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SOFT-COLLINEAR FACTORIZATION





 Higher order QCD calculations at colliders hinge upon cancellation of divergences between  
    virtual corrections and real emission contributions.

• Cancellation must be performed analytically before numerical integrations.

• State of the art: general NLO, NNLO for processes with color-singlet Born.

• All-order understanding may yield systematic approach.

 Cancellations leave behind large logarithms: they must be resummed

• For inclusive observables: analytic resummation to high (N3LL) logarithmic accuracy.

• For exclusive final states: parton shower event generators, (N)LL accuracy.

 Resummation probes the all-order structure of perturbation theory.

• Power-suppressed corrections to QCD cross sections can be studied.

• Links to the strong coupling regime can be established for SUSY gauge theories.

• The perturbative structure of conformal gauge theories is IR-dominated.
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Brief motivation



Soft-collinear factorization

Leading integration regions in loop momentum space 
for Sudakov factorization 

  Divergences arise in scattering amplitudes
     from leading regions in loop momentum space.

  Power-counting arguments show that soft 
     gluons decouple from the hard subgraph.

  Ward identities decouple soft gluons from jets 
     and restrict color transfer to the hard part.

  Jet functions J represent color singlet
     evolution of external hard partons.

  The soft function S is a matrix mixing
     the available color representations.

  In the planar limit soft exchanges are confined
     to wedges: S is proportional to the identity.

  Beyond the planar limit S is determined by an   
     anomalous dimension matrix ΓS.

  The matrix ΓS  correlates color exchange with 
     kinematic dependence.



Color flow
In order to understand the matrix structure of the soft function it is sufficient to consider
the simple case of quark-antiquark scattering.

       At tree level

For this process only two color structures are possible.  A basis in the space of available 
color tensors is 
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Tree-level diagrams and color flows for quark-antiquark scattering

The matrix element  is a vector in this space, and the Born cross section is

A virtual soft gluon will reshuffle color and mix the components of this vector

QED : Mdiv = SdivMBorn ; QCD : [Mdiv]J = [Sdiv]JL [MBorn]L



Soft-collinear factorization: pictorial

A pictorial representation of  Sudakov factorization for fixed-angle scattering amplitudes



We introduced factorization vectors                           to define the jets,

Operator Definitions
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The precise functional form of this graphical factorization is 

nµ
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where  Φn  is the Wilson line operator along the direction nμ ,

The vectors nμ :   Ensure gauge invariance of the jets.
  Separate collinear gluons from wide-angle soft ones.
  Replace other hard partons with a collinear-safe absorber.



Wilson line correlators
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The soft function  S  is a matrix, mixing the available color tensors. It is defined by a 
correlator of  Wilson lines.

To avoid double counting, soft-collinear regions are subtracted dividing by eikonal jets J.

  Wilson line correlators are pure counterterms in dimensional regularization.

• Infrared poles are mapped to ultraviolet singularities.

  Their functional dependence on the vectors nμi is restricted by the classical invariance 
     of Wilson lines under velocity rescalings,  nμi  → κi nμi.

  Rescaling invariance for light-like velocities,  βi
2 = 0,  is broken by quantum corrections.

• UV counterterms contain collinear poles, corresponding to soft-collinear singularities.

  Double poles are determined by the cusp anomalous dimension γK (αs).

• γK (αs) governs the renormalization of Wilson lines with light-like cusps.



  The anomalous dimension                       for the evolution of       is finite.

  The matrix       must depend on rescaling invariant variables

Soft anomalous dimensions
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The soft function  S  obeys a matrix RG evolution equation

•  ΓS is singular due to overlapping UV and collinear poles.

In dimensional regularization, using   αs(μ2 = 0, ε < 0) = 0 ,  one finds

Double poles cancel in the reduced soft function

S
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THE DIPOLE FORMULA
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 All soft and collinear singularities can be collected in a multiplicative operator Z

 Z contains both soft singularities from S, and collinear ones from the jet functions. It 
    must satisfy its own matrix RG equation

The matrix Γ inherits the dipole structure from the soft matrix. It reads

Note that all singularities are generated by integration over the scale of the coupling.

The Dipole Formula
For massless partons, the soft anomalous dimension matrix obeys a set of exact equations 
that correlate color exchange with kinematics. 

The simplest solution to these equations is a sum over color dipoles (Becher, Neubert;
Gardi, LM, 09).  It gives an ansatz for the all-order singularity structure of all multiparton 
fixed-angle massless scattering amplitudes: the dipole formula. 



 All known results for IR divergences of massless gauge theory amplitudes are recovered.

 The absence of multiparton correlations implies remarkable diagrammatic cancellations.

 The color matrix structure is fixed at one loop: path-ordering is not needed.

 All divergences are determined by a handful of anomalous dimensions.

 The cusp anomalous dimension plays a very special role: a universal IR coupling.

Can this be the definitive answer for IR divergences in massless non-abelian gauge theories?

  There are precisely two sources of possible corrections.

•  Quadrupole correlations may enter starting at three loops: they must be tightly 
             constrained functions of conformal cross ratios of parton momenta.

•  The cusp anomalous dimension may violate Casimir scaling beyond three loops.

•  The functional form of Δ is further constrained by: collinear limits, Bose symmetry    
            and transcendentality bounds (Becher, Neubert;  Dixon, Gardi, LM, 09).

•  A four-loop analysis indicates that Casimir scaling holds (Becher, Neubert, Vernazza).

Features of the dipole formula
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REGGEIZATION AND BEYOND





 Studies of the high-energy limit of scattering amplitudes predate the construction of the 
    Standard Model of particle physics.

 A powerful tool in S-matrix theory is the analytic continuation to complex angular 
    momentum. Start with the well known partial wave expansion

 Moving to the crossed (t-) channel, using dispersion relations and overcoming several
    technical subtleties one finds a representation for the t-channel partial wave amplitude

 Singularities of al(t) in the L plane determine the high-energy behavior of the amplitude: 
    In the case of simple poles one gets

Regge Poles
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  The above is derived from the analiticity of the S-matrix, 
     with no reference to a Lagrangian field theory.

  In perturbation theory, the same high-energy behavior is 
     recovered through the summation of ladder diagrams.

  The Regge trajectory α(t) is computed from the one-loop 
     diagram at vanishing longitudinal momentum.



 The gluon has been shown to Reggeize at NLL, and the two-loop Regge trajectory is known.
 For example, for gluon-gluon scattering the matrix element obeys Regge factorization

    with the perturbative coefficients

• Large logarithms of s/t are generated by a simple 
   replacement of  the t-channel propagator,

• The Regge trajectory has a perturbative expansion, with
   IR divergent coefficients

Perturbative Reggeization
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 In perturbative QCD the high-energy limit is governed by t-channel parton exchange.
 In the t/s ➝ 0 limit gluons in the t-channel `Reggeize’ with a computable trajectory.

Gluon-gluon scattering: the 
t-channel gluon Reggeizes



 Large logarithms of s/ti  are generated by the Reggeization of t-channel propagators, as

 The impact factors C and the Lipatov vertices V are universal and independent of s.

Multi-Regge kinematics

y3 � y4 � . . . � yL , |k?i | ' |k?j | , 8i, j

 Reggeization follows form the dominance of t-channel ladder diagrams as t/s ➝ 0. 
 By unitarity, multi-gluon emission must similarly simplify in the high-energy limit.
 Regge factorization extends to multi-particle emission in `Multi-Regge’ kinematics.
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 Introducing `Mandelstam’ color operators, and using color and momentum conservation

   it is easy to see that the infrared dipole operator Z factorizes in the high-energy limit

•  The operator Z1 is s-independent and proportional to the unit matrix in color space.

•  Color dependence and s dependence are collected in the factor

        where the coupling dependence is (once again!) completely determined by the cusp 
        anomalous dimension and by the β function, through the function (Korchemsky 94-96)

 The simple structure of the high-energy operator governs Reggeization and its breaking.

The dipole formula at high energy
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  The LL Regge trajectory is universal and obeys Casimir scaling.
  Scattering of arbitrary color representations can be analyzed

     Example: let 1 and 2 be antiquarks, 4 a gluon and 3 a sextet; use

 

     LL Reggeization of the 3 and 15 t-channel exchanges follows.

 At leading logarithmic accuracy, the (imaginary) s-channel contribution can be dropped, and 
   the dipole operator becomes diagonal in a t-channel basis.

 
 If, at LO and at leading power in t/s, the scattering is dominated by t-channel exchange,

    then the hard function is an eigenstate of the color operator Tt2

 Leading-logarithmic Reggeization for arbitrary t-channel color representations follows

Reggeization of leading logarithms
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Scattering for generic color exchange



 The high-energy infrared operator can be systematically expanded beyond LL, using the 
    Baker-Campbell-Hausdorff formula.  At NLL one finds a series of commutators

 The real part of the amplitude Reggeizes also at NLL for arbitrary t-channel exchanges.

 At NNLL Reggeization generically breaks down also for the real part of the amplitude.

• At two loops, terms that are non-logarithmic and non-diagonal in a t-channel basis arise

• At three loops, the first Reggeization-breaking logarithms of s/t arise, generated by

 NOTE  ● In the planar limit (NC ➝∞) all commutators vanish and Reggeization holds 
                   also beyond NLL (as perhaps expected from string theory).
                ● Possible quadrupole corrections to the dipole formula cannot come to the rescue.    

Beyond leading logarithms
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Regge Cuts

Mandelstam’s `double-cross’ diagram

 One may wonder how the breakdown of simple Regge factorization can be put in the 
    context of the general results of Regge theory.

 Reggeization follows from the assumption that the only singularities in the complex 
    angular momentum plane are isolated poles.

 From the early days of Regge theory it was understood that the the picture would 
    become more intricate in the presence of cuts in the L plane 

 Regge cuts can arise when at least two `Reggeons’ are exchanged in the t channel 
    (two ladders in perturbation theory)

On general grounds one can show that:

•  Regge cuts do not arise in the physical region 
    from planar diagrams.

•  The first nontrivial contribution from a Regge 
    cut arises from the three-loop non-planar 
    Mandelstam `double-cross’ diagram.

•  Regge cuts in the physical region arise at leading 
    power in s only if the high energy limit picks up 
    the discontinuity of an energy logarithm.

These properties are in agreement with our findings 
at three loops and beyond.



  We have defined the t-channel color operators

  A t-channel basis of common eigenstates of Ttk can
    be constructed using Clebsch-Gordan coefficients.

  The operators Ttk  thus commute, and each color 
     representation contributing to the hard function in 
     the high-energy limit Reggeizes separately at LL.

  The dipole formula applies for any number of particles: we expect similar simplifications in 
     Multi-Regge kinematics, and similar results concerning Reggeization.

  Indeed, one can prove recursively that the dipole operator Z factorizes in MR kinematics, as

  The Multi-Regge high-energy operator has again a simple structure.

Multi-Regge kinematics
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Color structure in Multi-Regge kinematics



  Known results on the high-energy limit of QCD amplitudes imply new constraints on 
     quadrupole corrections to the dipole formula at three loops and beyond.

  Previous analyses using collinear constraint, Bose symmetry and transcendentality bounds
     could not exclude a class of correction, including for example

     where                            .

  Previously admissible corrections display superleading high-energy logarithms at three loops.

  No known explicit example of admissible quadrupole correction survives.  A complete proof
     is still lacking: linear combinations might restore the proper Regge behavior. 

Constraining quadrupoles
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  In the high-energy limit one finds (with L = log|s/t| )

A three-loop diagram for Δ
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OUTLOOK



Summary

  A definitive solution of the problem of infrared divergences of (massless) gauge theory
     amplitudes may be at hand.

✓  We are probing the all-order structure of the nonabelian exponent.
✓  All-order results constrain, test and complement fixed-order calculations.
✓  Understanding singularities has phenomenological applications through resummation.

  Factorization theorems determine the all-order structures through evolution equations

  A simple dipole formula may encode all infrared singularites for any massless gauge 
     theory,  a natural generalization of the planar limit. 

  The study of possible corrections to the dipole formula is under way.

  The high-energy limit of the dipole formula provides insights into Reggeization and beyond,
     at least for divergent contributions to the amplitude.

  Leading logarithmic Reggeization is proved for generic color representations exchanged 
     in the t channel, and for any number of partons in Multi-Regge kinematics.

  Regge factorization generically breaks down at NNLL, with computable corrections which
     may be related to Regge cuts in the angular momentum plane.

  The high-energy limit further constrains quadrupole corrections to the dipole formula: 
     no known examples survive.
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