singular contributions can be studied to all
     orders in perturbation theory.

  Ward identities and power counting lead to
    decoupling of soft, collinear and hard factors.

  A soft-collinear factorization theorem for 
    multi-particle matrix elements follows.



Factorization: pictorial

A pictorial representation of  soft-collinear factorization for fixed-angle scattering amplitudes



Factorization: pictorial

A pictorial representation of  soft-collinear factorization for fixed-angle scattering amplitudes

Omit for massive particles



Note: color flow
In order to understand the matrix structure of the soft function it is sufficient to consider
the simple case of quark-antiquark scattering.

       At tree level

For this process only two color structures are possible.  A basis in the space of available 
color tensors is 

c(1)
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Tree-level diagrams and color flows for quark-antiquark scattering

The matrix element  is a vector in this space, and the Born cross section is

A virtual soft gluon will reshuffle color and mix the components of this vector

QED : Mdiv = SdivMBorn ; QCD : [Mdiv]J = [Sdiv]JL [MBorn]L



Note:  running coupling
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Exponentiation of infrared poles requires solving d-dimensional evolution equations. 
The running coupling in d = 4 - 2 ε obeys

The one-loop solution is

The β function develops an IR-free fixed point, so that the coupling 
vanishes at μ = 0 for fixed ε < 0.  The Landau pole is at

➡  Integrations over the scale of the coupling can be
     analytically performed. 
➡  All infrared and collinear poles arise by integration  
     over the scale of the running coupling.

For negative ε the beta function develops
a second zero, O(ε) from the origin. 



Here we introduced dimensionless four-velocities  βiμ = Q piμ ,  βi2 = 0 ,  and factorization 
vectors  niμ ,  ni2 ≠ 0  to define the jets,

Factorization: operators
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The precise functional form of this graphical factorization is 

where  Φn  is the Wilson line operator along the direction nμ ,

The vectors nμ :   Ensure gauge invariance of the jets.
  Separate collinear gluons from wide-angle soft ones.
  Replace other hard partons with a collinear-safe absorber.

Note:  Wilson lines represent fast particles, 
not recoiling against soft radiation



Soft Matrices
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The soft function S obeys a matrix RG evolution equation

NOTE:  ΓS is singular for massless theories, due to overlapping UV and collinear poles.

S is a pure counterterm.  In dimensional regularization, using   αs(μ2 = 0, ε < 0) = 0 ,

The soft function  S  is a matrix, mixing the available color 
tensors. It is defined by a correlator of  Wilson lines.

The determination of the soft anomalous dimension matrix  ΓS  is the keystone of the 
resummation program for multiparton amplitudes and cross sections.

 It governs the interplay of color exchange with kinematics in multiparton processes.
 It is the only source of multiparton correlations for singular contributions.
 Collinear effects are `color singlet’ and can be extracted from two-parton scatterings.
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FROM FORM FACTORS
TO PLANAR AMPLITUDES



Tools of the trade:

•  The d-dimensional running coupling, vanishing at Q2 = 0 for ε < 0, provides the boundary value.
•  The cusp anomalous dimension γK,  governing the UV singularity of a cusped Wilson line.
   Up to three loops it is proportional to the Casimir eigenvalue of the relevant representation
   (Casimir scaling):

   
•  The collinear anomalous dimension G, generating subleading collinear poles.

Gauge theory form factors
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Form factors are matrix elements of conserved currents. For example 
for a massless Dirac fermion
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In dimensional regularization, the Q2 dependence is fully determined by evolution (Sterman, LM).

Form factors obey soft-collinear factorization with trivial color structure. 
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Gauge theory form factors
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The exponentiation is non trivial: only poles up to (1/ε)n+1 appear in the exponent at n loops.

• All poles are generated by the integration over the scale of the d-dimensional coupling.

• All poles beyond (1/ε)2  are due to the running of the four-dimensional coupling.

In a conformal gauge theory (regulated by ε < 0) all integrations are trivial.

Exact results can be derived in the conformal case (Dixon, Sterman, LM):

•  The analytic continuation of the form factor is governed by the cusp anomalous dimension.

•  The collinear anomalous dimension has a spin-independent part determined by a Wilson
    line (eikonal) form factor.  Spin enters only through the DGLAP kernel B.

•  These results can be checked at strong coupling using  AdS/CFT (Alday, Maldacena).



•  Indeed, in planar N = 4 Super Yang-Mills theory the results for IR divergences are largely
   inherited by finite parts.

•  Two- and three-loop results suggested the `ABDKS’ ansatz

•  The ansatz holds for four- and five-point planar amplitudes: they are `exactly solved’, using a 
   dual superconformal invariance of planar amplitudes (Korchemsky et al.).

•  At n > 5 points, a remainder function of conformal cross ratios of momentum invariants 
   arises: it gives the `true’ four-dimensional dynamical content of the planar theory. 

Exact results for planar amplitudes
All infrared divergences of planar gauge theory amplitudes are determined by the form factors.  
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•  In the planar limit, gluon exchanges are confined to wedges.

•  Only one color structure (single trace) survives in the planar limit.

•  The soft matrix is proportional to the identity in color space.

•  In a conformal theory S-matrix elements do not exist ...

•  Regularization breaks conformal invariance and may be expected 
   to determine the structure of scattering amplitudes.

Wedges for planar amplitudes



•  Remarkably, in N = 4 SYM planar amplitudes can be computed at strong coupling, via the 
    AdS/CFT correspondence (Alday, Maldacena).

•  The logarithm of the amplitude is the area of a minimal surface in AdS space, bounded by a   
   polygonal Wilson loop, whose sides are determined by (light-like) external momenta.

•  The area can be computed with purely geometrical methods.

•  For the four-point function, in dimensional regularization,  

•  This exactly matches the weak coupling ABDKS ansatz, and 
   gives expression for the cusp and collinear anomalous dimensions at strong coupling.

•  Integrability can be used to construct an exact equation (Beisert, Eden, Staudacher) satisfied 
   by the (planar) cusp anomalous dimension, matching both weak and strong coupling results.

•  The remainder function can also be determined at strong coupling: matching weak and
   strong coupling is subject of much current research.
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Exact results for planar amplitudes
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TAMING COLOR EXCHANGES



TAMING COLOR EXCHANGES



  The matrix  ΓS  can be computed from the UV poles of S.

  Computations can be performed directly for the exponent:   
     relevant diagram sets are called  “webs”.

  ΓS   appears highly complex at high orders.

  g-loop webs directly correlate color and kinematics of 
     up to  g+1  Wilson lines.

Surprising Simplicity
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The two-loop calculation (Aybat, Dixon, Sterman) leads to a surprising result:  for any number of 
light-like eikonal lines

  No new kinematic dependence;  no new matrix structure.

  κ is the two-loop coefficient of   γK (αs) ,  rescaled by the appropriate quadratic Casimir, 

A diagram in a web contributing to 
the soft anomalous dimension matrix



  The anomalous dimension                      for the evolution of       is finite.

  In      the anomaly must cancel.  Thus it must depend on rescaling invariant variables.
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Double soft-collinear poles cancel in the reduced soft function
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Properties of eikonal functions

Eikonal jets J, needed to avoid double counting of soft-collinear regions, are defined by

  Eikonal functions like S and J are pure counterterms in dimensional regularization.

  The functional dependence on the vectors nμi is restricted by the classical invariance of
      Wilson lines under velocity rescalings,  nμi  → κi nμi.

  Rescaling invariance for light-like velocities,  βi
2 = 0 is broken by quantum corrections

     due to overlapping soft and collinear poles.

  This `collinear anomaly’ is governed by the cusp anomalous dimension γK (αs).
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Factorization Constraints
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The kinematic dependence of eikonal functions is severely restricted by rescaling invariance. 

  The classical symmetry of Wilson line correlators under βi → κi βi  is violated only through
     the cusp anomaly.

➡  For eikonal jets, no βi dependence is possible at all except through the cusp

  In the reduced soft function,  S/ΠJ , the cusp anomaly cancels
➡  The reduced soft function can depend on βi only through rescaling-invariant

                combinations such as  ρij  .    For n > 3 hard partons, one may also construct

Consider the anomalous dimension matrix for the reduced soft function

Remarkably:   Singular terms in  ΓS  must be diagonal and proportional to  γK  

  Finite diagonal terms in  ΓS   must conspire to construct  ρij’s.
  Off-diagonal terms in  ΓS  must be finite, and must depend only on the 

     cross-ratios  ρijkl



The constraints can be formalized simply by using the chain rule:         can depend on the 
factorization vectors ni only through the eikonal jets,  which are color diagonal.

Defining                                  ,  one finds

Factorization Constraints
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This leads to a linear equation for the dependence of        on its proper arguments,  ρij.

  The equation relates the kinematic dependence of  Γ to γK , to all orders in perturbation theory
• and should remain true at strong coupling as well

  It correlates color and kinematics for any number of hard partons

  It admits a unique solution for amplitudes with up to three hard partons.
•  For n > 3 hard partons, functions of  ρijkl  solve the homogeneous equation.
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 All soft and collinear singularities can be collected in a multiplicative operator Z

 Z contains both soft singularities from S, and collinear ones from the jet functions. It 
    must satisfy its own matrix RG equation

The matrix Γ has a surprisingly simple dipole structure, the same as at one loop. It reads

Note that all singularities are again generated by integration over the scale of the coupling.

The Dipole Formula
We have found that, for massless partons, the soft anomalous dimension matrix obeys a set 
of exact equations that correlate color exchange with kinematics. 

The simplest solution to these equations is a sum over color dipoles (Becher, Neubert;
Gardi, LM, 09).  It gives an ansatz for the all-order singularity structure of all multiparton 
fixed-angle massless scattering amplitudes: the dipole formula. 



  All known results for IR divergences of massless gauge theory amplitudes are recovered.

  The absence of multiparton correlations implies remarkable diagrammatic cancellations.

  The color matrix structure is fixed at one loop: path-ordering is not needed.

  The cusp anomalous dimension plays a very special role: a universal IR coupling.

Can this be the definitive answer for IR divergences in massless non-abelian gauge theories?

  There are precisely two sources of possible corrections.

•  Quadrupole correlations may enter starting at three loops: they must be tightly 
             constrained functions of conformal cross ratios of parton momenta.

•  The cusp anomalous dimension may violate Casimir scaling beyond three loops.

•  The functional form of Δ is further constrained by: collinear limits, Bose symmetry,    
             bounds on weights, high-energy constraints. (Becher, Neubert;  Dixon, Gardi, LM, 09).

•  A four-loop analysis indicates that Casimir scaling holds (Becher, Neubert, Vernazza).

•  Recent evidence for non-vanishing Δ at four loops from Regge limit (Caron-Huot).

Features of the dipole formula
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Infrared exponentiation

Sn ⌘ h0|�1 ⌦ . . .⌦ �n |0i = exp (!n)

All correlators of  Wilson lines, regardless of shape, resum in exponential form.   

Diagrammatic rules exist to compute directly the logarithm of the correlators. 

! 2,QED =

! 2,QCD =

Only connected photon 
subdiagrams contribute to 
the logarithm.

Only gluon subdiagrams 
which are two-eikonal 
irreducible contribute to 
the logarithm. They have
modified color factors.

For eikonal form factors, these diagrams are called webs (Gatheral; Frenkel, Taylor; Sterman).



The concept of web generalizes non-trivially to the case of multiple Wilson lines.  
(Gardi, Smillie, White, et al).

A web is a set of diagrams which differ only by the order of the gluon attachments on each 
Wilson line. They are weighted by modified color factors.

Writing each diagram as the product of its natural color factor and a kinematic factor

a web W can be expressed as a sum of diagrams in terms of a web mixing matrix R

The non-abelian exponentiation theorem holds: each web has the color factor of a fully 
connected gluon subdiagram (Gardi, Smillie, White).

Multiparticle webs

W =
X

D

eC(D)F(D) =
X

D,D0

C(D0)R(D0, D)F(D)

D = C(D)F(D)



Computing webs

bSren (�ij ,↵s, ✏,m) =
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Bare Wilson-line correlators vanish beyond tree level in dimensional regularization: they
are given by scale-less integrals. We require renormalized correlators, which depend on the
Minkowsky angles between the Wilson lines.

To compute the counterterm Z we make use of an auxiliary, IR-regularized correlator

Sren (�ij ,↵s, ✏) = Sbare (�ij ,↵s, ✏)Z (�ij ,↵s, ✏) = Z (�ij ,↵s, ✏) , �ij =
2�i · �jq
�2
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2
j

The expression of Z in terms of the anomalous dimension Γ follows from RG arguments

Combining informations one can get Γ directly from the logarithm of the regularized S

Z = exp
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Computing regularized webs is a game of combinatorics and renormalization theory.

Gardi, Smillie, White 2010-2012;
Mitov, Sterman, Sung 2010



Three-loop progress
The computation of the three-loop multi-particle soft anomalous dimension is under way.
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Multiple Gluon Exchange Webs
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Multiple Gluon Exchange Webs (MGEWs) arise from a path integral weighted with the free
part of the quantum YM action

A general integral representation for diagrams D contributing to MGEWs can be written 
down to all orders, starting from a coordinate space representation of the Wilson lines 

A five-loop MGEW diagram

The variables xk measure collinearity to Wilson lines, the overall 
UV pole is extracted, the coordinate-space gluon propagators give

Non-abelian information is encoded in the order of gluon 
attachments on each Wilson line, through the kernel

Replacing the set of θ	  functions by unity one recovers abelian exponentiation.

Gardi 2013;  Henn, Huber 2013;
Gardi, Falcioni, Harley, LM,  White 2014



Subtracted  Webs
Individual diagrams contain multiple UV poles and give uniform weight results. One must: 
combine them into webs (where leading poles cancel); subtract subdivergences via 
commutator counterterms; organize the result in a color basis.  In the “right” variables

Expansion in powers of ε will generate logarithms of q(x,α).  Assembling the results
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  Factorization conjecture: the subtracted MGEW kernel G  is a sum of products of 
     logarithmic functions of individual cusp variables of uniform weight n-1.

  Alphabet conjecture: the Symbol of all subtracted MGEW kinematic coefficients FA is 
     restricted to the letters 

A lot of experimental and conceptual evidence is accumulating favoring the following
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Four loops,  five legs

The four-loop five-leg MGEW with attachments 1-2-2-2-1

The explicit evaluation of all three-loop MGEWs is nearing completion.  We can however 
push further into the L&L space ....

The four-loop, five-line MGEW 1-2-2-2-1
•  Contributes to a single color structure of 
    the four-loop anomalous dimension. 

•  It contains eight diagrams connected by a
    mirror symmetry.

•  Needs an elaborate set of nested 
    commutator counterterms.



Four loops,  five legs
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The four-loop five-leg MGEW with attachments 1-2-2-2-1

The explicit evaluation of all three-loop MGEWs is nearing completion.  We can however 
push further into the L&L space ....

The four-loop, five-line MGEW 1-2-2-2-1
•  Contributes to a single color structure of 
    the four-loop anomalous dimension. 

•  It contains eight diagrams connected by a
    mirror symmetry.

•  Needs an elaborate set of nested 
    commutator counterterms.

The result is a simple function of the logarithms Lij = log
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where

•  The integral has a d log form, with intricate limits. 

•  The nested theta functions can be made explicit

The Escher Staircase
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Escher Staircase with six loops and six legs

Special diagrams contributing to MGEWs have special features, notably those which do not 
contain subdivergences. The most symmetric example is the “Escher Staircase”, with kernel

⇠k = yk/(1� yk)



where

•  The integral has a d log form, with intricate limits. 
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Escher Staircase with six loops and six legs

Special diagrams contributing to MGEWs have special features, notably those which do not 
contain subdivergences. The most symmetric example is the “Escher Staircase”, with kernel

⇠k = yk/(1� yk)

The result is remarkably simple!



OUTLOOK



Summary

  We are developing an ever deeper understanding of the perturbative 
     expansion of gauge field theories to all orders. 

  Important tools in the infrared are factorization and evolution equations.

  Conformal gauge theories have interesting special properties.

  Planar N = 4 Super Yang-Mills theory may be exactly solvable.

  A simple dipole formula encodes infrared singularities for any massless gauge 
     theory to a high degree of accuracy.

  Potential corrections to the dipole formula are interesting, highly constrained, 
     and their study is under way.

  We now understand non-abelian infrared exponentiation for multi-particle 
     amplitudes.

  The calculation of the three-loop multi-particle soft anomalous dimension is   
     advancing,  using new technologies.

  Controlling IR singularities leads to the resummation of potentially large 
     logarithms in phenomenologically relevant collider cross sections. 
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