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Abstract

The strong coupling, αs(MZ), is determined from scaling
violations of the nonsinglet DIS structure function, using
two novel techniques aimed at controlling and minimizing
the theoretical error: a neural network parametrization of
BCDMS and NMC data, and QCD evolution by means of
truncated Mellin moments.

Based on: S. Forte et al. : hep-ph/0205286,
hep-ph/0204232.
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Outline of the method

• Our goal: a data–driven determination of αs.

– minimizing theoretical biases and uncertainties.

– accurately assessing the effects of errors and correlations.

• Difficulties in extracting αs from DIS data.

– Mellin moments: a clean analytic NLO solution, however:

∗ Not directly measurable (x→ 0 implies
√
s→∞).

– Momentum space evolution: no extrapolation, however:

∗ Integro–differential equation numerically more difficult.

∗ Parton parametrization necessary: theoretical bias,

difficulties in assessing errors and propagating them to

observables.

• Method: truncated moments.

– Mellin moments over a truncated interval (x0 < x < 1)

are observable.

– They obey a simple evolution equation approximated with

arbitrary precision by a matrix equation.

– In principle: a parametrization is not needed.

• Method: neural network parametrization of F2(x,Q
2).

– In practice: data coverage and precision are not sufficient.

– Neural networks: a bias–free parametrization of F2(x,Q
2).

– All errors and correlations correctly taken into account.
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Truncated moments of parton distributions

Truncated Mellin moments

qn(x0, t) ≡
∫ 1

x0

dx x
n−1

q(x, t) .

satisfy the AP evolution equation
(

t = log µ2
)

d

dt
qn(x0, t) =

αs

2π

∫ 1

x0

dy y
n−1

q(y, t) Gn

(

x0

y
;αs

)

,

where

Gn(x, αs) =

∫ 1

x

dzz
n−1

P (z, αs) .

• As x0 → 0, Gn becomes the anomalous dimension γn.

Different moments evolve independently.

• For x0 6= 0, evolution couples qn with all qk with k > n. To

see it, Taylor expand Gn(x0/y) around y = 1.

• The Taylor expansion of Gn converges in x0 < y ≤ 1 (Gn

only has integrable singularities due to + distributions at

y = x0). Truncating it at the M -th term yields the linear

system

d

dt
qn(x0, t) =

αs

2π

M
∑

p=0

c
(M)
p,n (x0, αs) qn+p(x0, t) .
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Properties of truncated moments

• The matrix of anomalous dimensions governing the evolution

of truncated moments is upper triangular.

→ Analytic diagonalization by recursion relation.

• Moments with significantly different indices are weakly coupled

for small x0.

→ Legitimate truncation at finite M .

• The convergence of the series of approximations for increasing

M can be studied systematically.

→ Study effects of remainder of AP r.h.s.

→ Evolve sample distributions with different methods.

• The convergence of the approximation as a function of M

is good (few percent error for M<∼20), except for lowest

nonsingular moments (sensitive to singularities at y = x0).

→ Improved version of the method is available

(see A. Piccione, hep-ph/0107108)

→ For all finite moments M<∼12 suffices.

• The method has been extended to singlet and gluon

distributions, without new difficulties.

→ NLO analytic solution available in all cases.

→ Threshold logarithms can be included if appropriate.
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Faithful parametrizations: problems

• Standard procedure for fitting PDF’s and structure functions.

– Choose a simple functional form with enough free

parameters.

– Fix parameters by minimizing χ2.

• Difficulties arise in determining errors on generic observables.

– Errors and correlations of parameters require at least fully

correlated analysis of data errors.

– Error propagation to observables is difficult/wrong:

many observables are nonlinear/nonlocal functionals of

parameters.

– Theoretical bias due to choice of parametrization is difficult

to assess (effects can be large if data are not precise, e.g.

with polarized distributions).

• Goal: a representation of the probability measure P(F2) in

the space of structure functions F2(x,Q
2). Then, for any

functional G(F2),

〈

G
[

F2(x,Q
2
)
] 〉

=

∫

DF2 G
[

F2(x,Q
2
)
]

P(F2) ,

and similarly for higher moments.

• Note: a problem with a long history, active discussions in the

context PDF global fits, different proposals available, see e.g.

hep-ph/0204316.
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Neural networks: a solution

Neural networks are a class of algorithms providing robust,

universal, unbiased approximants to incomplete or noisy data.

• Building blocks: neurons, i.e input/output units characterized
by activation

ξi = g





∑

j

ωijξj − θi



 ,

with (typically) g(x) ≡ 1/(1 + exp(−βx)).

• Parameters: weights ωij, thresholds θi.

• Architecture: multilayer feed–forward NN. Each neuron

receives input from neurons in preceding layer and feeds output

to neurons in successive layer.

• Learning: supervised training by back–propagation. Network

attempts matching data to output, weights and thresholds

varied along steepest descent contours to minimize chosen

error function.

• Assumption: smooth function. Size, architecture, learning

cycle determined by statistical criteria.
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Neural networks for structure functions

• Data: BCDMS and NMC: 552 data points for the nonsinglet

structure function F
(NS)
2 (x,Q2).

• Method: Monte Carlo + neural networks.

– Step 1 Generate an ensemble of Nrep pseudo–data

sets, with the correct multivariate distribution given by

experimental errors, fully correlated.

F
(art) (k)
i

= (1 + r
(k)
i,N

σi,N )






F
(exp)
i

+

∑

a r
(k)
i,a

fi,a

100
F
(exp)
i

+ ri,s σ
(k)
i,s






.

– Step 2 Train Nrep neural networks, each one using one

pseudo–data set.

– Step 3 Evaluate averages, errors, correlations of observables

using Nrep networks as Monte Carlo representation of

probability measure in the space of structure functions.
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Determination of αS: choices

• Truncation point and fitting range.

Criteria:

– Data coverage→ small error on moments.

– High Q2 → small power correction.

– Small x0, few intermediate scales → small correlations

between neighboring moments.

Choices: x0 = 0.03; 20 Gev2 < Q2 < 70 Gev2;nsc = 3.

• Evolution equation

– NLO evolution with matching at quark thresholds.

– Size: M = 11 with nmin = 1.

– Auxiliary parameter for improved evolution: N = 6.

→ Accuracy on evolution: 0.1%.

• Fitted moments

Criteria:

– Precision of fit requires nfit > 3

– High correlations between neighboring moments may cause

off–diagonal instabilities→ nfit < 6.

Choices: Fitted moments: n = 2, 4, 5, 6, 8.

• Result with statistical error.

αS(MZ) = 0.124 + 0.004
− 0.007 (stat.) .

Note: All fit parameters have been varied in the window of

stability with negligible effects on the result.
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Determination of αS: errors

• Statistical error: asymmetric χ2.

• Theoretical error: power correction.

Can be: kinematical (target mass corrections); dynamical

(higher twist corrections); due to elastic contributions at

x = 1. All are negligible (< 1%) thanks to our choice of Q2

range.

• Theoretical error: NNLO and higher perturbative evolution.

Estimated varying renormalization scale (no factorization mass

dependence in DIS scheme), µ2ren = krenQ
2. Not negligible,

indicating sizeable NNLO corrections. σren = + 0.003
− 0.004.

Note: possible enhancement of threshold logarithm effects.

• Theoretical error: Heavy quark thresholds.

Estimated varying the threshold position as Q2 = kthM
2
q .

Nearly negligible in our Q2 range (only b threshold included

for some kth). σth = + 0.000
− 0.002.
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• Varying the renormalization scale, µ2ren = krenQ
2.

• Varying thresold positions, Q2 = kthM
2
q .

• Our final result

αS(MZ) = 0.124 + 0.004
− 0.007 (exp.) + 0.003

− 0.004 (th.) .
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Summary

• We have determined the strong coupling αS(MZ) at NLO

from scaling violations of NMC and BCDMS data for the

nonsinglet DIS structure function, with the result

αS(MZ) = 0.124 + 0.004
− 0.007 (exp.) + 0.003

− 0.004 (th.) .

• We have minimized theoretical biases and errors by using

– evolution with truncated moments: minimize effects of

parametrization by cutting out small x range; simple

analytical expression for evolved distributions.

– parametrization with neural networks: no theoretical

bias, statistical control over accuracy of interpolation and

extrapolation.

– choice of (x,Q2) range to minimize effects of

nonperturbative and higher order corrections.

• Statistical error is significantly larger than theoretical one:

improved data (especially deuteron), wider Q2 range would

significantly reduce errors.

• Central value is on high side of world average (though fully

compatible); error is asymmetric.

• NOTE: Threshold logarithms log
(

Q2(1− x)
)

may affect

our determination more significantly than others (see µren
dependence). They can be systematically resummed in Mellin

space with truncated moments.
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