RESUMMATIONS 000 000 000000 Event Shapes 00 00 000 DEVELOPMENTS

All-order results in QCD (and some of their applications)

Lorenzo Magnea

Università di Torino - INFN, Sezione di Torino

WHEPP X - Chennai - 02/01/08

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

INTRODUCTION
000
000
00

Resummation: 000 000 000000 Event Shapes 00 00 000

DEVELOPMENTS

Outline

Introduction

All-order QCD versus data The strategy of perturbative QCD The borders of perturbative QCD

Resummations

Factorization leads to Resummation The Sudakov form factor Electroweak annihilation

Event Shapes

Sudakov resummation for event shapes Power corrections and shape functions Angularities

Developments

INTRODUCTION • 00 • 00 • 00 • 00 • 00 RESUMMATIONS 000 000 000000 Event Shapes 00 00 000 DEVELOPMENTS

Soft gluons versus data

Z boson spectrum at Tevatron (A. Kulesza et al., hep-ph/0207148)

INTRODUCTION OOO OOO OO RESUMMATIONS 000 000 000000 Event Shapes 00 00 000 DEVELOPMENTS

Soft gluons versus data

Higgs boson spectrum at LHC (M. Grazzini, hep-ph/0512025)

Predictions for the q_T spectrum of Higgs bosons produced via gluon fusion at the LHC,

・ロト ・ 同ト ・ 日ト ・ 日

with and without resummation.

RESUMMATIONS 000 000 000000 Event Shapes 00 00 000 DEVELOPMENTS

Soft gluons versus data

Jet shape distributions (E. Gardi and J. Rathsmann, hep-ph/0201019)

LEP data on the Heavy Jet Mass distribution, compared with resummed QCD prediction, and with power corrections treated by Dressed Gluon Exponentiation.

3

(日)、

RESUMMATION 000 000 000000 Event Shapes 00 00 000

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

How can PQCD work at all?

- In a world of *hadrons*, we compute with *quarks* and *gluons*, which do not exist in the true asymptotic states of QCD.
- Perturbatively: the QCD *S*-matrix does not exist in the Fock space of quarks and gluons, due to mass singularities.
- *Example*: a massless fermion emits a massless gauge boson

• QCD is *worse than QED*: the *KLN theorem* cannot be applied, the true asymptotic states are not close enough to the Fock states.

Resummations 000 000 000000 Event Shapes 00 00 000 DEVELOPMENTS

The Strategy of Perturbative QCD

Infrared Safety: cancelling mass divergences.

• Compute partonic cross sections with IR regulator

$$\sigma_{\rm part} = \sigma_{\rm part} \left(\frac{Q^2}{\mu^2}, \alpha_s(\mu^2), \left\{ \frac{m^2(\mu^2)}{\mu^2}, \epsilon \right\} \right) \; .$$

Identify IR-safe cross sections, having a finite limit as regulators are removed (ε → 0, m²(μ²) → 0).

$$\sigma_{\text{part}} = \sigma_{\text{part}} \left(\frac{Q^2}{\mu^2}, \alpha_s(\mu^2), \{0, 0\} \right) + \mathcal{O}\left(\left\{ \left(\frac{m^2}{\mu^2} \right)^p, \epsilon \right\} \right) \ .$$

• Interpret σ_{part} as perturbative estimate of hadronic cross section valid up to corrections $\mathcal{O}\left((\Lambda_{QCD}/Q)^p\right)$

Resummations 000 000 000000 Event Shapes 00 00 000 DEVELOPMENTS

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The Strategy of Perturbative QCD

Factorization: neutralizing mass divergences.

• *Quantum incoherence* in the presence of different scales coupled with *gauge invariance* implies, to all orders in PT for inclusive cross sections,

$$\sigma_{\rm part} = f\left(\frac{m^2}{\mu_F^2}\right) \ast \widehat{\sigma}_{\rm part}\left(\frac{Q^2}{\mu^2}, \frac{\mu_F^2}{\mu^2}\right) + \mathcal{O}\left(\left(\frac{m^2}{\mu_F^2}\right)^p\right) \;.$$

- Combine $\hat{\sigma}_{part}$ (perturbatively finite but process-dependent) with universal f (non-perturbative, measured, universal) to derive hadronic cross section.
- Use the *arbitrariness* of μ_F to derive *evolution* equations for the μ_F dependence of $f(m^2/\mu_F^2)$, computable in perturbation theory.

Event Shapes 00 00 000

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The borders of perturbative QCD

Power Corrections

- Factorization theorems apply up to *nonperturbative* corrections suppressed by $\mathcal{O}\left(\left(\Lambda^2/Q^2\right)^p\right)$.
- In the presence of *several hard scales*, power corrections can be *enhanced*.

Example: DIS as $x \sim 1 \implies \mathcal{O}\left(\Lambda^2 / \left(Q^2(1-x)\right)\right)$.

- Power corrections can be phenomenologically significant even at LHC. They compete with NLO (at LEP) or NNLO (at LHC) perturbative corrections.
- All-order results in perturbation theory encode information on the parametric size of power corrections. Techniques: OPE, Renormalons, Sudakov resummations.

Resummations 000 000 000000 Event Shapes 00 00 000 DEVELOPMENTS

The borders of perturbative QCD

Large Logarithms

Multi-scale problems can have large perturbative corrections of the general form $\alpha_s^n \log^k (Q_i^2/Q_j^2)$, with $k \leq n$ (single logs) or k < 2n (double logs). Examples include

- Renormalization logs: $\alpha_s^n \log^n \left(Q^2/\mu_R^2\right)$.
- Collinear factorization logs: $\alpha_s^n \log^n \left(Q^2/\mu_F^2\right)$.
- High-energy logs: $\alpha_s^n \log^{n-2} (s/t)$.
- Sudakov logs in DIS: $\alpha_s^n \log^{2n-1} (Q^2/W^2)$.

in *Higgs* production: $\alpha_s^n \log^{2n-1} (1 - M_H^2/\hat{s})$.

• Transverse momentum logs: $\alpha_s^n \log^{2n-1} (Q_{\perp}^2/Q^2)$.

Note: Sudakov logs originate from *mass singularities*: they are *universal* and can/*must* be resummed.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Event Shapes 00 00 000

UNIVERSITAS

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Factorization leads to Resummation

All *factorizations* separating dynamics at different energy scales lead to *resummation* of logarithms of the ratio of scales.

• *Renormalization group* logarithms. Renormalization *factorizes* cutoff dependence

$$G_0^{(n)}(p_i, \Lambda, g_0) = \prod_{i=1}^n Z_i^{1/2}(\Lambda/\mu, g(\mu)) \ G_R^{(n)}(p_i, \mu, g(\mu)) \ ,$$

$$\frac{dG_0^{(n)}}{d\mu} = 0 \quad \to \quad \frac{d\log G_R^{(n)}}{d\log \mu} = -\sum_{i=1}^n \gamma_i \left(g(\mu) \right) \; .$$

• RG evolution resums $\alpha_s^n(\mu^2) \log^n (Q^2/\mu^2)$ into $\alpha_s(Q^2)$.

Note: Factorization is the difficult step!

Resummations 000 000000 Event Shapes 00 00 000 DEVELOPMENTS

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Factorization leads to Resummation

• Collinear factorization logarithms.

Mellin moments of partonic DIS structure functions factorize

$$\begin{split} \widetilde{F}_2\left(N,\frac{Q^2}{m^2},\alpha_s\right) &= \widetilde{C}\left(N,\frac{Q^2}{\mu_F^2},\alpha_s\right)\widetilde{f}\left(N,\frac{\mu_F^2}{m^2},\alpha_s\right)\\ &\frac{d\widetilde{F}_2}{d\mu_F} = 0 \quad \rightarrow \quad \frac{d\log\widetilde{f}}{d\log\mu_F} = \gamma_N\left(\alpha_s\right) \;. \end{split}$$

• *Altarelli-Parisi* evolution *resums* collinear logarithms into *evolved PDF's*.

Note: *Double* logarithms are more difficult. Ordinary renormalization group is not sufficient. Gauge invariance plays a key role. *Or:* use effective filed theory (SCET).

RESUMMATION	Ň
000	
000	
000000	

Event Shapes 00 00 000 DEVELOPMENTS

Tools: dimensional regularization

Nonabelian *exponentiation* of IR poles requires *d*-*dimensional* evolution equations. The *running coupling* in $d = 4 - 2\epsilon$ obeys

$$\mu \frac{\partial \overline{\alpha}}{\partial \mu} \equiv \beta(\epsilon, \overline{\alpha}) = -2 \epsilon \overline{\alpha} + \hat{\beta}(\overline{\alpha}) , \quad \hat{\beta}(\overline{\alpha}) = -\frac{\overline{\alpha}^2}{2\pi} \sum_{n=0}^{\infty} b_n \left(\frac{\overline{\alpha}}{\pi}\right)^n .$$

The one-loop solution is

$$\overline{\alpha}\left(\mu^2,\epsilon\right) = \alpha_s(\mu_0^2) \left[\left(\frac{\mu^2}{\mu_0^2}\right)^{\epsilon} - \frac{1}{\epsilon} \left(1 - \left(\frac{\mu^2}{\mu_0^2}\right)^{\epsilon}\right) \frac{b_0}{4\pi} \alpha_s(\mu_0^2) \right]^{-1} .$$

Note: $d \overline{\alpha}(\mu^2, \epsilon)/d\mu_0^2 = 0$; $\overline{\alpha}(\mu^2, 0)$ is the usual *finite* $\overline{\alpha}(\mu^2)$.

At two loops one can expand

$$\begin{split} \overline{\alpha}\left(\xi^{2},\epsilon\right) &= \alpha_{s}\,\xi^{-2\epsilon} + \alpha_{s}^{2}\,\xi^{-4\epsilon}\,\frac{b_{0}}{4\pi\epsilon}\left(1-\xi^{2\epsilon}\right) \\ &+ \alpha_{s}^{3}\,\xi^{-6\epsilon}\,\frac{1}{8\pi^{2}\epsilon}\left[\frac{b_{0}^{2}}{2\epsilon}\left(1-\xi^{2\epsilon}\right)^{2} + b_{1}\left(1-\xi^{4\epsilon}\right)\right] \,. \end{split}$$

RESUMMATION
000
000
000000

Event Shapes 00 00 000 DEVELOPMENTS

The quark form factor

Consider as an example the *quark form factor*

 $\Gamma_{\mu}(p_1, p_2; \mu^2, \epsilon) = \langle p_1, p_2 | J_{\mu}(0) | 0 \rangle = -\mathrm{i} e e_q \ \overline{u}(p_1) \gamma_{\mu} v(p_2) \ \Gamma\left(Q^2, \epsilon\right) \ .$

In dimensional regularization $I\!R$ and collinear singularities in the form factor factorize as

- $\Gamma\left(Q^2,\epsilon\right) = J\left(\frac{(p_i\cdot n)^2}{\mu^2 n^2}\right) \mathcal{S}\left(\beta_i\cdot n\right) H\left(\frac{(p_i\cdot n)^2}{\mu^2 n^2}\right)$.
- Gauge invariance implies $\frac{\partial \log \Gamma}{\partial \log(p_i \cdot n)} = 0.$
- $\frac{\partial \log J_i}{\partial \log(p_i \cdot n)} = -\frac{\partial \log H}{\partial \log(p_i \cdot n)} \frac{\partial \log S}{\partial \log(\beta_i \cdot n)}$.

Note: the *r.h.s* is sum of a finite function $G_J(Q^2, \epsilon)$ and a pure counterterm $K_J(\epsilon)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

RI	ESUMMATIONS
00	00
0	0
00	00000

Event Shapes 00 00 000

DEVELOPMENTS

The quark form factor

• A similar equation holds for the $full \ form \ factor$

$$Q^2 \frac{\partial}{\partial Q^2} \log \left[\Gamma\left(\frac{Q^2}{\mu^2}, \alpha_s(\mu^2), \epsilon\right) \right] = \frac{1}{2} \left[K\left(\epsilon, \alpha_s(\mu^2)\right) + G\left(\frac{Q^2}{\mu^2}, \alpha_s(\mu^2), \epsilon\right) \right] ,$$

• Renormalization group invariance of the form factor requires

$$\mu \, \frac{dG}{d\mu} = -\mu \, \frac{dK}{d\mu} = \gamma_K \left(\alpha_s(\mu^2) \right) \; , \label{eq:gamma}$$

Note: $\gamma_K(\alpha_s)$ is the *cusp anomalous dimension* of the Wilson line representing the quark pair trajectory in the *eikonal approximation*.

• Dimensional regularization provides a trivial initial condition for evolution if $\epsilon < 0$ (for IR regularization).

$$\overline{\alpha}(\boldsymbol{\mu}^2=\boldsymbol{0},\boldsymbol{\epsilon}<\boldsymbol{0})=\boldsymbol{0} \ \ \rightarrow \Gamma\left(\boldsymbol{0},\boldsymbol{\alpha}_s(\boldsymbol{\mu}^2),\boldsymbol{\epsilon}\right)=\Gamma\left(\boldsymbol{1},\overline{\alpha}\left(\boldsymbol{0},\boldsymbol{\epsilon}\right),\boldsymbol{\epsilon}\right)=\boldsymbol{1} \ .$$

RESUMMATION
000
000000

Event Shapes 00 00 000

Results for the Sudakov form factor

• In dimensional regularization ($\epsilon < 0 \rightarrow d > 4$) one can solve the evolution equation in *pure exponential* form

 $\log\left[\Gamma\left(Q^{2},\epsilon\right)\right] \ = \ \frac{1}{2} \int_{0}^{-Q^{2}} \frac{d\xi^{2}}{\xi^{2}} \left[K\left(\epsilon\right) + G\left(\overline{\alpha}\left(\xi^{2},\epsilon\right),\epsilon\right) + \frac{1}{2} \int_{\xi^{2}}^{\mu^{2}} \frac{d\lambda^{2}}{\lambda^{2}} \gamma_{K}\left(\overline{\alpha}\left(\lambda^{2},\epsilon\right)\right)\right]$

- All mass singularities are generated through integration over the scale of the *d*-dimensional running coupling
- For ε < -b₀α_s(Q²)/(4π), the Landau pole moves away from the real axis. Γ(Q², ε) can be analytically evaluated to the desired order in resummed perturbation theory.
- The *ratio* of the *timelike* to the *spacelike* form factor admits a simple representation

$$\log \left[\frac{\Gamma(Q^2, \epsilon)}{\Gamma(-Q^2, \epsilon)} \right] = i \frac{\pi}{2} K(\epsilon) + \frac{i}{2} \int_0^{\pi} \left[G\left(\overline{\alpha} \left(e^{i\theta} Q^2 \right), \epsilon \right) - \frac{i}{2} \int_0^{\theta} d\phi \, \gamma_K \left(\overline{\alpha} \left(e^{i\phi} Q^2 \right) \right) \right]$$

RESUMMATION
000
000
00000

Event Shapes 00 00 000 DEVELOPMENTS

Parton level Drell-Yan factorization

Cross sections for *electroweak annihilation* can be similarly *factorized* near threshold

Up to 1/N corrections

• $\omega(N,\epsilon) = |H_{\mathrm{DY}}|^2 \psi(N,\epsilon)^2 U(N)$.

(日)、

- 10

•
$$\psi(N,\epsilon) = \mathcal{R}(\epsilon) \psi_R(N,\epsilon)$$
,

•
$$U(N) = U_V(\epsilon) U_R(N, \epsilon)$$
,

Virtual contributions reconstruct the form factor

$$\begin{split} \omega(N,\epsilon) &= \left| H_{\rm DY} \, \mathcal{R}(\epsilon) \sqrt{U_V(\epsilon)} \right|^2 \, \psi_R(N,\epsilon)^2 \, U_R(N,\epsilon) \\ &= \left| \Gamma(Q^2,\epsilon) \right|^2 \, \psi_R(N,\epsilon)^2 \, U_R(N,\epsilon) \; . \end{split}$$

Resummations

Event Shapes 00 00 000 DEVELOPMENTS

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Collinear factorization in the $\overline{\mathrm{MS}}$ scheme

For *collinear factorization* one needs the $\overline{\text{MS}}$ quark distribution.

• Up to 1/N corrections, it *exponentiates*

$$\phi_{\overline{\mathrm{MS}}} (N, \epsilon) = \exp\left[\int_{0}^{\mu_{F}^{2}} \frac{d\xi^{2}}{\xi^{2}} \left(B_{\delta}\left(\overline{\alpha}(\xi^{2}, \epsilon)\right) + \int_{0}^{1} dz \, \frac{z^{N-1} - 1}{1 - z} A\left(\overline{\alpha}(\xi^{2}, \epsilon)\right)\right)\right].$$

Note: $A(\alpha_s)$ and $B_{\delta}(\alpha_s)$ are the singular parts of the AP kernels.

- A virtual contribution can be defined to cancel virtual poles. $\phi_V(\epsilon) = \exp\left\{\frac{1}{2}\int_0^{\mu_F^2} \frac{d\xi^2}{\xi^2} \left[K\left(\epsilon\right) + \tilde{G}\left(\overline{\alpha}(\xi^2, \epsilon)\right) + \frac{1}{2}\int_{\xi^2}^{\mu^2} \frac{d\lambda^2}{\lambda^2} \gamma_K\left(\overline{\alpha}(\lambda^2, \epsilon)\right) \right] \right\},$
- The function $\widetilde{G}(\alpha_s)$ can be defined *recursively*.

$$\begin{split} G\left(\alpha_{s},\epsilon\right) &= \sum_{n=1}^{\infty}\sum_{m=0}^{\infty}G_{n}^{(m)}\epsilon^{m}\left(\frac{\alpha_{s}}{\pi}\right)^{n},\\ \tilde{G}_{M+1} &= G_{M+1}^{(0)}-\frac{b_{0}}{4}G_{M}^{(1)}-\frac{b_{1}}{4}G_{M-1}^{(1)}+\frac{b_{0}^{2}}{16}G_{M-1}^{(2)}+\dots \end{split}$$

Resummations

Event Shapes 00 00 000 DEVELOPMENTS

The $\overline{\mathrm{MS}}$ scheme Drell-Yan cross section

The *factorized* Drell–Yan cross section in the $\overline{\text{MS}}$ scheme is the product of *separately finite* real and virtual terms.

$$\widehat{\omega}_{\overline{\mathrm{MS}}}\left(N\right) = \left|\frac{\Gamma(Q^{2},\epsilon)}{\phi_{V}(Q^{2},\epsilon)}\right|^{2} \left[U_{R}(N,\epsilon) \left(\frac{\psi_{R}(N,\epsilon)}{\phi_{R}(N,\epsilon)}\right)^{2}\right] ,$$

One recovers a generalization of the usual Drell-Yan resummation, $including \ N$ -independent terms (E. Laenen, LM)

$$\begin{aligned} \widehat{\omega}_{\overline{\mathrm{MS}}}\left(N\right) &= \left|\frac{\Gamma(Q^{2},\epsilon)}{\phi_{V}(Q^{2},\epsilon)}\right|^{2} \exp\left[F_{\overline{\mathrm{MS}}}\left(\alpha_{s}\right) + \int_{0}^{1} dz \, \frac{z^{N-1}-1}{1-z} \\ \left\{2 \, \int_{Q^{2}}^{(1-z)^{2}Q^{2}} \frac{d\mu^{2}}{\mu^{2}} \, A\left(\alpha_{s}(\mu^{2})\right) + D\left(\alpha_{s}\left((1-z)^{2}Q^{2}\right)\right)\right\}\right]. \end{aligned}$$

Similar results hold for all EW annihilation processes.

Alma Universitas Taurinensis

RESUMMATION
000
000
000000

Event Shapes 00 00 000

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Relating EW annihilation and DIS

- All threshold logarithms for Drell-Yan are determined by
 - The quark *form factor*.
 - Virtual contributions to the *quark splitting function*.
 - Lower order singular terms in the Drell-Yan cross section.

 $\begin{aligned} A(\alpha_s) &= \gamma_K(\alpha_s)/2 , \\ D(\alpha_s) &= 4 B_{\delta}(\alpha_s) - 2 \, \widetilde{G}(\alpha_s) + \hat{\beta}(\alpha_s) \, \frac{d}{d\alpha_s} F_{\overline{\mathrm{MS}}}(\alpha_s) . \end{aligned}$

- An *identical* formula applies to *Higgs production* via *gluon fusion*, after *integration* of the *top loop*.
 - The *gluon* form factor and splitting kernel *replace* the quark.
 - Up to *three loops* the result is obtained simply by replacing $C_F \leftrightarrow C_A$.

INTRODUCTION
000
000
00

RESUMMATION
000
000
000000

Event Shapes 00 00 000 DEVELOPMENTS

Finite order results

- At one loop: $A^{(1)} = C_F$, $D^{(1)} = 0$.
- At two loops: (E. Laenen et al., A. Vogt)

$$\begin{aligned} A^{(2)} &= \frac{1}{2} C_A C_F \left(\frac{67}{18} - \zeta(2) \right) - \frac{5}{18} n_f C_F \\ D^{(2)} &= \left(-\frac{101}{27} + \frac{11}{3} \zeta(2) + \frac{7}{2} \zeta(3) \right) C_A C_F + \left(\frac{14}{27} - \frac{2}{3} \zeta(2) \right) n_f C_F \end{aligned}$$

• At *three loops:* (S. Moch and A. Vogt, E. Laenen and LM)

$$\begin{split} A^{(3)} &= C_F C_A^2 \left(\frac{245}{96} - \frac{67}{36}\zeta_2 + \frac{11}{24}\zeta_3 + \frac{11}{20}\zeta_2^2\right) + C_F^2 n_f \left(-\frac{55}{96} + \frac{1}{2}\zeta_3\right) \\ &+ C_F C_A n_f \left(-\frac{209}{436} + \frac{5}{18}\zeta_2 - \frac{7}{12}\zeta_3\right) - \frac{1}{108}C_F n_f^2 \,. \\ D^{(3)} &= \left(-\frac{297029}{23328} + \frac{6139}{324}\zeta(2) - \frac{187}{60}\zeta^2(2) + \frac{2509}{108}\zeta(3) - \frac{11}{6}\zeta(2)\zeta(3) - 6\zeta(5)\right) C_A^2 C_F \\ &+ \left(\frac{31313}{11664} - \frac{1837}{324}\zeta(2) + \frac{23}{30}\zeta^2(2) - \frac{155}{36}\zeta(3)\right) n_f C_A C_F \\ &+ \left(\frac{1711}{864} - \frac{1}{2}\zeta(2) - \frac{1}{5}\zeta^2(2) - \frac{19}{18}\zeta(3)\right) n_f C_F^2 \\ &+ \left(-\frac{58}{729} + \frac{10}{27}\zeta(2) + \frac{5}{27}\zeta(3)\right) n_f^2 C_F \,. \end{split}$$

Resummations

Event Shapes 00 00 000

Features of Sudakov resummation

• Non-trivial. Reorganizes perturbation theory in a predictive way. For threshold resummation, let $L = \log N$. Then

$$\sum_k \alpha_s^k \sum_p^{2k} c_{kp} L^p \to \exp\left[\sum_k \alpha_s^k \sum_p^{k+1} d_{kp} L^p\right] \ .$$

- Predictive. Resummation extends the range of perturbative methods. Fixed order: α_sL² ≪ 1. NLL resummation: α_s ≪ 1 suffices. Scale dependence is reduced.
- Widespread. NLL soft gluon resummations *exist* for *most inclusive cross sections* of interest at colliders (NNLL now available for processes which are *EW* at tree level).
- Non-perturbative aspects of QCD become *accessible*. Integrals in the exponent run into the *Landau pole*.

Resummations 000 000 000000 Event Shapes •• •• •• •• •• DEVELOPMENTS

On event shape distributions

Picturing the final state of high-energy collisions

• Thrust: $T = \max_{\hat{n}} \frac{\sum_i |\vec{p}_i \cdot \hat{n}|}{Q}$; $\tau = 1 - T$.

 \rightarrow \hat{n} is used to define several other shape variables.

• C-parameter: $C = 3 - \frac{3}{2} \sum_{i,j} \frac{(p_i \cdot p_j)^2}{(p_i \cdot q) (p_j \cdot q)}$.

 \rightarrow does not require maximization procedures.

• Angularity: $\tau_a = \frac{1}{Q} \sum_i (p_\perp)_i e^{-|\eta_i|(1-a)}$.

 \rightarrow recently introduced, *one-parameter* family.

• Transverse Thrust: $T_{\perp} = \max_{\hat{n}_{\perp}} \frac{\sum_{i} |\vec{p}_{\perp i} \cdot \hat{n}_{\perp}|}{\sum_{i} \vec{p}_{\perp i}}$.

 \rightarrow defined for *hadron-hadron* collisions

Resummations 000 000 000000 DEVELOPMENTS

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Resumming Sudakov logarithms

Infrared and collinear emission dominates the two-jet limit

- Large double logarithms of the variable vanishing in the two-jet limit (L = log τ; L = log C;...) enhance finite orders → need to resum.
- As before, a pattern of *exponentiation* emerges

 $\sum_{k} \alpha_s^k \sum_{p}^{2k} c_{kp} L^p \to \exp\left[L g_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots\right]$

• In general the Laplace transform exponentiates. For thrust

$$\int_{0}^{\infty} d\tau \,\mathrm{e}^{-\nu\tau} \frac{1}{\sigma} \frac{d\sigma}{d\tau} = \exp\left[\int_{0}^{1} \frac{du}{u} \left(\mathrm{e}^{-u\nu} - 1\right) \left(B\left(\alpha_{s}\left(uQ^{2}\right)\right) + 2\int_{u^{2}Q^{2}}^{uQ^{2}} \frac{dq^{2}}{q^{2}} A\left(\alpha_{s}(q^{2})\right)\right)\right].$$

Event Shapes $\circ \circ$ $\circ \circ$ $\circ \circ \circ$

Reaching beyond perturbation theory

Exponentiating power corrections

- The exponent is *ill-defined* because of the *Landau pole* regularization → ambiguity → power corrections
- Focus on small τ , large ν , set IR factorization scale μ , expand in powers of ν/Q (soft), neglecting ν/Q^2 (collinear).

$$S_{\rm NP}(\nu/Q,\mu) = 2 \int_0^{\mu^2} \frac{dq^2}{q^2} A\left(\alpha_s(q^2)\right) \int_{q^2/Q^2}^{q/Q} \frac{du}{u} \left(e^{-u\nu} - 1\right)$$
$$\simeq \sum_{n=1}^{\infty} \frac{1}{n!} \left(-\frac{\nu}{Q}\right)^n \lambda_n(\mu^2) ,$$

• *Non-perturbative* parameters

$$\lambda_n(\mu^2) = \frac{2}{n} \int_0^{\mu^2} dq^2 \, q^{n-2} A\left(\alpha_s(q^2)\right)$$

Resummations 000 000 000000 Event Shapes $\circ\circ$ $\circ\bullet$ $\circ\circ\circ$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Parametrizing power corrections

Shape functions

• The parameters $\lambda_n(\mu^2)$ build up a *shape function*

 $\exp\left[S_{\rm NP}(\nu/Q,\mu)\right] \equiv \int_0^\infty d\epsilon \,{\rm e}^{-\nu\,\epsilon/Q}\,f_\tau(\epsilon,\mu)\;.$

- The physical *distribution* is recovered via inverse transform $\sigma(\tau) \sim \int_{0}^{\tau Q} d\epsilon f_{\tau}(\epsilon, \mu) \sigma_{_{\rm PT}} (\tau - \epsilon/Q) .$
- One recovers the *perturbative* result *shifted* by the soft energy flow, and *smeared* by the shape function.
- Universality of power corrections is in general *lost*, however *specific* observables still *related* $(1 T, \rho_J, C, ...)$.
- Assumption: smooth transition to nonperturbative regime.

Resummation: 000 000 000000 Event Shapes $\begin{array}{c} \circ \circ \\ \circ \circ \circ \\ \bullet \circ \circ \end{array}$

DEVELOPMENTS

Angularities (C.F. Berger, G. Sterman)

• Definition: $\tau_a = \frac{1}{Q} \sum_i (p_\perp)_i e^{-|\eta_i|(1-a)}$.

Also: $\tau_a = \frac{1}{Q} \sum_i \omega_i (\sin \theta_i)^a (1 - |\cos \theta_i|)^{1-a}$,

- Some properties
 - $\tau_0 = 1 T$; $\tau_1 = B$.
 - *a* < 2 for IR safety.
 - *a* < 1 for simplicity of resummation (*recoil* negligible).
- For *negative a*, high rapidity particles (*w.r.t.* the thrust axis) are weighted less: *better* collinear behavior.
- At one loop, with the thrust axis given by particle *i*,

$$\tau_a = \frac{(1-x_i)^{1-a/2}}{x_i} \left[(1-x_j)^{1-a/2} (1-x_k)^{a/2} + (j \leftrightarrow k) \right]$$

Resummations 000 000 000000 Event Shapes $\circ\circ$ $\circ\circ$ $\circ\circ$ $\circ\circ\circ$ DEVELOPMENTS

Resummation for angularities

• Sudakov logs at one loop have *simple scaling* with *a*.

$$\left. \frac{d\sigma}{d\tau_a} \right|_{\log}^{(1)} = \frac{2}{2-a} \frac{2}{\tau_a} C_F \frac{\alpha_s}{\pi} \ln\left(\frac{1}{\tau_a}\right) = \frac{2}{2-a} \left. \frac{d\sigma}{d\tau} \right|_{\log}^{(1)}.$$

• Resummation is *intricate*. To *NLL* accuracy

$$\tilde{\sigma}_{a}(\nu) = \exp\left\{2\int_{0}^{1} \frac{du}{u} \left[\int_{u^{2}Q^{2}}^{uQ^{2}} \frac{dq^{2}}{q^{2}}A\left(\alpha_{s}(q^{2})\right)\left(e^{-u^{1-a}\nu(q/Q)^{a}}-1\right)\right.\right.\\\left.\left.\left.+\frac{1}{2}B\left(\alpha_{s}(uQ^{2})\right)\left(e^{-u\nu^{2/(2-a)}}-1\right)\right]\right\}.$$

• General *a*-dependence of Sudakov logs is *nontrivial*.

$$g_1(x,a) = -\frac{4}{\beta_0} \frac{2-a}{1-a} \frac{A^{(1)}}{x} \left[\frac{1-x}{2-a} \ln(1-x) - \left(1-\frac{x}{2-a}\right) \ln\left(1-\frac{x}{2-a}\right) \right].$$

Resummations 000 000 000000 Event Shapes $\circ\circ$ $\circ\circ$ $\circ\circ$ DEVELOPMENTS

Scaling for the shape function

As done for *thrust*, focus on *small* τ_a, *large* ν, set IR factorization scale μ, expand in powers of ν/Q (soft), *neglecting* ν/Q² (collinear). In this case

$$\begin{split} S_{\rm NP}^{(a)}(\nu/Q,\mu) &= 2 \int_0^{\mu^2} \frac{dq^2}{q^2} A\left(\alpha_s(q^2)\right) \int_{q^2/Q^2}^{q/Q} \frac{du}{u} \left(e^{-u^{1-a}\nu(q/Q)^a} - 1\right) \\ &\simeq \quad \frac{1}{1-a} \, \sum_{n=1}^{\infty} \, \frac{1}{n!} \left(-\frac{\nu}{Q}\right)^n \lambda_n(\mu^2) \,, \end{split}$$

• The *full result* suggested by the resummation can be expressed in terms of *the shape function for thrust*

$$\tilde{\sigma}_{a}\left(\nu\right)=\tilde{\sigma}_{a}^{\mathrm{PT}}\left(\nu,\mu\right)\,\tilde{f}_{a}^{\mathrm{NP}}\left(\frac{\nu}{Q},\mu\right)=\left[\tilde{f}_{0}^{\mathrm{NP}}\left(\frac{\nu}{Q},\mu\right)\right]^{1/(1-a)}$$

• The *scaling rule* can already be tested with LEP data.

Resummation 000 000 000000 Event Shapes 00 00 000 DEVELOPMENTS

Recent developments

- Joint resummation (p_T and threshold).
- *Automatic* resummation (Caesar).
- Non-global logarithms.

.

- Subleading logarithms $((\log^p N)/N)$.
- Resummed parton distributions.
- Dressed gluon exponentiation (DGE).
- Resummation with *effective field theories* (SCET).
- Power corrections in hadron collisions.
- Resummation in Susy theories, towards AdS/CFT.

INTRODUCTION
000
000
00

Resummations 000 000 000000 Event Shapes 00 00 000

Resummations, supersymmetry and strings

• Supersymmetric versions of Yang-Mills theory and QCD have remarkable properties.

Example: $\mathcal{N} = 4$ SYM is conformal invariant: $\beta_{\mathcal{N}=4}(\alpha_s) = 0$.

• *Exponentiation* of IR/C poles in QCD amplitudes *simplifies*

$$\log\left[\Gamma\left(Q^2,\epsilon\right)\right] \ = \ - \ \frac{1}{2} \ \sum_{n=1}^{\infty} \left(\frac{\alpha_s(Q^2)}{\pi}\right)^n \, \mathrm{e}^{-\mathrm{i}\pi n\epsilon} \left[\frac{\gamma_K^{(n)}}{2n^2\epsilon^2} + \frac{G^{(n)}(\epsilon)}{n\epsilon}\right] \ ,$$

Note: at most *double* poles in the exponent.

- Thanks to AdS/CFT, $\mathcal{N} = 4$ SYM must 'be simple' at strong coupling. Can this be seen in perturbation theory?
- *Exponentiation* has been observed for amplitudes with up to *three loops* or *five legs* (Z. Bern *et al.*).
- A *stringy* calculation at *strong coupling* is consistent with the *perturbative result* (L. Alday and J. Maldacena).

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

INTRODUCTIO
000
000
00

RESUMMATION 000 000 000000 Event Shapes 00 00 000 Developments

Perspective

- Sudakov resummations are a very active and rapidly progressing field of study in QCD.
- They are *necessary* for phenomenological analysis of *data* in a variety of processes.
- They provide a *window* into *nonperturbative* contributions to many high energy cross-sections.
- The *boundaries* of IR/C *nonabelian exponentiation* are still being *probed*.
- *Dimensional regularization* is a powerful tool. Bypassing the *Landau pole* it links to *non-perturbative* effects.
- *Remarkable results* in quantum field theory *link* resummations in *super Yang-Mills* with *string theory*.

