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ON INFRARED DIVERGENCES



Singularities arise only when propagators go on shell

2p · k = 2p0k0(1� cos �pk) = 0 ,

⇤ k0 = 0 (IR); cos �pk = 1 .

➡  Emission is not suppressed at long distances        

➡  Isolated charged particles are not true                  
     asymptotic states of unbroken gauge theories

  A serious problem: the S matrix does not exist in the usual Fock space

  Possible solutions:  construct finite transition probabilities (KLN theorem)
                                 construct better asymptotic states (coherent states)

  Long-distance singularities obey a pattern of exponentiation
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Textbook theory ...



 Higher order QCD calculations at colliders hinge upon cancellation of divergences between  
     virtual corrections and real emission contributions

• Cancellation must be performed analytically before numerical integrations

• Need local counterterms for matrix elements in all singular regions

• State of the art: NLO multileg, NNLO for (some) color-singlet processes

 Cancellations leave behind large logarithms: they must be resummed

• For inclusive observables: analytic resummation to high logarithmic accuracy.

• For exclusive final states: parton shower event generators, (N)LL accuracy.

 Resummation probes the all-order structure of perturbation theory

• Power-suppressed corrections to QCD cross sections can be studied

• Links to the strong coupling regime can be established for SUSY gauge theories.
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 ...  and Practice
Just a formal issue in Quantum Field Theory?  Are there practical applications?



TOOLS



Dimensional regularization
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Exponentiation of infrared poles requires solving d-dimensional evolution equations. 
The running coupling in d = 4 - 2 ε obeys

The one-loop solution is

The β function develops an IR-free fixed point, so that the coupling 
vanishes at μ = 0 for fixed ε < 0.  The Landau pole is at

➡  Integrations over the scale of the coupling can be
     analytically performed. 
➡  All infrared and collinear poles arise by integration  
     over the scale of the running coupling.

For negative ε the beta function develops
a second zero, O(ε) from the origin. 



All factorizations separating dynamics at different energy scales lead to resummation of 
logarithms of the ratio of scales. 

A textbook example is collinear factorization for DIS structure functions.

  Collinear factorization separates the dependence on the physical scale Q2 from the 
     dependence on collinear cutoffs (parton masses m2).  For Mellin moments one gets

  Factorization requires the introduction of an arbitrarily chosen scale μF.
     Results must be independent of the arbitrary choice of μF.

  The simple functional dependence of the factors is dictated by separation of variables.

  Proving factorization is the difficult step: it requires all-order diagrammatic analyses, 
     or OPE.  Evolution equations for parton distributions follow automatically.

  Solving Altarelli-Parisi evolution resums logarithms of Q2/μF2  into evolved parton   
     distributions (or fragmentation functions).
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Sudakov Factorization

Leading integration regions in loop momentum space 
for Sudakov factorization 

  Sudakov logarithms are remainders of infrared
     and collinear divergences.

  Divergences arise in scattering amplitudes
     from leading regions in loop momentum space.

  Soft gluons factorize both form hard (easy)
     and  from collinear (intricate) virtual exchanges.

  Jet functions J represent color singlet
     evolution of external hard partons.

  The soft function S is a matrix mixing
     the available color representations.

  In the planar limit soft exchanges are confined
     to wedges: S is proportional to the identity.

  In the planar limit S can be reabsorbed defining
     jets as square roots of elementary form factors.

  Beyond the planar limit S is determined by an   
     anomalous dimension matrix ΓS.



Color flow
In order to understand the matrix structure of the soft function it is sufficient to consider
the simple case of quark-antiquark scattering.

       At tree level

For this process only two color structures are possible.  A basis in the space of available 
color tensors is 
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Tree-level diagrams and color flows for quark-antiquark scattering

The matrix element  is a vector in this space, and the Born cross section is

A virtual soft gluon will reshuffle color and mix the components of this vector

QED : Mdiv = SdivMBorn ; QCD : [Mdiv]J = [Sdiv]JL [MBorn]L



Sudakov factorization: pictorial

A pictorial representation of  Sudakov factorization for fixed-angle scattering amplitudes



We introduced factorization vectors                           to define the jets,

Operator Definitions
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The precise functional form of this graphical factorization is 

nµ
i , n2

i �= 0

where  Φn  is the Wilson line operator along the direction nμ ,

The vectors nμ :   Ensure gauge invariance of the jets.
  Separate collinear gluons from wide-angle soft ones.
  Replace other hard partons with a collinear-safe absorber.



Soft Matrices
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The soft function  S  obeys a matrix RG evolution equation

  ΓS is singular due to overlapping UV and collinear poles.

S is a pure counterterm.  In dimensional regularization, using   αs(μ2 = 0, ε < 0) = 0 ,

The soft function  S  is a matrix, mixing the available color tensors. It is defined by a 
correlator of  Wilson lines.
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The determination of the soft anomalous dimension matrix  ΓS  is the keystone of the 
resummation program for multiparton amplitudes and cross sections.

 It governs the interplay of color exchange with kinematics in multiparton processes.
 It is the only source of multiparton correlations for singular contributions.
 Collinear effects are `color singlet’ and can be extracted from two-parton scatterings.



THE DIPOLE FORMULA



  The matrix  ΓS  can be computed from the UV poles of S.

  Computations can be performed directly for the exponent:   
     the relevant  diagrams are called  “webs”.

  ΓS   appears highly complex at high orders.

  g-loop webs directly correlate color and kinematics of 
     up to  g+1  Wilson lines.

Surprising Simplicity
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The two-loop calculation (Aybat, Dixon, Sterman 06) leads to a surprising result:  for any number 
of external massless partons

➡  No new kinematic dependence;  no new matrix structure.
➡  κ is the two-loop coefficient of   γK (αs) ,  rescaled by the appropriate quadratic Casimir, 

A web contributing to the soft 
anomalous dimension matrix
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 All soft and collinear singularities can be collected in a multiplicative operator Z

 Z contains both soft singularities from S, and collinear ones from the jet functions. It 
    must satisfy its own matrix RG equation

The matrix Γ inherits the dipole structure from the soft matrix. It reads

Note that all singularities are generated by integration over the scale of the coupling.

The Dipole Formula
The two-loop result led to an all-order understanding. For massless partons, the soft matrix 
obeys a set of exact equations that correlate color exchange with kinematics. 
The simplest solution to these equations is a sum over color dipoles (Becher, Neubert;
Gardi, LM, 09).  It leads to an ansatz for the all-order singularity structure of all multiparton 
fixed-angle massless scattering amplitudes: the dipole formula. 



 All known results for IR divergences of massless gauge theory amplitudes are recovered.

 The absence of multiparton correlations implies remarkable diagrammatic cancellations.

 The color matrix structure is fixed at one loop: path-ordering is not needed.

 All divergences are determined by a handful of anomalous dimensions.

 The cusp anomalous dimension plays a very special role: a universal IR coupling.

Can this be the definitive answer for IR divergences in massless non-abelian gauge theories?

  There are precisely two sources of possible corrections.

•  Quadrupole correlations may enter starting at three loops: they must be tightly 
             constrained functions of conformal cross ratios of parton momenta.

•  The cusp anomalous dimension may violate Casimir scaling beyond three loops.

•  The functional form of Δ is further constrained by: collinear limits, Bose symmetry    
            and transcendentality bounds (Becher, Neubert;  Dixon, Gardi, LM, 09).

•  A four-loop analysis indicates that Casimir scaling holds (Becher, Neubert, Vernazza).

Features of the dipole formula
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THE HIGH-ENERGY LIMIT



 The gluon has been shown to Reggeize at NLL, and the two-loop Regge trajectory is known.
 For example, for gluon-gluon scattering the matrix element obeys Regge factorization

    with the perturbative coefficients

• Large logarithms of s/t are generated by a simple 
   replacement of  the t-channel propagator,

• The Regge trajectory has a perturbative expansion, with
   IR divergent coefficients
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 Studies of the high-energy limit predate the modern era of quantum field theory.
 In the t/s ➝ 0 limit particles exchanged in the t-channel  (may) `Reggeize’.

Gluon-gluon scattering: the 
t-channel gluon Reggeizes



 Large logarithms of s/ti  are generated by the Reggeization of t-channel propagators, as

 The impact factors C and the Lipatov vertices V are universal and independent of s.

Multi-Regge kinematics

y3 � y4 � . . . � yL , |k?i | ' |k?j | , 8i, j

 Reggeization follows form the dominance of t-channel ladder diagrams as t/s ➝ 0. 
 By unitarity, multi-gluon emission must similarly simplify in the high-energy limit.
 Regge factorization extends to multi-particle emission in `Multi-Regge’ kinematics.
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Multi-gluon emission and Multi-Regge kinematics
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 Introducing Mandelstam color operators, and using color and momentum conservation

   it is easy to see that the infrared dipole operator Z factorizes in the high-energy limit

•  The operator Z1 is s-independent and proportional to the unit matrix in color space.

•  Color dependence and s dependence are collected in the factor

        where the coupling dependence is (once again!) completely determined by the cusp 
        anomalous dimension and by the β function, through

 The simple structure of the high-energy operator governs Reggeization and its breaking.

The dipole formula at high energy
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  The LL Regge trajectory is universal and obeys Casimir scaling.
  Scattering of arbitrary color representations can be analyzed

     Example: let 1 and 2 be antiquarks, 4 a gluon and 3 a sextet; use

 

     LL Reggeization of the 3 and 15 t-channel exchanges follows.

 At leading logarithmic accuracy, the (imaginary) s-channel contribution can be dropped, and 
   the dipole operator becomes diagonal in a t-channel basis.

 
 If, at LO and at leading power in t/s, the scattering is dominated by t-channel exchange,

    then the hard function is an eigenstate of the color operator Tt2

 Leading-logarithmic Reggeization for arbitrary t-channel color representations follows

Reggeization of leading logarithms
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Scattering for generic color exchange



 The high-energy infrared operator can be systematically expanded beyond LL, using the 
    Baker-Campbell-Hausdorff formula.  At NLL one finds a series of commutators

 The real part of the amplitude Reggeizes also at NLL for arbitrary t-channel exchanges.

 At NNLL Reggeization generically breaks down also for the real part of the amplitude.

• At two loops, terms that are non-logarithmic and non-diagonal in a t-channel basis arise

• At three loops, the first Reggeization-breaking logarithms of s/t arise, generated by

 NOTE  ● In the planar limit (NC ➝∞) all commutators vanish and Reggeization holds 
                   also beyond NLL (as perhaps expected from string theory).
                ● Possible quadrupole corrections to the dipole formula cannot come to the rescue.    

Beyond leading logarithms
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  We have defined the t-channel color operators

  A t-channel basis of common eigenstates of Ttk can
    be constructed using Clebsch-Gordan coefficients.

  The operators Ttk  thus commute, and each color 
     representation contributing to the hard function in 
     the high-energy limit Reggeizes separately at LL.

  The dipole formula applies for any number of particles: we expect similar simplifications in 
     Multi-Regge kinematics, and similar results concerning Reggeization.

  Indeed, one can prove recursively that the dipole operator Z factorizes in MR kinematics, as

  The Multi-Regge high-energy operator has again a simple structure.

Multi-Regge kinematics

Ttk = T1 +
kX

p=1

Tp+2

Z

✓
pl
µ
,↵s(µ

2), ✏

◆
= eZMR

⇣
�yk,↵s(µ

2), ✏
⌘
ZMR
1

✓
|k?i |
µ

,↵s(µ
2), ✏

◆

eZMR
⇣
�yk,↵s(µ

2
), ✏

⌘
= exp

(
K
⇣
↵s(µ

2
), ✏

⌘"
L�1X

k=3

T2
tk�2

�yk + i⇡T2
s

#)

Color structure in Multi-Regge kinematics



  Previously admissible corrections display superleading high-energy logarithms at three loops.

  No known explicit example of admissible quadrupole correction survives.  A complete proof
     is still lacking: linear combinations might restore the proper Regge behavior. 

  Known results on the high-energy limit of QCD amplitudes imply new constraints on 
     quadrupole corrections to the dipole formula at three loops and beyond.

  Previous analyses using collinear constraint, Bose symmetry and transcendentality bounds
     could not exclude a class of correction, including for example

     where Lijkl = log( ! ijkl).

Constraining quadrupoles

⇢1234 ⌘ (�s12)(�s34)

(�s13)(�s24)
=

✓
s

�t

◆2

e�2i⇡ ; L1234 = 2(L� i⇡) ;

⇢1342 ⌘ (�s13)(�s24)

(�s14)(�s23)
=

✓
�t

s+ t

◆2

; L1342 ' �2L ;

⇢1423 ⌘ (�s14)(�s23)

(�s12)(�s34)
=

✓
s+ t

s

◆2

e2i⇡ ; L1423 ' 2i⇡ ,

�(212)(⇢ijkl,↵s) =
⇣↵s

⇡

⌘3
Ta

1T
b
2T

c
3T

d
4

h
fadef cbe L2

1234

⇣
L1423 L

2
1342 + L2

1423 L1342

⌘
+ cycl.

i

�(212)(⇢ijkl,↵s)) =
⇣↵s

⇡

⌘3
Ta

1T
b
2T

c
3T

d
4 32 i⇡

h �
�L4 � i⇡L3 � ⇡2L2 � i⇡3L

�
fadef cbe + . . .

i

  In the high-energy limit one finds (with L = log|s/t| )

A three-loop diagram for Δ



OUTLOOK



Summary
  After 7.5 102  years, soft and collinear singularities in gauge theories amplitudes 

     are still a fertile field of study.   A definitive solution may be at hand.

✓  We are probing the all-order structure of the nonabelian exponent.
✓  All-order results constrain, test and complement fixed-order calculations.
✓  Understanding singularities has phenomenological applications through resummation.

  Factorization theorems  ⇒  Evolution equations  ⇒  Exponentiation.
✓  Sudakov factorization ⇒ soft-gluon resummation.
✓  Multiparton processes require anomalous dimension matrices.

  A simple dipole formula may encode all infrared singularites for any massless gauge 
     theory,  a natural generalization of the planar limit. The study of possible corrections 
     to the dipole formula is under way.

  The high-energy limit of the dipole formula provides insights into Reggeization and beyond,
     at least for divergent contributions to the amplitude.

  Leading logarithmic Reggeization is proved for generic color representations exchanged 
     in the t channel, and for any number of partons in Multi-Regge kinematics.

  Regge factorization generically breaks down at NNLL, with computable corrections.

  The high-energy limit further constrains quadrupole corrections to the dipole formula: 
     no known examples survive.
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