A determination of α_s from scaling violations using truncated moments

Lorenzo Magnea Università di Torino I.N.F.N. Torino magnea@to.infn.it

Montpellier – July 2, 2002

Abstract

The strong coupling, $\alpha_s(M_Z)$, is determined from scaling violations of the nonsinglet DIS structure function, using two novel techniques aimed at controlling and minimizing the theoretical error: a neural network parametrization of BCDMS and NMC data, and QCD evolution by means of truncated Mellin moments.

Based on: S. Forte *et al.* : hep-ph/0205286, hep-ph/0204232.

Outline of the method

- Our goal: a data-driven determination of α_s .
 - minimizing theoretical biases and uncertainties.
 - accurately assessing the effects of errors and correlations.
- Difficulties in extracting α_s from DIS data.
 - Mellin moments: a clean analytic NLO solution, however:
 - * Not directly measurable $(x \to 0 \text{ implies } \sqrt{s} \to \infty)$.
 - Momentum space evolution: no extrapolation, however:
 - * Integro-differential equation numerically more difficult.
 - * Parton parametrization necessary: theoretical bias, difficulties in assessing errors and propagating them to observables.
- Method: truncated moments.
 - Mellin moments over a truncated interval $(x_0 < x < 1)$ are observable.
 - They obey a simple evolution equation approximated with arbitrary precision by a matrix equation.
 - In principle: a parametrization is not needed.
- Method: neural network parametrization of $F_2(x, Q^2)$.
 - In practice: data coverage and precision are not sufficient.
 - Neural networks: a bias-free parametrization of $F_2(x, Q^2)$.
 - All errors and correlations correctly taken into account.

Truncated moments of parton distributions

Truncated Mellin moments

$$q_n(x_0,t) \equiv \int_{x_0}^1 dx \; x^{n-1} q(x,t) \; .$$

satisfy the AP evolution equation $\left(t = \log \mu^2\right)$

$$\frac{d}{dt} q_n(x_0,t) = \frac{\alpha_s}{2\pi} \int_{x_0}^1 dy \ y^{n-1} q(y,t) \ G_n\left(\frac{x_0}{y};\alpha_s\right),$$

where

$$G_n(x,lpha_s)=\int_x^1 dz z^{n-1} P(z,lpha_s)\;.$$

- As $x_0 \rightarrow 0$, G_n becomes the anomalous dimension γ_n . Different moments evolve independently.
- For $x_0 \neq 0$, evolution couples q_n with all q_k with k > n. To see it, Taylor expand $G_n(x_0/y)$ around y = 1.
- The Taylor expansion of G_n converges in $x_0 < y \leq 1$ (G_n only has integrable singularities due to + distributions at $y = x_0$). Truncating it at the *M*-th term yields the linear system

$$rac{d}{dt} q_n(x_0,t) = rac{lpha_s}{2\pi} \sum_{p=0}^M \ c_{p,n}^{(M)}(x_0,lpha_s) \ q_{n+p}(x_0,t) \ .$$

Properties of truncated moments

- The matrix of anomalous dimensions governing the evolution of truncated moments is upper triangular.
 - \rightarrow Analytic diagonalization by recursion relation.
- Moments with significantly different indices are weakly coupled for small x_0 .
 - \rightarrow Legitimate truncation at finite M.
- The convergence of the series of approximations for increasing *M* can be studied systematically.
 - \rightarrow Study effects of remainder of AP *r.h.s.*
 - \rightarrow Evolve sample distributions with different methods.
- The convergence of the approximation as a function of M is good (few percent error for $M \leq 20$), except for lowest nonsingular moments (sensitive to singularities at $y = x_0$).
 - \rightarrow Improved version of the method is available
 - (see A. Piccione, hep-ph/0107108)
 - \rightarrow For all finite moments $M \leq 12$ suffices.
- The method has been extended to singlet and gluon distributions, without new difficulties.
 - \rightarrow NLO analytic solution available in all cases.
 - \rightarrow Threshold logarithms can be included if appropriate.

Faithful parametrizations: problems

- Standard procedure for fitting PDF's and structure functions.
 - Choose a simple functional form with enough free parameters.
 - Fix parameters by minimizing χ^2 .
- Difficulties arise in determining errors on generic observables.
 - Errors and correlations of parameters require at least fully correlated analysis of data errors.
 - Error propagation to observables is difficult/wrong: many observables are nonlinear/nonlocal functionals of parameters.
 - Theoretical bias due to choice of parametrization is difficult to assess (effects can be large if data are not precise, *e.g.* with polarized distributions).
- Goal: a representation of the probability measure $\mathcal{P}(F_2)$ in the space of structure functions $F_2(x,Q^2)$. Then, for any functional $\mathcal{G}(F_2)$,

$$\left\langle \mathcal{G}\left[F_2(x,Q^2)
ight]
ight
angle = \int \mathcal{D}F_2 \,\, \mathcal{G}\left[F_2(x,Q^2)
ight] \,\, \mathcal{P}(F_2) \,\, ,$$

and similarly for higher moments.

 Note: a problem with a long history, active discussions in the context PDF global fits, different proposals available, see *e.g.* hep-ph/0204316.

Neural networks: a solution

Neural networks are a class of algorithms providing robust, universal, unbiased approximants to incomplete or noisy data.

• Building blocks: neurons, *i.e* input/output units characterized by activation

$$\xi_i = g\left(\sum_j \omega_{ij}\xi_j - \theta_i\right) \;,$$

with (typically) $g(x) \equiv 1/(1 + \exp(-\beta x))$.

- Parameters: weights ω_{ij} , thresholds θ_i .
- Architecture: multilayer feed—forward NN. Each neuron receives input from neurons in preceding layer and feeds output to neurons in successive layer.
- Learning: supervised training by back-propagation. Network attempts matching data to output, weights and thresholds varied along steepest descent contours to minimize chosen error function.
- Assumption: smooth function. Size, architecture, learning cycle determined by statistical criteria.

Neural networks for structure functions

• Data: BCDMS and NMC: 552 data points for the nonsinglet structure function $F_2^{(NS)}(x, Q^2)$.

- Method: Monte Carlo + neural networks.
 - Step 1 Generate an ensemble of N_{rep} pseudo-data sets, with the correct multivariate distribution given by experimental errors, fully correlated.

$$F_{i}^{(art)(k)} = (1 + r_{i,N}^{(k)} \sigma_{i,N}) \left[F_{i}^{(exp)} + \frac{\sum_{a} r_{i,a}^{(k)} f_{i,a}}{100} F_{i}^{(exp)} + r_{i,s} \sigma_{i,s}^{(k)} \right].$$

- Step 2 Train $N_{\rm rep}$ neural networks, each one using one pseudo-data set.
- Step 3 Evaluate averages, errors, correlations of observables using $N_{\rm rep}$ networks as Monte Carlo representation of probability measure in the space of structure functions.

Determination of α_s **: choices**

- Truncation point and fitting range. Criteria:
 - Data coverage \rightarrow small error on moments.
 - High $Q^2 \rightarrow$ small power correction.
 - Small x_0 , few intermediate scales \rightarrow small correlations between neighboring moments.

Choices: $x_0 = 0.03; 20 \text{ Gev}^2 < Q^2 < 70 \text{ Gev}^2; n_{sc} = 3.$

- Evolution equation
 - NLO evolution with matching at quark thresholds.
 - Size: M = 11 with $n_{\min} = 1$.
 - Auxiliary parameter for improved evolution: N = 6.
 - \rightarrow Accuracy on evolution: 0.1%.
- Fitted moments Criteria:
 - Precision of fit requires $n_{
 m fit}>3$
 - High correlations between neighboring moments may cause off-diagonal instabilities $\rightarrow n_{\rm fit} < 6$.

Choices: Fitted moments: n = 2, 4, 5, 6, 8.

• Result with statistical error.

 $lpha_S(M_Z) = 0.124 \ ^+ _- \ ^{0.004}_{0.007}$ (stat.) .

Note: All fit parameters have been varied in the window of stability with negligible effects on the result.

Determination of α_S : errors

- Theoretical error: power correction. Can be: kinematical (target mass corrections); dynamical (higher twist corrections); due to elastic contributions at x = 1. All are negligible (< 1%) thanks to our choice of Q^2 range.
- Theoretical error: NNLO and higher perturbative evolution. Estimated varying renormalization scale (no factorization mass dependence in DIS scheme), $\mu_{ren}^2 = k_{ren}Q^2$. Not negligible, indicating sizeable NNLO corrections. $\sigma_{ren} = \frac{+\ 0.003}{-\ 0.004}$. Note: possible enhancement of threshold logarithm effects.
- Theoretical error: Heavy quark thresholds. Estimated varying the threshold position as $Q^2 = k_{th}M_q^2$. Nearly negligible in our Q^2 range (only *b* threshold included for some k_{th}). $\sigma_{th} = \frac{+ 0.000}{- 0.002}$.

• Varying the renormalization scale, $\mu_{ren}^2 = k_{ren}Q^2$.

• Varying thresold positions, $Q^2 = k_{th} M_q^2$.

• Our final result

 $lpha_S(M_Z) = 0.124 \ ^+ _- \ ^0.004 _- \ ({\rm exp.}) \ ^+ _- \ ^0.004 _- \ ({\rm th.})$.

Summary

• We have determined the strong coupling $\alpha_S(M_Z)$ at NLO from scaling violations of NMC and BCDMS data for the nonsinglet DIS structure function, with the result

 $lpha_S(M_Z) = 0.124 \ ^+ _- \ ^0.004 _- \ ({
m exp.}) \ ^+ _- \ ^0.003 _- \ ({
m th.})$.

- We have minimized theoretical biases and errors by using
 - evolution with truncated moments: minimize effects of parametrization by cutting out small x range; simple analytical expression for evolved distributions.
 - parametrization with neural networks: no theoretical bias, statistical control over accuracy of interpolation and extrapolation.
 - choice of (x, Q^2) range to minimize effects of nonperturbative and higher order corrections.
- Statistical error is significantly larger than theoretical one: improved data (especially deuteron), wider Q^2 range would significantly reduce errors.
- Central value is on high side of world average (though fully compatible); error is asymmetric.
- NOTE: Threshold logarithms $\log (Q^2(1-x))$ may affect our determination more significantly than others (see μ_{ren} dependence). They can be systematically resummed in Mellin space with truncated moments.