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Textbook theory ...

Nhﬁf Singularities arise only when propagators go on shell
k
_ - 2p - k = 2pokp(l — cos,5 =18

p+k p — kg =0 (I'R); cosig =Nk

= Emission is not suppressed at long distances

ey i1(p + :
—  —igu(p)¢(k)ta (7 2]76) _ M, = |solated charged particles are not true .
(p+ k) +ie asymptotic states of unbroken gauge theories

& A serious problem:the S matrix does not exist in the usual Fock space

& Possible solutions: construct finite transition probabilities (KLN theorem)
construct better asymptotic states (coherent states)

& Long-distance singularities obey a pattern of exponentiation
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... and Practice

Just a formal issue in Quantum Field Theory? Are there practical applications?

& Higher order QCD calculations at colliders hinge upon cancellation of divergences between
virtual corrections and real emission contributions
e Cancellation must be performed analytically before numerical integrations
* Need local counterterms for matrix elements in all singular regions

e State of the art: NLO multileg, NNLO for (some) color-singlet processes

& Cancellations leave behind large logarithms: they must be resummed
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* For inclusive observables: analytic resummation to high logarithmic accuracy.

* For exclusive final states: parton shower event generators, (N)LL accuracy.

& Resummation probes the all-order structure of perturbation theory
* Power-suppressed corrections to QCD cross sections can be studied

* Links to the strong coupling regime can be established for SUSY gauge theories.






Dimensional regularization

Exponentiation of infrared poles requires solving d-dimensional evolution equations.
The running coupling in d =4 - 2 € obeys

oa - 2 o @
g = Ble) = —2ea+ B@) . B =-3-> 6 (5) .
The one-loop solution is

@ (u?,€) = as(1p) [(Z—;) - % (1 = (Z—;)) i—;as(ug)] ]

The B function develops an IR-free fixed point, so that the coupling
vanishes at Y = O for fixed € < 0. The Landau pole is at

2_A2:Q2 (1_|_ 41re )_1/6
3 e bocrs (Q?) |

= |ntegrations over the scale of the coupling can be

analytically performed.

= All infrared and collinear poles arise by integration | ,
For negative € the beta function develops

over the scale of the running coupling. a second zero, O(€) from the origin.



Factorization

All factorizations separating dynamics at different energy scales lead to resummation of
logarithms of the ratio of scales.

A textbook example is collinear factorization for DIS structure functions.

& Collinear factorization separates the dependence on the physical scale Q2 from the
dependence on collinear cutoffs (parton masses m?). For Mellin moments one gets

s 2 2 > 2
P (N,—z, ) - C( L ) f(N,“—g,as> .
m e m

€ Factorization requires the introduction of an arbitrarily chosen scale V.
Results must be independent of the arbitrary choice of Mr.

dF, dlog f

:O — S -
dyip e e

& The simple functional dependence of the factors is dictated by separation of variables.

& Proving factorization is the difficult step: it requires all-order diagrammatic analyses,
or OPE. Evolution equations for parton distributions follow automatically.

€ Solving Altarelli-Parisi evolution resums logarithms of Q2/pg? into evolved parton
distributions (or fragmentation functions).



Sudakov Factorization

& Sudakov logarithms are remainders of infrared
and collinear divergences.

& Divergences arise in scattering amplitudes
from leading regions in loop momentum space.

& Soft gluons factorize both form hard (easy)
and from collinear (intricate) virtual exchanges.

& Jet functions ] represent color singlet
evolution of external hard partons.

& The soft function S is a matrix mixing
the available color representations.

& In the planar limit soft exchanges are confined
to wedges: S is proportional to the identity.

& In the planar limit S can be reabsorbed defining
jets as square roots of elementary form factors.

Leading integration regions in loop momentum space
for Sudakov factorization ® Beyond the planar limit S is determined by an

anomalous dimension matrix [s.

€c



Color flow

In order to understand the matrix structure of the soft function it is sufficient to consider
the simple case of quark-antiquark scattering.

N
/7N

At tree level

Tree-level diagrams and color flows for quark-antiquark scattering

For this process only two color structures are possible. A basis in the space of available
color tensors is

(2)

. % e 5ab50d 9 Conasl — 5acgbd

Cabc

The matrix element is a vector in this space, and the Born cross section is

.'.
R D, Y ME =Y MM G [nggd (c2),) ] = [ms]
YsE

abce
color

A virtual soft gluon will reshuffle color and mix the components of this vector

QED : Mdiv o SdivMBorn; QCD : [Mdiv]J i [Sdiv]JL [MBorn]L



Sudakov factorization: pictorial

A pictorial representation of Sudakov factorization for fixed-angle scattering amplitudes



Operator Definitions

The precise functional form of this graphical factorization is

e e N
Mr (pi/,uaOés(MQ)aE) = OSLk (51 ' 53',045(,“2)76) Hg (p?,lufj, (ngn;) aas(ﬂ2)>

ng (L
<1

( oy )Q,as(uz) )/J <(5@n52) ,ozs(uz)m)} ,

We introduced factorization vectors n | nf # 0 to define the jets,

J (@'”) ,asm%,e) u(p) = (0]%n(00,0)%(0) |p).

n2 12

where @, is the Wilson line operator along the direction n#,

A2
b, (A2, A1) = Pexp ig/ d\n - A(An)
A

The vectors n*: & Ensure gauge invariance of the jets.
& Separate collinear gluons from wide-angle soft ones.
& Replace other hard partons with a collinear-safe absorber.



Soft Matrices

The soft function S is a matrix, mixing the available color tensors. It is defined by a
correlator of Wilson lines.

(1) an} S (8- By o) €) = > (O] TT |@:(00, 0)aeyme | 10) (ex) gy
{m} =1
The soft function S obeys a matrix RG evolution equation

d

Lt (Bi - By as(1®),€) = — Sry (Bi - B, a5 (%), €) T3k (Bi - By, s (p?), €)

€ ISis singular due to overlapping UV and collinear poles.

S is a pure counterterm. In dimensional regularization, using Os(4?=0,€<0)=0,

[
_5/0 gizrs(ﬁi-ﬁj,&s(fzae)»e)

The determination of the soft anomalous dimension matrix [ is the keystone of the
resummation program for multiparton amplitudes and cross sections.

S (6: - By, as(p?),€) = P exp

& |t governs the interplay of color exchange with kinematics in multiparton processes.
& It is the only source of multiparton correlations for singular contributions.
& Collinear effects are “color singlet’ and can be extracted from two-parton scatterings.
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Surprising Simplicity

€c

€ The matrix [s can be computed from the UV poles of S.

& Computations can be performed directly for the exponent:
the relevant diagrams are called “webs”.

& [s appears highly complex at high orders.

& g-loop webs directly correlate color and kinematics of
up to g+l Wilson lines.

A web contributing to the soft
anomalous dimension matrix

The two-loop calculation (Aybat, Dixon, Sterman 06) leads to a surprising result: for any number
of external massless partons

67 10
@ & @) e L

= No new kinematic dependence; no new matrix structure.
= K is the two-loop coefficient of Yk (Xs) , rescaled by the appropriate quadratic Casimir,

o 0 2
@) el [2 =4k (%) @ (O‘g)] -
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The Dipole Formula

The two-loop result led to an all-order understanding. For massless partons, the soft matrix
obeys a set of exact equations that correlate color exchange with kinematics.

The simplest solution to these equations is a sum over color dipoles (Becher, Neubert;
Gardi, LM, 09). It leads to an ansatz for the all-order singularity structure of all multiparton
fixed-angle massless scattering amplitudes: the dipole formula.

& All soft and collinear singularities can be collected in a multiplicative operator Z

M (ﬁ%(ﬁ)ﬁ) =7 (pi,ozs(ufc),e> H (pi, W,Ozs(MQ),E) ,

puf p'op

& Z contains both soft singularities from S, and collinear ones from the jet functions. It
must satisfy its own matrix RG equation

a2 (Botine) = =2 (Fraine) T (Brentid)
Z —, 0\ ), € =] —, s\ ), € I —, U\ W :
7 2 (o) (%)) T (2 (0)

The matrix I inherits the dipole structure from the soft matrix. It reads

Ldaip (ZZ’ Oés(ﬂ2)> — —i S lﬂ( ] pj) T, -T; + z”: s ) -

=) gl

Note that all singularities are generated by integration over the scale of the coupling.



Features of the dipole formula

& All known results for IR divergences of massless gauge theory amplitudes are recovered.
& The absence of multiparton correlations implies remarkable diagrammatic cancellations.

& The color matrix structure is fixed at one loop: path-ordering is not needed.
& All divergences are determined by a handful of anomalous dimensions.

& The cusp anomalous dimension plays a very special role: a universal IR coupling.

Can this be the definitive answer for IR divergences in massless non-abelian gauge theories?

B> There are precisely two sources of possible corrections.

* Quadrupole correlations may enter starting at three loops: they must be tightly
constrained functions of conformal cross ratios of parton momenta.

D 2 P 92 92 Pi - Pj Pk - Pl
I —, Qg U ) =T Fdi <_7058 H ) s A Pijkl, Os\ U , Pijkl =
(u (1) =\ (%) (pis (#) 3 Di * Pk Dj " Di

* The cusp anomalous dimension may violate Casimir scaling beyond three loops.

7&?(&(9) = i//V\/K(O‘s) g /Vv%) (043)

* The functional form of A is further constrained by: collinear limits, Bose symmetry
and transcendentality bounds (Becher, Neubert; Dixon, Gardi, LM, 09).

e A four-loop analysis indicates that Casimir scaling holds (Becher, Neubert,Vernazza).
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Reggeization

& Studies of the high-energy limit predate the modern era of quantum field theory.
& In the t/s = 0 limit particles exchanged in the t-channel (may) ‘Reggeize’.

® Large logarithms of s/t are generated by a simple
replacement of the t-channel propagator,

1l 1 S i)
o A | E
b t \ —t

® The Regge trajectory has a perturbative expansion, with
IR divergent coefficients

Gluon-gluon scattering: the 2
t-channel gluon Reggeizes alt) = as(—t, €) o ) (as(—t, 5)) a® 10 (a3)
S

47 47

& The gluon has been shown to Reggeize at NLL, and the two-loop Regge trajectory is known.
& For example, for gluon-gluon scattering the matrix element obeys Regge factorization

o(t)
S S
M0, (5:8) = 2625 | (T)arasConsthrnkn)| (5] | Tz Coon, iz, )

with the perturbative coefficients

) 2 bo 404 56

i
o Ve s 4 (&) e Rt s R ) g
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Multi-Regge kinematics

& Reggeization follows form the dominance of t-channel ladder diagrams as t/s — 0.
& By unitarity, multi-gluon emission must similarly simplify in the high-energy limit.

& Regge factorization extends to multi-particle emission in "Multi-Regge’ kinematics.

Ys > Ys > ... > YL, Dl G g
e B B £ N o ‘k‘é“ |kf\ey3_yL ei”

—si; = |k ||[B|le¥inta s SRS i

Multi-gluon emission and Multi-Regge kinematics

& Large logarithms of s/t; are generated by the Reggeization of t-channel propagators, as

o(t1)
eSS
MEZE7 = 2625 |(T)a10y Chiny (s ko) [tl ()

s =

X [(Ta4)bc VA4(Q1,(12)] !1 (845 )a(t2>] [(Tc)azaL Chaar (k2, kL)

& The impact factors C and the Lipatov verticesV are universal and independent of s.



The dipole formula at high energy

& Introducing Mandelstam color operators, and using color and momentum conservation

i T, — — (T3 +Ty) s+t+u=0

Tt = T1—|—T3:—(T2—|—T4), 4

T, = T 4o G e dECRaE LT = D O
P

it is easy to see that the infrared dipole operator Z factorizes in the high-energy limit
0 = t
Z <%7as(u2),e> =7 G,as(ﬁ),e) A (P,Ozs(/f),e)

® The operator Z1 is s-independent and proportional to the unit matrix in color space.

.

where the coupling dependence is (once again!) completely determined by the cusp
anomalous dimension and by the B function, through

® Color dependence and s dependence are collected in the factor

7 (ﬁ,as(pﬂ),e) = 5D {K(as('f),g) {ln (%) A0 L fy 10

t

K(ozs(/f),e) — —i /OM2 d)\—)\;‘y\K (as (A%, €))

& The simple structure of the high-energy operator governs Reggeization and its breaking.



Reggeization of leading logarithms

& At leading logarithmic accuracy, the (imaginary) s-channel contribution can be dropped, and
the dipole operator becomes diagonal in a t-channel basis.

M (%%(ﬂﬁ) = eXp{K(as(MQ),e) In (_%) T?} Z1H (%,ozs(ﬁ),e)

& If, at LO and at leading power in t/s, the scattering is dominated by t-channel exchange,
then the hard function is an eigenstate of the color operator T/

|t/s|—0

___>
12 349999 LLI20,  4y90-000

& Leading-logarithmic Reggeization for arbitrary t-channel color representations follows

7 H99—>99
¢ 1 7%

AMII—99 ( S )CA K (as(4?)€)

& The LL Regge trajectory is universal and obeys Casimir scaling.

“€C

Scattering of arbitrary color representations can be analyzed
Example: let 1 and 2 be antiquarks, 4 a gluon and 3 a sextet; use

36 = 3915 38, =346915

LL Reggeization of the 3 and 135 t-channel exchanges follows.

Scattering for generic color exchange



Beyond leading logarithms

& The high-energy infrared operator can be systematically expanded beyond LL, using the
Baker-Campbell-Hausdorff formula. At NLL one finds a series of commutators

iy K(as,e)Tf P
2ol = () {irinano [12- Kot (2) o

1

A (;;876) In® (—it) o3, [mh ] | + ]}

& The real part of the amplitude Reggeizes also at NLL for arbitrary t-channel exchanges.

NLL

& At NNLL Reggeization generically breaks down also for the real part of the amplitude.

® At two loops, terms that are non-logarithmic and non-diagonal in a t-channel basis arise

£ (@, 6) = — 572 K?(ap,) (T2)’

® At three loops, the first Reggeization-breaking logarithms of s/t arise, generated by

2

&1 (;,043,6) = — %K?»(as,e) In (it) [Ti, [Tf,TgH

& NOTE e In the planar limit (Nc =) all commutators vanish and Reggeization holds
also beyond NLL (as perhaps expected from string theory).
® Possible quadrupole corrections to the dipole formula cannot come to the rescue.



Multi-Regge kinematics

& The dipole formula applies for any number of particles: we expect similar simplifications in
Multi-Regge kinematics, and similar results concerning Reggeization.

& Indeed, one can prove recursively that the dipole operator Z factorizes in MR kinematics, as

Pi 2 ~MR, 2 MR V@H 2
Z("has?)e) = 7 (Ayk, as(1?),€) 23 (1), ¢

€c

& The Multi-Regge high-energy operator has again a simple structure.

tp—2

ZMR(Ayk,as(MQ),E) = exp {K(ozs(/f),e)

L—1
Z d e A iﬂT?
k=3

|

& We have defined the t-channel color operators
k

Ttk s Tl i Z Tp—i—2
=1l

& A t-channel basis of common eigenstates of Ty, can
be constructed using Clebsch-Gordan coefficients.

€ The operators Ty, thus commute, and each color

representation contributing to the hard function in
the high-energy limit Reggeizes separately at LL.

Color structure in Multi-Regge kinematics



Constraining quadrupoles

*€C

Known results on the high-energy limit of QCD amplitudes imply new constraints on
quadrupole corrections to the dipole formula at three loops and beyond.

& Previous analyses using collinear constraint, Bose symmetry and transcendentality bounds
could not exclude a class of correction, including for example
g

A(212)(pijklaa8) i (?> 1 550 B e [fadebee Ea (L1423 Lissg + Lisos L1342) = Cyd']

where Liju = log(Liju).

& In the high-energy limit one finds (with L = logls/tl )

_ (—s1)(=ssa) _ {8\ _gir. e
P1234 = T (—_t) e : Liysa — 2EESHE

_ (=s13)(=s21) [ -t \* R .
P1342 = e (s+t) ; gy =il ¢

2
p1423 = (Zs14)(Z523) = (S+t) ehis A e
(—s12)(—534) S

A three-loop diagram for A

& Previously admissible corrections display superleading high-energy logarithms at three loops.

3
Y (0, 11.00)) = (%) RCAREI AT 32m[ (=L* —inL® — n?L? — ix3L) fodefebe 4+ . ]

*€c

No known explicit example of admissible quadrupole correction survives. A complete proof
is still lacking: linear combinations might restore the proper Regge behavior.



OUTLOOK




Summary

& After 7.5 102 years, soft and collinear singularities in gauge theories amplitudes
are still a fertile field of study. A definitive solution may be at hand.
v We are probing the all-order structure of the nonabelian exponent.
v' All-order results constrain, test and complement fixed-order calculations.
v' Understanding singularities has phenomenological applications through resummation.

& Factorization theorems = Evolution equations = Exponentiation.
V' Sudakov factorization = soft-gluon resummation.
v' Multiparton processes require anomalous dimension matrices.

& A simple dipole formula may encode all infrared singularites for any massless gauge
theory, a natural generalization of the planar limit. The study of possible corrections
to the dipole formula is under way.

& The high-energy limit of the dipole formula provides insights into Reggeization and beyond,
at least for divergent contributions to the amplitude.

& Leading logarithmic Reggeization is proved for generic color representations exchanged
in the t channel, and for any number of partons in Multi-Regge kinematics.

& Regge factorization generically breaks down at NNLL, with computable corrections.

& The high-energy limit further constrains quadrupole corrections to the dipole formula:
no known examples survive.
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