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Soft gluons versus data

Z boson spectrum at Tevatron (A. Kulesza et al., hep-ph/0207148)

66 < Q < 116 GeV

CDF

CDF data on Z production compared with QCD predictions at fixed order (dotted), with

resummation (dashed), and with the inclusion of power corrections (solid).
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Soft gluons versus data

Higgs boson spectrum at LHC (M. Grazzini, hep-ph/0512025)

Predictions for the qT spectrum of Higgs bosons produced via gluon fusion at the LHC,

with and without resummation.
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Soft gluons versus data

Jet shape distributions (E. Gardi and J. Rathsmann, hep-ph/0201019)

LEP data on the Heavy Jet Mass distribution, compared with resummed QCD prediction,

and with power corrections treated by Dressed Gluon Exponentiation.
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How can PQCD work at all?

• In a world of hadrons, we compute with quarks and gluons,
which do not exist in the true asymptotic states of QCD.

• Perturbatively: the QCD S-matrix does not exist in the Fock
space of quarks and gluons, due to mass singularities.

• Example: a massless fermion emits a massless gauge boson

→ − igu(p)ε/(k)ta
i(p/ + k/)

(p + k)2 + iε
M ,

2p · k = 2 p0 k0 (1− cos θpk) = 0 ,

k0 = 0 (IR); cos θpk = 0 (C).

• QCD is worse than QED: the KLN theorem cannot be
applied, the true asymptotic states are not close
enough to the Fock states.
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The Strategy of Perturbative QCD

Infrared Safety: cancelling mass divergences.

• Compute partonic cross sections with IR regulator

σpart = σpart

(
Q2

µ2
, αs(µ2),

{
m2(µ2)
µ2

, ε

})
.

• Identify IR–safe cross sections, having a finite limit as
regulators are removed (ε→ 0, m2(µ2) → 0).

σpart = σpart

(
Q2

µ2
, αs(µ2), {0, 0}

)
+O

({(
m2

µ2

)p
, ε

})
.

• Interpret σpart as perturbative estimate of hadronic
cross section valid up to corrections O ((ΛQCD/Q)p)
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The Strategy of Perturbative QCD

Factorization: neutralizing mass divergences.

• Quantum incoherence in the presence of different scales
coupled with gauge invariance implies, to all orders in PT for
inclusive cross sections,

σpart = f

(
m2

µ2
F

)
∗ σ̂part

(
Q2

µ2
,
µ2
F

µ2

)
+O

((
m2

µ2
F

)p)
.

• Combine σ̂part (perturbatively finite but process–dependent)
with universal f (non-perturbative, measured, universal) to
derive hadronic cross section.

• Use the arbitrariness of µF to derive evolution
equations for the µF dependence of f(m2/µ2

F ),
computable in perturbation theory.
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The borders of perturbative QCD

Power Corrections

• Factorization theorems apply up to nonperturbative
corrections suppressed by O

((
Λ2/Q2

)p)
.

• In the presence of several hard scales, power corrections can
be enhanced.

Example: DIS as x ∼ 1 ⇒ O
(
Λ2/

(
Q2(1− x)

))
.

• Power corrections can be phenomenologically significant
even at LHC. They compete with NLO (at LEP) or NNLO
(at LHC) perturbative corrections.

• All-order results in perturbation theory encode information
on the parametric size of power corrections.

Techniques: OPE, Renormalons,
Sudakov resummations.
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The borders of perturbative QCD

Large Logarithms

Multi–scale problems can have large perturbative corrections of
the general form αns logk

(
Q2
i /Q

2
j

)
, with k ≤ n (single logs) or

k < 2n (double logs). Examples include

• Renormalization logs: αns logn
(
Q2/µ2

R

)
.

• Collinear factorization logs: αns logn
(
Q2/µ2

F

)
.

• High–energy logs: αns logn−2 (s/t).

• Sudakov logs in DIS : αns log2n−1
(
Q2/W 2

)
.

in Higgs production: αns log2n−1
(
1−M2

H/ŝ
)
.

• Transverse momentum logs: αns log2n−1
(
Q2
⊥/Q

2
)
.

Note: Sudakov logs originate from mass singularities:
they are universal and can/must be resummed.
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Factorization leads to Resummation

All factorizations separating dynamics at different energy scales
lead to resummation of logarithms of the ratio of scales.

• Renormalization group logarithms.

Renormalization factorizes cutoff dependence

G
(n)
0 (pi,Λ, g0) =

n∏
i=1

Z
1/2
i (Λ/µ, g(µ)) G(n)

R (pi, µ, g(µ)) ,

dG
(n)
0

dµ
= 0 →

d logG(n)
R

d logµ
= −

n∑
i=1

γi (g(µ)) .

• RG evolution resums αns (µ2) logn
(
Q2/µ2

)
into αs(Q2).

Note: Factorization is the difficult step!
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Factorization leads to Resummation

• Collinear factorization logarithms.

Mellin moments of partonic DIS structure functions factorize

F̃2

(
N,

Q2

m2
, αs

)
= C̃

(
N,

Q2

µ2
F

, αs

)
f̃

(
N,

µ2
F

m2
, αs

)

dF̃2

dµF
= 0 → d log f̃

d logµF
= γN (αs) .

• Altarelli-Parisi evolution resums collinear logarithms into
evolved PDF’s.

Note: Double logarithms are more difficult. Ordinary
renormalization group is not sufficient. Gauge invariance
plays a key role. Or: use effective filed theory (SCET).
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Tools: dimensional regularization

Nonabelian exponentiation of IR poles requires d-dimensional
evolution equations. The running coupling in d = 4− 2ε obeys

µ
∂α

∂µ
≡ β(ε, α) = − 2 ε α + β̂(α) , β̂(α) = − α2

2π

∞∑
n=0

bn

(
α

π

)n
.

The one-loop solution is

α
(
µ2, ε

)
= αs(µ2

0)
[(

µ2

µ2
0

)ε
− 1
ε

(
1−

(
µ2

µ2
0

)ε)
b0
4π

αs(µ2
0)
]−1

.

Note: dα(µ2, ε)/dµ2
0 = 0; α(µ2, 0) is the usual finite α(µ2).

At two loops one can expand

α
(
ξ2, ε

)
= αs ξ

−2ε + α2
s ξ
−4ε b0

4πε
(
1− ξ2ε

)
+ α3

s ξ
−6ε 1

8π2ε

[
b20
2ε
(
1− ξ2ε

)2
+ b1

(
1− ξ4ε

)]
.
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The quark form factor

Consider as an example the quark form factor

Γµ(p1, p2;µ2, ε) = 〈p1, p2|Jµ(0)|0〉 = −ieeq u(p1)γµv(p2) Γ
(
Q2, ε

)
.

In dimensional regularization IR and collinear singularities in the
form factor factorize as

• Γ
(
Q2, ε

)
= J

(
(pi·n)2

µ2n2

)
S (βi · n)H

(
(pi·n)2

µ2n2

)
.

• Gauge invariance implies ∂ log Γ
∂ log(pi·n) = 0.

• ∂ log Ji

∂ log(pi·n) = − ∂ logH
∂ log(pi·n) −

∂ log S
∂ log(βi·n) .

Note: the r.h.s is sum of a finite
function GJ(Q2, ε) and a pure
counterterm KJ(ε).
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The quark form factor

• A similar equation holds for the full form factor

Q
2 ∂

∂Q2
log

"
Γ

 
Q2

µ2
, αs(µ

2
), ε

!#
=

1

2

"
K
“

ε, αs(µ
2
)
”

+ G

 
Q2

µ2
, αs(µ

2
), ε

!#
,

• Renormalization group invariance of the form factor requires

µ
dG

dµ
= −µ

dK

dµ
= γK

“
αs(µ

2
)
”

,

Note: γK(αs) is the cusp anomalous dimension of the Wilson line

representing the quark pair trajectory in the eikonal approximation.

• Dimensional regularization provides a trivial initial
condition for evolution if ε < 0 (for IR regularization).

α(µ
2

= 0, ε < 0) = 0 → Γ
“
0, αs(µ

2
), ε
”

= Γ (1, α (0, ε) , ε) = 1 .
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Results for the Sudakov form factor

• In dimensional regularization (ε < 0 → d > 4) one can solve the
evolution equation in pure exponential form

log
h
Γ
“

Q
2
, ε
”i

=
1

2

Z −Q2

0

dξ2

ξ2

"
K (ε) + G

“
α
“

ξ
2
, ε
”

, ε
”

+
1

2

Z µ2

ξ2

dλ2

λ2
γK

“
α
“

λ
2
, ε
””#

• All mass singularities are generated through integration over
the scale of the d-dimensional running coupling

• For ε < −b0αs(Q2)/(4π), the Landau pole moves away from
the real axis. Γ(Q2, ε) can be analytically evaluated to the
desired order in resummed perturbation theory.

• The ratio of the timelike to the spacelike form factor admits
a simple representation

log

"
Γ(Q2, ε)

Γ(−Q2, ε)

#
= i

π

2
K(ε) +

i

2

Z π

0

h
G
“

α
“
e
iθ

Q
2
”

, ε
”
−

i

2

Z θ

0
dφ γK

“
α
“
e
iφ

Q
2
”” i
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Parton level Drell-Yan factorization

Cross sections for electroweak annihilation can be similarly
factorized near threshold

Factorization of ω(N,Q2, ε)
The resummation of threshold logarithms in the Drell–Yan
process (log(Q2/s) → log N upon Mellin transform) relies upon a
factorization of the unsubtracted cross section ω at large N .

PSfrag replacements

ψ

ψ

HH U

In an axial gauge ψ is a parton distribution containing collinear and
soft-collinear enhancements, U is an eikonal function responsible
for wide-angle soft emission. One finds

ω(N, ε) = |HDY|2 ψ(N, ε)2 U(N) + O(1/N) .

To recover the form factor, one must separate purely virtual
contribution from real emission.

ψ(N, ε) = R(ε) ψR(N, ε) ,

U(N) = UV (ε) UR(N, ε) ,

where R(ε) is the residue of the axial gauge quark propagator.

– St. Petersburg, 25/04/2003 – 5

Up to 1/N corrections

• ω(N, ε) = |HDY|2 ψ(N, ε)2 U(N) .

• ψ(N, ε) = R(ε) ψR(N, ε) ,

• U(N) = UV (ε) UR(N, ε) ,

Virtual contributions reconstruct the form factor

ω(N, ε) =
∣∣∣HDYR(ε)

√
UV (ε)

∣∣∣2 ψR(N, ε)2 UR(N, ε)

=
∣∣Γ(Q2, ε)

∣∣2 ψR(N, ε)2 UR(N, ε) .
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Collinear factorization in the MS scheme

For collinear factorization one needs the MS quark distribution.

• Up to 1/N corrections, it exponentiates

φMS (N, ε) = exp

" Z µ2
F

0

dξ2

ξ2

 
Bδ

“
α(ξ

2
, ε)
”

+

Z 1

0
dz

zN−1 − 1

1− z
A
“

α(ξ
2
, ε)
”!#

.

Note: A(αs) and Bδ(αs) are the singular parts of the AP kernels.

• A virtual contribution can be defined to cancel virtual poles.

φV (ε) = exp

(
1

2

Z µ2
F

0

dξ2

ξ2

"
K (ε) + eG “α(ξ

2
, ε)
”

+
1

2

Z µ2

ξ2

dλ2

λ2
γK

“
α(λ

2
, ε)
” #)

,

• The function G̃(αs) can be defined recursively.

G (αs, ε) =
∞X

n=1

∞X
m=0

G
(m)
n ε

m
„

αs

π

«n
,

eGM+1 = G
(0)
M+1 −

b0

4
G

(1)
M
−

b1

4
G

(1)
M−1 +

b20

16
G

(2)
M−1 + . . .
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The MS scheme Drell-Yan cross section

The factorized Drell–Yan cross section in the MS scheme is the
product of separately finite real and virtual terms.

ω̂MS (N) =
∣∣∣ Γ(Q2,ε)
φV (Q2,ε)

∣∣∣2 [UR(N, ε)
(
ψR(N,ε)
φR(N,ε)

)2
]
,

One recovers a generalization of the usual Drell-Yan resummation,
including N -independent terms (E. Laenen, LM)

ω̂MS (N) =
∣∣∣∣ Γ(Q2, ε)
φV (Q2, ε)

∣∣∣∣2 exp

[
FMS (αs) +

∫ 1

0

dz
zN−1 − 1

1− z{
2
∫ (1−z)2Q2

Q2

dµ2

µ2
A
(
αs(µ2)

)
+D

(
αs
(
(1− z)2Q2

))}]
.

Similar results hold for all EW annihilation processes.
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Relating EW annihilation and DIS

• All threshold logarithms for Drell-Yan are determined by
• The quark form factor.
• Virtual contributions to the quark splitting function.
• Lower order singular terms in the Drell-Yan cross section.

A(αs) = γK(αs)/2 ,

D(αs) = 4Bδ(αs)− 2 G̃(αs) + β̂(αs)
d

dαs
FMS (αs) .

• An identical formula applies to Higgs production via gluon
fusion, after integration of the top loop.

• The gluon form factor and splitting kernel replace the quark.
• Up to three loops the result is obtained simply by

replacing CF ↔ CA.
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Finite order results

• At one loop: A(1) = CF , D(1) = 0 .

• At two loops: (E. Laenen et al., A. Vogt)

A
(2)

=
1

2
CACF

„
67

18
− ζ(2)

«
−

5

18
nf CF

D
(2)

=

„
−

101

27
+

11

3
ζ(2) +

7

2
ζ(3)

«
CACF +

„
14

27
−

2

3
ζ(2)

«
nf CF ,

• At three loops: (S. Moch and A. Vogt, E. Laenen and LM)

A
(3)

= CF C
2
A

„
245

96
−

67

36
ζ2 +

11

24
ζ3 +

11

20
ζ
2
2

«
+ C

2
F nf

„
−

55

96
+

1

2
ζ3

«
+ CF CAnf

„
−

209

436
+

5

18
ζ2 −

7

12
ζ3

«
−

1

108
CF n

2
f .

D
(3)

=

„
−

297029

23328
+

6139

324
ζ(2)−

187

60
ζ
2
(2) +

2509

108
ζ(3)−

11

6
ζ(2)ζ(3)− 6ζ(5)

«
C

2
ACF

+

„
31313

11664
−

1837

324
ζ(2) +

23

30
ζ
2
(2)−

155

36
ζ(3)

«
nf CACF

+

„
1711

864
−

1

2
ζ(2)−

1

5
ζ
2
(2)−

19

18
ζ(3)

«
nf C

2
F

+

„
−

58

729
+

10

27
ζ(2) +

5

27
ζ(3)

«
n
2
f CF .
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Features of Sudakov resummation

• Non–trivial. Reorganizes perturbation theory in a predictive
way. For threshold resummation, let L = logN . Then

∑
k

αks

2k∑
p

ckpL
p → exp

[∑
k

αks

k+1∑
p

dkpL
p

]
.

• Predictive. Resummation extends the range of perturbative
methods. Fixed order: αsL2 � 1. NLL resummation: αs � 1
suffices. Scale dependence is reduced.

• Widespread. NLL soft gluon resummations exist for most
inclusive cross sections of interest at colliders (NNLL now
available for processes which are EW at tree level).

• Non–perturbative aspects of QCD become accessible.
Integrals in the exponent run into the Landau pole.
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On event shape distributions

Picturing the final state of high-energy collisions

• Thrust: T = maxn̂

P
i|~pi·n̂|
Q ; τ = 1− T .

→ n̂ is used to define several other shape variables.

• C-parameter: C = 3− 3
2

∑
i,j

(pi·pj)
2

(pi·q) (pj ·q) .

→ does not require maximization procedures.

• Angularity: τa = 1
Q

∑
i(p⊥)ie−|ηi|(1−a) .

→ recently introduced, one-parameter family.

• Transverse Thrust: T⊥ = maxn̂⊥

P
i|~p⊥i·n̂⊥|P

i ~p⊥i
.

→ defined for hadron-hadron collisions
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Resumming Sudakov logarithms

Infrared and collinear emission dominates the two-jet limit

• Large double logarithms of the variable vanishing in the
two-jet limit (L = log τ ;L = logC ; . . .) enhance finite
orders → need to resum.

• As before, a pattern of exponentiation emerges∑
k α

k
s

∑2k
p ckpL

p → exp
[
Lg1(αsL)+g2(αsL)+αs g3(αsL)+ . . .

]
• In general the Laplace transform exponentiates. For thrust∫ ∞

0

d τ e−ντ
1
σ

dσ

dτ
= exp

[∫ 1

0

du

u

(
e−uν − 1

)(
B
(
αs
(
uQ2

))
+ 2

∫ uQ2

u2Q2

dq2

q2
A
(
αs(q2)

))]
.
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Reaching beyond perturbation theory

Exponentiating power corrections

• The exponent is ill-defined because of the Landau pole

regularization −→ ambiguity −→ power corrections

• Focus on small τ , large ν, set IR factorization scale µ, expand
in powers of ν/Q (soft), neglecting ν/Q2 (collinear).

SNP(ν/Q, µ) = 2
∫ µ2

0

dq2

q2
A
(
αs(q2)

) ∫ q/Q

q2/Q2

du

u

(
e−uν − 1

)
'

∞∑
n=1

1
n!

(
− ν

Q

)n
λn(µ2) ,

• Non-perturbative parameters

λn(µ2) = 2
n

∫ µ2

0
dq2 qn−2A

(
αs(q2)

)
.
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Parametrizing power corrections

Shape functions

• The parameters λn(µ2) build up a shape function

exp
[
SNP(ν/Q, µ)

]
≡
∫∞
0
dε e−ν ε/Q fτ (ε, µ) .

• The physical distribution is recovered via inverse transform

σ(τ) ∼
∫ τQ
0

dε fτ (ε, µ)σPT (τ − ε/Q) .

• One recovers the perturbative result shifted by the soft energy
flow, and smeared by the shape function.

• Universality of power corrections is in general lost, however
specific observables still related (1− T , ρJ , C, . . .).

• Assumption: smooth transition to
nonperturbative regime.
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Angularities
(C.F. Berger, G. Sterman)

• Definition: τa = 1
Q

∑
i (p⊥)i e−|ηi|(1−a) .

Also: τa = 1
Q

∑
i ωi (sin θi)

a (1− | cos θi|)1−a ,

• Some properties
• τ0 = 1− T ; τ1 = B .
• a < 2 for IR safety.
• a < 1 for simplicity of resummation (recoil negligible).

• For negative a, high rapidity particles (w.r.t. the thrust axis)
are weighted less: better collinear behavior.

• At one loop, with the thrust axis given by particle i,

τa = (1−xi)
1−a/2

xi

[
(1− xj)1−a/2(1− xk)a/2 + (j ↔ k)

]
.
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Resummation for angularities

• Sudakov logs at one loop have simple scaling with a.

dσ
dτa

∣∣∣(1)
log

= 2
2−a

2
τa
CF

αs

π ln
(

1
τa

)
= 2

2−a
dσ
dτ

∣∣(1)
log

.

• Resummation is intricate. To NLL accuracy

σ̃a (ν) = exp

{
2

1∫
0

du

u

[ uQ2∫
u2Q2

dq2

q2
A
(
αs(q2)

) (
e−u

1−aν(q/Q)a

− 1
)

+
1
2
B
(
αs(uQ2)

) (
e−u ν

2/(2−a)
− 1
)]}

.

• General a-dependence of Sudakov logs is nontrivial.

g1(x, a) = − 4
β0

2− a

1− a

A(1)

x

[
1− x

2− a
ln (1− x)

−
(

1− x

2− a

)
ln
(

1− x

2− a

)]
.
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Scaling for the shape function

• As done for thrust, focus on small τa, large ν, set IR
factorization scale µ, expand in powers of ν/Q (soft),
neglecting ν/Q2 (collinear). In this case

S
(a)
NP(ν/Q, µ) = 2

Z µ2

0

dq2

q2
A
“

αs(q
2
)
” Z q/Q

q2/Q2

du

u

„
e
−u1−aν(q/Q)a

− 1

«

'
1

1− a

∞X
n=1

1

n!

„
−

ν

Q

«n
λn(µ

2
) ,

• The full result suggested by the resummation can be
expressed in terms of the shape function for thrust

σ̃a (ν) = σ̃
PT
a (ν, µ) f̃

NP
a

„
ν

Q
, µ

«
=

»
f̃
NP
0

„
ν

Q
, µ

«–1/(1−a)
.

• The scaling rule can already be tested with
LEP data.
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Recent developments

• Joint resummation (pT and threshold).

• Automatic resummation (Caesar).

• Non-global logarithms.

• Subleading logarithms ((logpN)/N).

• Resummed parton distributions.
• Dressed gluon exponentiation (DGE).

• Resummation with effective field theories (SCET).

• Power corrections in hadron collisions.
• Resummation in Susy theories, towards AdS/CFT.

• .....
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Resummations, supersymmetry and strings

• Supersymmetric versions of Yang-Mills theory and QCD have
remarkable properties.

Example: N = 4 SYM is conformal invariant: βN=4(αs) = 0.

• Exponentiation of IR/C poles in QCD amplitudes simplifies

log
h
Γ
“

Q
2
, ε
”i

= −
1

2

∞X
n=1

 
αs(Q2)

π

!n

e
−iπnε

24 γ
(n)
K

2n2ε2
+

G(n)(ε)

nε

35 ,

Note: at most double poles in the exponent.

• Thanks to AdS/CFT, N = 4 SYM must ‘be simple’ at strong
coupling. Can this be seen in perturbation theory?

• Exponentiation has been observed for amplitudes with up to three
loops or five legs (Z. Bern et al.).

• A stringy calculation at strong coupling is consistent
with the perturbative result (L. Alday and J. Maldacena).
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Perspective

• Sudakov resummations are a very active and rapidly
progressing field of study in QCD.

• They are necessary for phenomenological analysis of data in a
variety of processes.

• They provide a window into nonperturbative contributions to
many high energy cross-sections.

• The boundaries of IR/C nonabelian exponentiation are still
being probed.

• Dimensional regularization is a powerful tool. Bypassing the
Landau pole it links to non-perturbative effects.

• Remarkable results in quantum field theory link
resummations in super Yang-Mills with string theory.


	Introduction
	All-order QCD versus data
	The strategy of perturbative QCD
	The borders of perturbative QCD

	Resummations
	Factorization leads to Resummation
	The Sudakov form factor
	Electroweak annihilation

	Event Shapes
	Sudakov resummation for event shapes
	Power corrections and shape functions
	Angularities

	Developments

