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Event shapes in e+e− annihilation

Picturing the final state of high-energy collisions

• Event shape distributions probe QCD at all scales from the
perturbative to the non-perturbative regime.

finite order −→ resummation −→ power corrections

• They provide a global picture of final state of hard collisions.

energy flow←→ hadronization←→ mass effects

• A large amount of data is available (LEP, HERA ...)

better theory←→ more analysis ?

• Studies are emerging for hadron-hadron collisions

impact at LHC ?
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A striking example

Fit of LEP data for heavy jet mass distribution (Gardi, Rathsman).

Note: “parameterless”, however small αs.
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Event shapes in e+e− annihilation

Examples

• Thrust: T =
P

i|~pi·n̂|
Q ; τ = 1− T .

→ n̂ is used to define several other shape variables.

• C-parameter: C = 3− 3
2

∑
i,j

(pi·pj)
2

(pi·q) (pj ·q) .

→ does not require maximization procedures.

• Angularity: τa = 1
Q

∑
i(p⊥)ie−|ηi|(1−a) .

→ recently introduced (Berger, Sterman)

• Transverse Thrust: T⊥ =
P

i|~p⊥i·n̂⊥|P
i ~p⊥i

; τ⊥ = 1− T⊥ .

→ defined for hadron-hadron collisions
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Resummation of Sudakov logarithms

Infrared and collinear emission dominates the two-jet limit

• Large double logarithms of the variable vanishing in the
two-jet limit (L = log t ;L = log C ; . . .) enhance finite orders
→ need to resum.

• A pattern of exponentiation emerges∑
k αk

s

∑2k
p ckpL

p → exp
[
Lg1(αsL)+ g2(αsL)+αsg3(αsL)+ . . .

]
• In general the Laplace transform exponentiates∫ ∞

0

d τe−ντ 1
σ

dσ

dτ
= exp

[∫ 1

0

du

u

(
e−uν − 1

)(
B
(
αs

(
uQ2

))
+
∫ uQ2

u2Q2

dq2

q2
A
(
αs(q2)

))]
.
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Resummation of Sudakov logarithms

Exponentiating power corrections

• The exponent is ill-defined because of the Landau pole

regularization −→ ambiguity −→ power corrections

• Focus on small τ , large ν, set IR factorization scale µ, expand
in powers of ν/Q (soft), neglecting ν/Q2 (collinear).

SNP(ν/Q, µ) =
∫ µ2

0

dq2

q2
A
(
αs(q2)

) ∫ q/Q

q2/Q2

du

u

(
e−uν − 1

)
'

∞∑
n=1

1
n!

(
ν

Q

)n

λn(µ2) ,

• Non-perturbative parameters

λn(µ2) = 1
n

∫ µ2

0
dq2 qn−2A

(
αs(q2)

)
.
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Resummation of Sudakov logarithms

Shape functions

• The parameters λn(µ2) build up a shape function

exp
[
SNP(ν/Q, µ)

]
≡
∫∞
0

dε e−ν ε/Q fτ (ε, µ) .

• The physical distribution is recovered via inverse transform

σ(τ) ∼
∫ τQ

0
dε fτ (ε, µ) σPT (τ − ε/Q) .

• One recovers the perturbative result shifted by the soft energy
flow, and smeared by the shape function.

• Universality of power corrections is in general lost, however
specific observables still related (1− T , ρJ , C, . . .).

• Assumption: smooth transition to
nonperturbative regime.
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Dressed gluon exponentiation

It is possible to combine renormalon methods and Sudakov
resummation to construct models of power corrections. One
method is dressed gluon exponentiation (Gardi).

• Step 1: compute characteristic function F(k2) of the
dispersive method in the Sudakov limit (resum “bubble
graphs”).

• Step 2: use dressed gluon distribution as kernel of
exponentiation.

ln
(

dσ̃
dν

∣∣
DGE

)
=
∫∞
0

dτ dσ
dτ

∣∣
SDG

(1− e−ντ ) .

• Step 3: Borel representation of the exponent
suggests pattern of power corrections.
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Dressed gluon exponentiation

Features of DGE

• NLL Sudakov resummation reproduced by using “gluon
bremsstrahlung” definition of running coupling. All
subleading logs computed in the “large nf” limit.

• Factorial growth of subleading logs detected: a handle on the
range of applicability of NpLL resummation.

• Definite prescription for merging resummed PT with power
corrections.

• Phenomenology of thrust, jet masses; models of power
corrections in the Sudakov region for DIS, Drell-Yan,
fragmentation.
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The C parameter

Virtual gluon emission at one loop
Renormalon effects in the inclusive approximation can be
extracted from the distribution computed with a “massive” gluon.

• Define the event shape with a gluon virtuality ξ = k2/Q2.

c(x1, x2, ξ) ≡ C
6 = (1−x1)(1−x2)(1−x3+2ξ)−ξ2

x1x2x3
.

• One-loop matrix element for virtual gluon emission

M(x1, x2, ξ) = (x1+ξ)2+(x2+ξ)2

(1−x1)(1−x2) −
ξ

(1−x1)2
− ξ

(1−x2)2
.

• Characteristic function

F(ξ, c) =
∫

dx1dx2M(x1, x2, ξ) δ (c(x1, x2, ξ)− c) .
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Phase space with a ‘massive’ gluon

Phase space (green) and fixed c contours for ξ = 0.06

• Collinear limit:
x1,2 = 1− ξ

• Soft limit:
x1 = x2 = 1−

√
ξ

• csoft = ξ/x3

• Soft region
ξ

1+ξ < c <
√

ξ
2

• Hard region√
ξ

2 < c < cmax.
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Constructing the Sudakov exponent

The single dressed gluon cross section

F(ξ, c) can be computed in closed form in terms of elliptic
integrals (Gardi, LM). To perform DGE one must then

• Extract terms responsible for Sudakov logs

Fl(ξ, c) = 1
c

»
−4 ln

“
ξ
c

”
− 3 + 2

“
ξ
c

”
+

“
ξ
c

”2
− 8 ln

“
1
2

“
1 +

p
1− 4c2/ξ

””–
.

• Compute the dispersive integral

1
σ

dσ
dc (c,Q2) = −CF

2β0

∫ 1

0
dξ dF(ξ,c)

dξ A(ξQ2) .

• Use the Borel representation for the coupling

A(ξQ2) =
∫∞
0

du
(
Q2/Λ2

)−u sin πu
πu eκu ξ−u .

Note: κ defines the renormalization scheme.
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Constructing the Sudakov exponent

Exponentiating the dressed gluon

• Define the Borel representation of the SDG cross section.

1
σ

dσ
dc

∣∣
SDG

= CF

2β0

∫∞
0

du
(
Q2/Λ2

)−u
B(c, u) .

Note: the Borel integral is always left unperformed

• Exponentiate in Laplace space.

1
σ

dσ
dc

∣∣
DGE

=
∫ k+i∞

k−i∞
dν
2πi eνc exp

[
S
(
ν, Q2

)]
,

using the single gluon result as kernel

S
(
ν,Q2

)
=
∫∞
0

dc 1
σ

dσ
dc

∣∣
SDG

(e−νc − 1) .

• Results are summarized by the Borel exponent.

S
(
ν, Q2

)
= CF

2β0

∫∞
0

du
(
Q2/Λ2

)−u
Bc(ν, u) .
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The Borel exponent

Although the single gluon result B(c, u) has no renormalons,
upgrading to multi-gluon emission via exponentiation generates
towers of renormalon poles in Bc(ν, u).

• For the C-parameter

Bc(ν, u) = 2 e5u/3 sinπu

πu

[
Γ(−2u)

(
ν2u − 1

)
21−2u

√
πΓ(u)

Γ( 1
2 + u)

− Γ(−u) (νu − 1)
(

2
u

+
1

1− u
+

1
2− u

)]
.

• Compare with the thrust

Bτ (ν, u) = 2 e5u/3 sinπu

πu

[
Γ(−2u)

(
ν2u − 1

) 2
u

− Γ(−u) (νu − 1)
(

2
u

+
1

1− u
+

1
2− u

)]
.
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Towards phenomenology

Borel functions contains perturbative and non-perturbative
informations (in part common to t and C).

• Coefficients of subleading logarithms (in the large nf limit):
expand in powers of u, with un → n!(b0αs/π)n+1.

• IR safety is expressed by cancellation of singularities at u = 0.

• Renormalons of collinear origin at u = 1, 2, corresponding to
power corrections of the form (ν/Q2)p, p = 1, 2.
NOTE: only relevant at τ, C ∼ Λ2/Q2, may depend on
massive definition of observable.

• Renormalons from wide angle soft radiation u = m/2, m odd,
corresponding to leading power corrections (ν/Q)m.
NOTE: Even powers absent in the large nf

inclusive approximation.
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Towards phenomenology

Thrust and C-parameter have common features and differences.

• Sudakov logarithms coincide up to NLL (Catani, Webber),
but differ beyond, due to soft emission.
⇒ Numerical growth of coefficients milder for C.

• Similar pattern of corrections: only odd powers of ν/Q.
⇒ May explain success of shifting perturbative distribution.
⇒ However: smaller residues of renormalon poles for C.

• Origin of differences: scale of soft emission is 2Qc for
c = C/6, while it is Qτ for τ = 1− T .

• Consequences: resummed perturbative prediction, and
approximation of shape function by shift expected to
work better for c than for τ .
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Angularities

• Definition: τa = 1
Q

∑
i(p⊥)ie−|ηi|(1−a) .

Also: τa = 1
Q

∑
i ωi(sin θi)a(1− | cos θi|)1−a ,

• Some properties
• τ0 = 1− T ; τ1 = B .
• a ≤ 2 for IR safety.
• a ≤ 1 for feasibility of resummation.

• For negative a, high rapidity particles (w.r.t. the thrust axis)
are weighted less: better collinear behavior.

• At one loop, with the thrust axis given by particle i,

τa = (1−xi)
1−a/2

xi

[
(1− xj)1−a/2(1− xk)a/2 + (j ↔ k)

]
.
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Resummation for angularities
Berger, Kucs, Sterman, hep-ph/0303051

• Sudakov logs at one loop have simple scaling with a.

dσ
dτa

∣∣∣(1)
log

= 2
2−a

2
τa

CF
αs

π ln
(

1
τa

)
= 2

2−a
dσ
dτ

∣∣(1)
log

.

• Resummation is intricate.

ln [ ˜σLL (ν, a)] = 2
1∫
0

du
u

[
uQ2∫

u2Q2

dp2
T

p2
T

A (αs(pT ))
(
e−u1−aν( pT

Q )a

− 1
)]

.

• General a-dependence of Sudakov logs is nontrivial.

g1(x, a) = − 4
β0

1
1− a

A(1)

x

[(
1

2− a
− x

)
ln (1− (2− a)x)

− (1− x) ln(1− x)

]
.
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Scaling of power corrections

An analysis of power corrections for angularities has been carried
out using resummation (Berger, Sterman) and using DGE (Berger,

LM). Remarkably

• A simple scaling holds. DGE yields

Bsoft
a (ν, u) = 1

1−a

[
2 e5u/3 sin πu

πu Γ(−2u)
(
ν2u − 1

)
2
u

]
• Collinear contribution shows an intricate structure of

fractional power corrections in DGE, but they are suppressed
by either ν/Q2−a or νb/Q2 with 0 < b < 1.

• In the shape function language

S
(a)
NP(ν/Q, µ) = 1

1−a S
(0)
NP(ν/Q, µ) ,

a testable prediction.
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What impact at Tevatron/LHC?

Fit of CDF data with NLO QCD assuming

ET -independent shift Λ in jet energy (Mangano,

hep-ph/9911256).

• Cross section ratio should scale up

to PDF ad αs effects.

• Data can be fitted with shift in

distribution.

• Small Λ has impact at high ET .

• σ(ET ) ∼ E−n
T → δσ

σ ∼ −nδET

• Several sources of energy flow in
and out of jets.
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Power corrections and other problems ...

• Sources of power corrections

• Soft radiation from hard antenna ⇒ resummation.

∗ Calculable in perturbative QCD.

∗ Partly localized in phase space.

• Soft radiation from underlying event ⇒ models.
∗ Not calculable in perturbative QCD.

∗ Fills phase space (minijets?)

• Experimental issues.
• Detector coverage and event cuts ⇒ constraints on global

event shapes.
• Observable-specific problems ⇒ jet algorithms,

non-global logarithms.

• Need discriminating observables ...
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An example: the transverse thrust
A. Banfi et al. hep-ph/0407287

τ⊥ distribution separated into different hard

scattering channels.

τ⊥ distribution summed over channels for different

E⊥,min cuts.

• Numerically resummable with CAESAR. Resummation
applicable to log τ⊥ ∼ ηmax.

• Discriminates parton channels.

• Underlying event modeled by shift.
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Event shape/energy flow correlations

Energy flow into Ω and origin of nonglobal logs

• Gluon 1: log(QΩ/Q).

• Gluon 2: log(QΩ/QΩ̄).

• Resummation of nonglobal logs
under study.

• Non-global → Non-Sudakov →
Non-linear.

• Can one suppress them?

• Study soft radiation without
hard antenna?
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Event shape/energy flow correlations

• In e+e− annihilation suppress nonglobal logs via

σ (ε1, ε2) = 1
2s

∑
N |M(N)|2 δ(ε1−fΩ(N)) δ(ε2−τ

(1)
a (N)−τ

(2)
a (N))

with fΩ(N) =
(∑

i∈Ω ωi

)
/s and τ

(n)
a the angularity of jet n.

• At small ε1, ε2, with ε1 ∼ ε2 radiation into Ω̄ is forced to the
two-jet limit.

• Possible generalization to hadron-hadron collisions: introduce
ε3 for beam jets. {εi, a} serve as handles to tune soft
radiation.

• εi � 1, a > 0: narrow jets, wide-angle radiation suppressed.
• εi � 1, a < 0: inclusive on soft radiation.
• ε3 ∼ 1, a < 0: suppress high rapidity.
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Perspective

• Event shape distributions map the transition between
perturbative and non-perturbative QCD (also in DIS ...)

• Theoretical advances lead to testable QCD-motivated models
of power corrections (shape functions).

• DGE combines resummation with renormalon calculus.
• All available perturbative information is retained.
• A well-defined matching betwen PT and NP is provided.
• Models for shape functions yield testable predictions:

C-parameter, angularities ...

• Detailed phenomenology awaits destiny of data

• Extension to hadron collisions desirable, flexible
observables required.
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