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Ancient History
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Note on the Radiation Field of the Electron

F. BrocH AND A. NORDSIECK*
Stanford University, California
(Received May 14, 1937)

Previous methods of treating radiative corrections in non-
stationary processes such as the scattering of an electron in
an atomic field or the emission of a g-ray, by an expansion’
in powers of e2/ke, are defective in that they predict infinite
low frequency corrections to the transition probabilities.
This difficulty can be avoided by a methed developed here
which is based on the alternative assumption that e%w/me3,
hw/me* and hw/cAp (w=angular frequency of radiation,
Ap=change in momentum of electron) are small compared
to unity. In contrast to the expansion in powers of /e,
this permits the transition to the classical limit A=0.

External perturbations on the electron are treated in the
Born approximation. It is shown that for frequencies such
that the above three parameters are negligible the quantum
mechanical calculation yields just the directly reinterpreted
results of the classical formulae, namely that the total
probability of a given change in the motion of the electron
is unaffected by the interaction with radiation, and that
the mean number of emitted quanta is infinite in such a way
that the mean radiated energy is equal to the energy
radiated classically in the corresponding trajectory.

A remarkable achievement, before quantum field theory was born.



Modern History

Factorization
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Progress

» Exponentiation applies to non-abelian gauge theories.
Exponentiation extends to collinear divergences.
Exponentiation is performed at the amplitude level.

An optimal regularization scheme is used.
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A long hiStOI‘y: (Mueller; Collins; Sen; Botts and Sterman; LM and Sterman;
Kidonakis, Oderda and Sterman; Catani, Grazzini; Sterman and Tejeda-Yeomans; ...)



Motivation: LHC phenomenology

Higgs boson spectrum at LHC (M. Grazzini, hep-ph/0512025)
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Predictions for the g7 spectrum of Higgs bosons produced via gluon fusion at the LHC, with

and without resummation.



Motivation: LHC phenomenology

Z boson spectrum at Tevatron (A. Kulesza ez al., hep-ph/0207148)
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CDF data on Z production compared with QCD predictions at fixed order (dotted), with

resummation (dashed), and with the inclusion of power corrections (solid).



Motivation: gauge field theories

» Understanding long-distance singularities to all orders provides
a window into non-perturbative effects.

» The structure of long-distance singularities is universal for all
massless gauge theories.

> A very special theory has emerged as a theoretical laboratory:
N = 4 Super Yang-Mills.

It is conformal invariant: Sar—4 (o) = 0.

Exponentiation of IR/C poles in scattering amplitudes simplifies.

AdS/CFT suggests a ‘simple’ description at strong coupling, in the planar limit.
Exponentiation has been observed for MHV amplitudes up to five legs.
Higher-point amplitudes are strongly constrained by (super)conformal symmetry.
A string calculation at strong coupling matches the perturbative result.

Amplitudes admit a dual description in terms of polygonal Wilson loops.
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Integrability leads to possibly exact expressions for anomalous dimensions.
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Integrability leads to possibly exact expressions for anomalous dimensions.

(Anastasiou, Bern, Dixon, Smirnov, Kosower; Alday, Maldacena; Brandhuber, Heslop, Spence, Travaglini;
Drummond, Henn, Korchemsky, Sokatchev; Beisert, Eden, Staudacher; ...)



Tools: dimensional regularization

Nonabelian exponentiation of IR/C poles requires d-dimensional evolution
equations. The running coupling in d = 4 — 2¢ obeys
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The one-loop solution is
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The /3 function develops an IR free fixed point, so that @(0, ) = 0 for e < 0.
The Landau pole is at
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» Integrations over the scale of the coupling can be analytically performed.

» All infrared and collinear poles arise by integration of cv(p?, €).



Tools: factorization

All factorizations separating dynamics at different energy scales lead to
resummation of logarithms of the ratio of scales.

» Renormalization group logarithms.
Renormalization factorizes cutoff dependence

G (pis N, 80) = Hz (M1, 8(1)) G (pi s 8(1))
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» RG evolution resums o (%) log" (0*/4”) Into os(0?).

Note: Factorization is the difficult step! It requires a diagrammatic analysis

» all-order power counting (UV, IR, collinear ...);

» implementation of gauge invariance via Ward identities.



Tools: factorization

» Collinear factorization logarithms.

Mellin moments of partonic DIS structure functions factorize
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» Altarelli-Parisi evolution resums collinear logarithms into evolved
parton distributions (or fragmentation functions).

Note: Sudakov (double) logarithms are more difficult.

P A double factorization is required: hard vs. collinear vs. soft. Gauge invariance plays a
key role in the decoupling.

P After identification of the relevant modes, effective field theory can be used (SCET).



Leading regions for Sudakov factorization.

Sudakov factorization

| 2

Divergences arise in fixed-angle amplitudes from
leading regions in loop momentum space.

Soft gluons factorize both form hard (easy) and
from collinear (intricate) virtual exchanges.

Jet functions J represent color singlet evolution of
external hard partons.

The soft function S is a matrix mixing the
available color representations.

In the planar limit soft exchanges are confined to
wedges: S o< I

In the planar limit S can be reabsorbed defining
jets J as square roots of elementary form factors.

Beyond the planar limit S is determined by an
anomalous dimension matrix [g.

Phenomenological applications to jet and heavy
quark production at hadron colliders.



Form Factors and Planar Amplitudes

(with L. Dixon and G. Sterman)



Gauge theory form factors
Consider as an example the quark form factor
2
T (p1,p2i 1%, €) = (01 (0)Ip1, p2) = (p2)yuu(pr) T <IQL—2,O«V(MZ)7 6) .

» The form factor obeys the evolution equation

5 2 1 2
¢ s og {r (?—a(;))} = 1 [k (castw) +6 (lg—a(u))} ,
» Renormalization group invariance requires

dG dK )
P = Hgn =K (ax(u )) -

vk () 1s the cusp anomalous dimension (G. Korchemsky and A. Radyushkin; ...).

» Dimensional regularization provides a trivial initial condition for
evolution if ¢ < 0 (for IR regularization).

a2 =0,e<0)=0 — r(O,aS(uz),e> =TI (1,a(0,¢),e)=1.



Detailed factorization
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Operator factorization for the Sudakov form factor, with subtractions.




Operator definitions

The functional form of this graphical factorization is
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‘We introduced factorization vectors nfl, with n,-2 = 0, to define the jets,

; ((p - n)* 7 Ou(#z)a 6> u(p) = (0|P,(c0,0)(0)|p) .

n? 2

where @, is the Wilson line operator along the direction n*.

A2
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The jet J has collinear divergences only along p.



Operator definitions

The soft function S is the eikonal limit of the massless form factor

S (81 B2, as(), €) = (01, (00,0) @5, (0, =50) 0)

Soft-collinear regions are subtracted dividing by eikonal jets 7.

J (Wl '2’")2,(y\.(,12),€> = (0]®y, (00,0) ®g, (0, —c0) |0)
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» S and 7 are pure counterterms in dimensional regularization.

» [3;-dependence of S and 7 violates rescaling invariance of Wilson lines.
= It arises from double poles, associated with .

» A single pole function where the cusp anomaly cancels is
S ([7'1 - Ba, as(11?), e)
T, 7 (252, 0 2) )

It can only depend on the scaling variable
(B /3’2) n] n7
(B1 - m)* (B2 - m2)?

S| (/)13, oz;(,u,z), E) =

P12 =



Jet evolution

The full form factor does not depend on the factorization vectors n’".
Defining x; = (3; - n:)* /nZ,

2
5 i log I (Q— Q; (,uz).e> =0,

ox;

This dictates the evolution of the jet J, through a ‘K + G’ equation
9 log J 9 logH + 9 log J;

ogJi = — xi—Io Xi 75— 108 Ji

Ox; © * Ox; £ t Ox;
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Imposing RG invariance of the form factor

5 (P12, as) + yu (P12, is) + 27 (as) = 0.

leads to the final evolution equation
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Collinear evolution

It is useful to establish a connection to conventional collinear factorization.
Define a parton-in-parton distribution as
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The virtual contribution can be isolated. At the amplitude level it is

— p-B )
Cara (22 au(4),€) = (0105(60.0) ,0) ).

Comparing factorizations for this amplitude and the jet J, and enforcing
Altarelli-Parisi evolution one finds
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where BE;’] is the virtual part of the splitting function,
Palx) = “/I[é](ai.) { 1
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Results for Sudakov form factors

» In dimensional regularization (¢ < 0) one has the boundary value
(0,€) = 1. Then

alr(@9] = 3 [ ravo(e(©) 9 va [ Fow09)

» The functions K and vk are not independent

1 N2
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Nd%/((f,ay) =—(as) = K (57%(“2)> _ 7% /()

YK (&()\2, 6)) .
» The form factor can be written in terms of just G and x,
(@9 oo {3 [ TE (10099
— % YK (H (5375) ) log (7;2)2)} } .

Recall: in general poles up to o’ /¢"*! appear in the exponent.




Implications

» The exponent is not affected by the Landau pole for e < 0. I is an
analytic function of the coupling and e. At one loop in QCD

2
logl (Q— (y\(,u F) (1 r)/\(Q2 )

7’710 {WE) b L(ng)lJ +261(e) log {1+ ‘@)H .

» The ratio of the timelike to the spacelike form factor admits a simple
representation

s iz L7 16 (3 (002 i [0 e
tog | L] = iZx(+5 [ [0 (a(0%) )5 [ doo (a (e%0?))]

» Infinities are confined to a phase given by ~«.

= The modulus of the ratio is finite, and physically relevant for
resummed EW annihilation processes.



Form factors in N/ = 4 SYM

» Ind = 4 — 2¢ conformal invariance is broken and () = —2 € .

» All integrations are trivial. The exponent has only double and single
poles to all orders (Z. Bern, L. Dixon, A. Smirnov).

(L a2 Iy w(xfz))” w2\ 6
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» In the planar limit this captures all singularities of fixed-angle
amplitudes in V' = 4 SYM.

» The analytic continuation yields a finite result in four dimensions,
arguably exact.

' re> |*_
r(-0?)




Characterizing G(oy;, €)

The single pole function G(cy, €) is a sum of anomalous dimensions

9 2
G(as, €) = B(e, as) Do logH — vg — 2v/ + Zgi,
o i=1

In d = 4 — 2¢ finite remainders can be neatly exponentiated

R 0% qg2 [dlogC (@ (€% ¢), e 1 ro* ag?
C((l\(Q_)vF) = exp |:/” giz {% }:| =P |:; /() 5% Ge <K (EZ'F) ’F):|

The soft function exponentiates like the full form factor

s 000 ) =} [ fou(w(€19) - (@) ()]}

G(ay, €) is then simply related to collinear splitting functions and to the
eikonal approximation

G(ay, €) = 2Bs (as) + Geik (o) + G (o, €)

Note: Gy does not generate poles; it vanishes in N = 4 SYM.



Single logarithms in resummation

A deeper characterization of infrared and collinear single poles in
amplitudes should be reflected in single logarithms in cross sections.

For a resummation as in the Drell-Yan cross section

N—1

2 2 1
N9 [ oo {FDY(O{‘) N / I
0

v (0%, €)

{2 /’i":)zQz ‘%‘;A () +0 (o (1 - 2°¢%)) H .

JQ?

Oys (N) = =

the function D(a;) should be related to Bs(a;) and to G(«;). Indeed,

Alas) = l(as)/2,
D(as) = 4Bs(as) —2G(as) + Blas) iFDY(OA\‘) ;
B(as) = Bs(as) — a(as) + B(O‘s) d(d)ég Fois(as)

where B(oy) is the single log function for DIS resummation, and G(«) is
derived I'eCUI‘SiVCly from G(cy) (Laenen, LM; Ravindran et al; Moch, Vermaseren, Vogt).



Beyond the Planar Limit

(with E. Gardi)




Factorization at fixed angle

Fixed-angle scattering amplitudes in any massless gauge theory can also be
factorized into hard, jet and soft functions.
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The soft function is now a matrix,
mixing the available color tensors.
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Soft exchanges mix color structures.



Soft anomalous dimensions

The soft function S obeys a matrix RG evolution equation
d P D) fa
M@Sm (ﬁ[ - B, ais(p”), E) =-T3 (Bi - By, s (1?), F) Sik (ﬂi - Bj, &s(/iz%f) 5

» Note: I is singular due to overlapping UV and collinear poles.

As before, S is a pure counterterm. In dimensional regularization, then

S (ﬂ,‘ . 3/',0,\.(/1,2),E> = Pexp |:—; /0/12 d?s;[‘s (()’,- . ﬁj,()/\(é'z’g),e):| o

Double poles cancel in the reduced soft function
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» S must depend on rescaling invariant variables, p; = % :
Lt 7

» The anomalous dimension IS (p;, a;) for the evolution of S is finite.



Surprising simplicity

» [ can be computed from UV poles of S

» Non-abelian eikonal exponentiation
selects the relevant diagrams: webs

» [© appears highly complex at high orders.

A web contributing to R,

The two-loop calculation (M. Aybat, L. Dixon, G. Sterman) leads to a surprising
result: for any number of light-like eikonal lines

2 K 1 67 10
r(s): Erg b= (E —C(Z)> CA_ETFCI-»

» No new kinematic dependence; no new matrix structure.

> « is the two-loop coefficient of v, rescaled by the appropriate Casimir,

W (es) = €0 22 + 5 ()] +0(ad) .



Kinematics and cusps

Eikonal jets illustrate how the cusp anomaly dictates kinematic dependence.

» 7 obeys its own ‘K + G’ equation, and it is a pure counterterm. Thus

1)) =1 [ (0 (s:0€.9) = 20 (o (€9)

» The factorization of the form factor links .7; to 'y,((i)

0.

» G 7, must then be proportional to ﬂ/,((i) and linear in In x;,
1 9
Gy, (31, 06) = =3 % () In(w) + b7, (cx).

P Kinematic dependence of eikonal jets is completely solved
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Factorization constraints
For general multi-leg amplitudes, the conclusion is less straightforward
» For eikonal jets, no J; dependence is possible except through the cusp.
» For n > 4 legs, rescaling-invariant combinations of [3;’s exist:

Pijkl = (1/3,' . ﬂ/)(ﬁ/‘r . 31)/((?, . 5/‘)(3] . ﬂ/)

Consider however the anomalous dimension for the reduced soft function

_ 2
() = 78 (3 00.0) =030 (B2 i)

This poses strong constraints on the soft matrix. Indeed

» Off-diagonal terms in ® must be finite, and must depend only on the
Cross-ratios p;j;.

» Singular terms in [° must be diagonal and proportional to .

» Finite diagonal terms must conspire to construct p;’s combining [3; - 3;
with x; = (8; - n;)*/n?.



Factorization constraints

The constraints can be formalized simply by using the chain rule.
I depends on x; in a simple way.

0 3 R 5]
xi— iis Ots) = — O Xi v (xi, as,€) = —
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This leads to a linear equation for the dependence of S on Pij
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» The equation relates S to 7k to all orders in perturbation theory

=> and should remain true at strong coupling as well.
» It correlates color and kinematics for any number of hard partons.

» [t admits a unique solution for amplitudes with up to three hard partons.

=> For n > 4 hard partons, functions of p;;; solve the homogeneous equation.



Minimal solution

The cusp anomalous dimension exhibits Casimir scaling up to three loops.
> 1«,(<) (as) = Ci Yk (cvs) with C; the quadratic Casimir and Jk () universal.
Denoting with 7 possible terms violating Casimir scaling, we write

0
> r
= 9n(py)

ik (as) + 79 (@) | Vi,

5 1
S (pyy as) = 7

By linearity, using the color generator notation, the scaling term yields

0 3 1 = 4
E r i, as) = — Ti - Ti Ak (o) Vi
z an(py) Q.C. (pij, ois) 2 Tk (cvs)
An all-order solution is the dipole formula (E. Gardi, LM; T. Becher, M. Neubert)

_ 1
S (pij, as) = —g K () Z In(p;) T; - T; + = 59((\ ZT - Ty,
J#

as easily checked using color conservation, >, 7; = 0.

Note: all known results for massless gauge theories are of this form.



Beyond the minimal solution?

» For » > 4 the constraint equation does not uniquely determine S: the
homogeneous equation has nontrivial solutions

ol

o o o
Z ¢ FS (p,:/', (1,\) =J0) =4 e = FS (/J,',‘k/,a,y) 5

= 0n(py)
» The cusp anomalous dimension may violate Casimir scaling starting at
four loops. This would add a contribution 5. satisfying

o 3 1 _(»
8 (pas) = ;70 (), Vi
_/%i ()ln(p,:,') o 4 =
» Evidence is accumulating in favor of the minimal solution

> A nontrivial function of p;j; fails to appear in IS at two loops.
= L bore
Hyy = Z Z 1fabe T;'TZT} n (pjxr) In (pirgj) In (pirjx)
jokyla,b,c

» The minimal solution holds for a subset of diagrams at three loops (L. Dixon).

> Symmetry arguments, using collinear limits, indicate that functions of p;;; do not
appear at three loops (T. Becher and M. Neubert).



Perspective

After O (10%) years, soft and collinear singularities in massless gauge
theories are still a fertile field of study.
=> We are probing the all-order structure of the nonabelian exponent.

=> All-order results constrain and test fixed order calculations.

= Understanding singularities has phenomenological applications through resummation.

» Factorization theorems = Evolution equations = Exponentiation.

» Dimensional continuation is the simplest and most elegant regulator.

=> Transparent mapping UV « IR for ‘pure counterterm’ functions.

» Remarkable simplifications in A/ = 4 SYM point to exact results.

» Only three functions, v, G and B; determine all singularities in the

planar limit, and possibly beyond.

Factorization and classical rescaling invariance severely constrain soft
anomalous dimensions to all orders and for any number of legs.

A simple dipole formula may encode all soft singularites for any
massless gauge theory.
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