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Abstract

String theory provides a surprisingly efficient tool for
the computation of scattering amplitudes, correlation
function and effective actions in a variety of field theories,
including QCD. This is illustrated by describing briefly the
computation of multiloop bosonic string amplitudes, and
then taking different field theory limits. Examples include
one–loop gluon amplitudes, two–loop scalar amplitudes,
and Euler-Heisenberg effective actions.
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Introduction

• Motivations

– Difficulty in computing high-order gauge theory amplitude

– Further understanding of string amplitudes and their

generalizations

• Bosonic string perturbation theory

– The Schottky representation of Riemann surfaces

– Master formulas for gluons and scalars

– Advantages and limitations of string amplitudes

• One-loop amplitudes

– One-loop off-shell gluon master formula

– The field theory limit: matching conditions, Schwinger

parameters, power counting

– Diagrammatics

• Two-loop amplitudes

– Two-loop string moduli space

– Scalar amplitudes: matching conditions, two-loop example

• Euler-Heisenberg effective actions

– Master formula in a constant gauge field

– Two-loop Euler-Heisenberg action for scalars

– The two-loop field theory limit

• Outlook
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The Sickness

The computation of perturbative gauge theory amplitudes may

appear straightforward ... however: conventional methods become

intractable beyond about O(g6) (O(α6) for cross sections).

• Tree-level symptoms

For gluon scattering, measuring the size in “number of terms”,

σ (2 → 6)tree ∼ (34300 · 66
)
2 ∼ 2.6 · 1018

.

• One-loop symptoms

– Each “term” must now be integrated over loop momentum

(reduce tensor integrals, evaluate scalar integrals).

– Spurious kinematic singularities cancel only when results

are recombined with a common denominator.

– One-loop results must be analytically combined with tree-

level results to cancel IR singularities.

• Two-loop symptoms

– Scalar integrals are highly nontrivial.

– Cancellation of IR singularities is more intricate (must

combine with one-loop and tree-level results).

• Harsh consequences if untreated

Precision physics at colliders requires NNLO calculations.
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The Treatments

A variety of techniques have been developed by many authors

over the past 15 years to tackle these calculations. They involve

• Decomposing the amplitudes into “basic building blocks”

(subamplitudes), by fixing all quantum numbers of external

particles (Total Quantum Number Management).

• Exploiting symmetries (Bose, C, P, Gauge, Super, ...) to

reduce the number of subamplitudes needed.

• Exploiting special features of perturbation theory (unitarity,

factorization in appropriate kinematic limits).

Some specific examples:

• Color Decomposition

Choosing a basis in color space splits the amplitude into
gauge-invariant subamplitudes. At tree-level, for gluons

Atree
(1, . . . , N) = g

N−2
X

σ∈SN/ZN

Tr
“

λ
σ(1)

. . . λ
σ(N)

”

× A
tree
σ (σ(1), . . . , σ(N)) ,

Note: This decomposition is string-inspired (Chan-Paton

factors) and generalizes to g-loop amplitudes. Subamplitudes

can be computed using color-ordered Feynman rules.
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• Helicity Amplitudes
Vast simplifications are achieved by fixing the helicities of
external particles, and picking polarization vectors to take
maximal advantage of gauge invariance. Typically

ε
+
µ (k; q) =

< q−|γµ|k− >√
2 < q−|k+ >

.

– The reference momentum q is a gauge parameter: it can

be picked to maximize the number of vanishing products

εi · εj and εi · kj.

– String theory amplitudes are expressed so that helicity

methods can be easily implemented also at loop level.

• Implementation of Symmetries
– Charge conjugation:

A
tree
σ (1, . . . , N) = (−1)

N
A

tree
σ (N, . . . , 1)

– Parity and cyclic symmetry connect partial amplitudes with

oppposite helicities and different particle orderings.

– Supersymmetric Ward identities can be employed directly

at tree level and induce useful decompositions into spin

multiplets at loop level.

• Unitarity and Factorization

– Cutkosky rules give the absorptive parts of loop amplitudes

in terms of products of tree amplitudes.

– Factorization in terms of universal splitting functions in the

IR/collinear limits provides checks and constraints.
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Recent Developments

The connection between gauge theories and string theory is now

a focus of great interest both in view of formal developments and

of phenomenological applications.

• Gauge-Gravity correspondence

– After the Maldacena conjecture (N = 4 super Yang-Mills

⇔ strings on AdS5 ⊗ S5), surprising links between gravity

and N = 2, 1 SUSY gauge theories emerged (Di Vecchia).

– The field theory limit of string amplitudes including D-

branes yields nonperturbative information on gauge theories

(instanton effects, moduli space) (Billò).

– A subtle pattern of exponentiation has emerged in N = 4

super Yang-Mills amplitudes (Bern).

• Twistor techniques

– String theory inspired powerful techniques based on

analiticity properties to compute gluon amplitudes (Witten).

– “Twistor” techniques have lead to recursion relations at

tree level and one loop (Britto).

– Generalizations to N = 0, scalars, fermions are of

immediate relevance to collider phenomenology (Bern).

⇒ Controlling precisely the field theory limit is important. New

surprises may be forthcoming ...
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The uses of string theory

• String theory expresses on-shell scattering amplitudes of a

d-dimensional field theory in terms of correlation functions of

operators of a two-dimensional free field theory.

• String theory is first-quantised: the number of string loops is

fixed at the outset (2d field theory on a Riemann surface of

genus g).

• String theory has an infinite number of massive states with

masses M2
n ∝ n/α′ ∝ nT . Tuning the limit α′ → 0 for

different strings one may get different effective field theories,

including scalar, gravity, gauge and SUSY gauge theories.

• In the field theory limit (α′ → 0) the Riemann surface

degenerates into a set of Feynman-like graphs.

• Is it practical?
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Schottky representation of Riemann surfaces

• A Riemann surface of genus g can be represented by cutting

and identifying g pairs of circles on the Riemann sphere, via

projective transformations.

PSfrag replacements

Re z

Im z

S1

S−1
1

S2

S−1
2

Si(z) =
aiz+bi
ciz+di

Si(Ci) = C′
i

aidi − bici = 1

Si(z)−ηi
Si(z)−ξi

= ki
z−ηi
z−ξi

C1

C2

C′
1

C′
2

aidi − bici = 1

The Riemann surface is then Σg = (C ∪ ∞) /Sg, where

Sg is the genus g Schottky group generated by the projective

transformations Si.

• {ηi, ξi} are fixed points of the trasformation Si.

• The multipliers ki are proportional to the radii of the circles

Ci, and they drive the field theory limit, ki → 0.

• The shape of the genus g Riemann surface is determined by

3g − 3 (complex) moduli (subtracting one overall projective

trasformation on the sphere).
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Geometric objects

The string operator formalism provides explicit constructions for

geometric objects defined on Riemann surfaces, in terms of series

defined on the Schottky group.

• Abelian differentials

ωµ =

(µ)
X

α

„

1

z − Tα(ηµ)
− 1

z − Tα(ξµ)

«

dz

• Period matrix
τµν =

1

2πi

Z

bν
ωµ(z)

• Prime form

Eg(z, w)
√

dzdw = (z − w)
ˆY

α

z − Tα(w)

z − Tα(z)

w − Tα(z)

w − Tα(w)

• Bosonic Green function

Gg(z, w) = log
ˆ

Eg(z, w)
˜

− 1

2

Z w

z
ωµ

h

(2π Imτ)
−1
iµν

Z w

z
ων

• Tα = Sa
i · Sb

j · . . . are elements of the Schottky group.

• In the field theory limit ki → 0 only a handful contribute.

• The relevant terms are easily generated with available software

for symbolic manipulations.
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Master Formulas

String amplitudes are computed by fixing the quantum numbers

of the external states and then evaluating correlation functions

of the corresponding vertex operators in the 2d theory at the

relevant genus. Using open bosonic strings one finds

• For scalar states (tachyons in the adjoint of U(N))

A
(g)
M,0

(p1, . . . , pN) = CgNM
Z

[dm]
M
g

Y

i<j

exp
h

2α
′
pi · pjGg(zi, zj)

i

• For vector states (gluons in the adjoint of U(N))

A
(g)
M,1

(ε1, p1; . . . ; εN, pN ) = CgNM
Z

[dm]
M
g

Y

i<j

exp
h

2α
′
pi · pjGg(zi, zj)

i

×

8

>

<

>

:

exp

2

6

4

X

i6=j

p

2α′εi · pj∂ziGg(zi, zj) +
1

2

X

i6=j

εi · εj∂zi∂zjGg(zi, zj)

3

7

5

9

>

=

>

;

m.l.

• Normalizations:

Cg = (2π)−dg(2α′)−d/2g2g−2
S ; N = 2gS(2α′)d/4−1/2.

• The mass-shell condition can be relaxed by introducing

Gg(zi, zj) = Gg(zi, zj) −
1

2
log V

′
i (0) − 1

2
log V

′
j (0)

• The projective trasformations Vi(z) are associated with

external states and play the role of local coordinates around

the punctures of the surface, Vi(0) = zi.
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Pluses and Minuses

Remarkably ...

• These formulas exist.

(no such thing in field theory ...)

• Total quantum number management is (largely) built in.

– Color decomposition is already performed: color is

factorized into Chan-Paton factors.

– Loop momentum integration is already performed: helicity

methods are applicable from the beginning at all loops.

• The field theory limit yields Feynman-like diagrams summing

up the contributions of gluons and ghosts.

• Off-shell continuation is possible. The gauge chosen by string

theory can then be identified; applications to currents and

recursion relations can be envisaged.

• The method is algorithmically implementable.

However ...

• The technique is suited for a limited set of problems: pure

gauge theories, gravity, SUSY.

– Non-supersymmetric fermions are difficult to include

– Theories with several mass scales (SM, MSSM, ...) cannot

be handled

• The problem is reduced to the computation of “scalar integrals

with numerators”. Techniques to evaluate these must come

from elsewhere.
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One Loop: Gluons

• One-loop gluon master formula

A
(1)
M,1

(ε1, p1; . . . ; εM, pM ) =
gM
d

(4π)d/2
(2α

′
)
M−d

2

Z 1

0

dk

k2

∞
Y

n=1

(1 − k
n
)
2−d

×
Z 1

k
dzM

Z 1

zM

dzM−1 . . .

Z 1

z3
dz2

„

− log k

2

«−d
2 Y

i<j

 

exp
h

G(zi, zj)
i

!2α′pi·pj

×

8

>

<

>

:

exp

2

6

4

X

i6=j

„

p

2α′ pj · εi ∂iG(zi, zj) +
1

2
εi · εj ∂i∂jG(zi, zj)

«

3

7

5

9

>

=

>

;

m.l.

• Matching condition (from tree-level): gS = gd (2α′)1−d/4/2

• One-loop Green function:

G(zi, zj) = log

0

@

˛

˛

˛

˛

˛

˛

s

zi
zj

−
s

zj

zi

˛

˛

˛

˛

˛

˛

1

A+
1

2 log k

 

log
zi
zj

!2

+ log

2

6

6

4

∞
Y

n=1

„

1 − knzj
zi

«„

1 − kn zi
zj

«

(1 − kn)2

3

7

7

5

• V ′
i (0) = (ω(zi))

−1
= zi, from geometry

• Modular invariance:

G(zi/zj; k) = G(zj/zi; k) = G(kzi/zj; k)
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The annulus

At one loop, one can choose

η = 0 ; ξ = ∞ ; z1 = 1

The resulting Schottky representation of the annulus is

PSfrag replacements

z1 = 1

A′ A B B′

where
B = −A =

√
k ; B

′
= −A

′
= 1/

√
k

The region of integration is determined by

• Symmetry considerations: for example the transformation

k → 1/k does not change the geometry.

• Cyclic ordering of the punctures zi in accordance with the

chosen color ordering.

• Mapping the region 1 < zi < 1/
√

k onto k < zi <
√

k by

modular invariance.
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The field theory limit

• From the string operator formalism we know that Laurent

expansion of the integrand in powers of k counts the mass

level of the state propagating in the loop.

k−2 → tachyon ; k−1 → gluon ...

• The master formula has an overall power of α′. String moduli

defining the shape of the surface must be expressed in units

of α′ in order to take the limit α′ → 0

Hint: measure of integration is d log k.

• Pedestrian field theory limit (exact for scalars):

log k = − t

α′ ; log zi = − ti

α′

Note: t and ti will be identified with with sums of Schwinger

parameters associated with propagators around the loop.

• α′ power counting.

For gluons, the overall power p of α′ after the change of

variables is not uniform: −M/2 < p < 0. One must locate all

further sources of positive powers of α′.

– Four-point vertices: (ti − ti−1)/α′ = O(1).

– Expansion of the exponential:

exp(2α
′
pi · pjGij) → exp

“

c0(ti) + α
′
c1(ti)

”
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Diagrammatics

• Diagrams with cubic vertices

Change variables to {t, ti}, expand the exponential to the

required power, expand the resulting integrand in powers of

{k, zi}, isolate terms independent of α′.
Result: Schwinger parameter integrand of the corresponding

Yang-Mills diagram (gluons + ghosts).

• Diagrams with quartic vertices

– For each deleted propagator, between punctures zi and

zi+1, set zi = exp(−ti/α′) and zi+1 = yizi, integrate over

yi in a neighbourhood of yi = 1.

– Note: regularization is required for singularities of the form
R

0
dx/x2. It is provided by analytic continuation, retaining

subleading α′ dependence.

• Reducible diagrams
Take the limit zi → zi+1 before the limit k → 0. Then

G(zi, zi+1) → log(zi − zi+1)

Integrate over zi+1, isolate poles of the form (n−α′si,i+1)
−1.

They correspond to the propagation of the (n + 1) − th string

state in the “pinched channel”.

• Nonplanar diagrams

Arise when punctures zi are inserted on both boundaries of the

annulus. They reduce to combinations of planar amplitudes

with specified coefficients.
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Results

• Two algorithms exist to compute on-shell scattering

amplitudes. Four- and five-gluon amplitudes have been

computed directly from string theory.

• Off-shell continuation, with identification of individual

diagrams, identifies the field-theory gauge automatically

selected by string theory.

– Irreducible diagrams: Background Field method, with

Feynman gauge chosen for the quantum fields in the loop.

– Reducible diagrams: Gervais-Neveu gauge for the classical
field on tree subdiagram.

SGN =

Z

d
d
x



−1

4
Tr
“

F
2
µν

”

− 1

2
Tr

»

“

∂ · A − igdA
2
”2
–ff

• Bosonic string theory is well-defined only in the critical

dimension d = 26. No consequence in the field theory

limit: amplitudes have the correct d dependence (dimensional

regularization à la ’t Hooft-Veltman).

• Bosonic string theory has a tachyon. It can be decoupled

by hand. Tachyons in loops have IR divergences not

regulated dimensionally. Tachyon effects remain as contact

interactions. Tachyon amplitudes can be used to compute

scalar amplitudes in field theory by the replacement dx/x2 →
[exp(α′m2 log x)] dx/x.
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Two-loop: scalars

• Projective gauge choice

η1 = 0 ; ξ1 = ∞ ; ξ2 = 1

• Matching condition (from tree-level)

gS = g3 (2α′)(6−d)/4/4

• Two-loop Green function (in the limit ki → 0)

G2(zi, zj) = log
`˛

˛zi − zj

˛

˛

´

+
1

2

log k1 log k2 − log2 S

log2 T log k2 + log2 U log k1 − 2 log T log U log S

In this projective gauge

S = η2 ; T =
zi
zj

; U =
(zj − η2)(zi − 1)

(zi − η2)(zj − 1)

• V ′
i (0) = (a1ω1(zi) + a2ω2(zi))

−1
, with coefficients picked

according to the boundary where the puncture is inserted.

• Modular invariance

The mapping z → (z − η2) / (z − 1) maps the two inner

boundaries of the two-annulus into each other.
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The two-annulus

PSfrag replacements

P1 P2 P3 P4 P5 P6

P1 = −1 ; P2 = −η2 ; P3 = η2/β

P4 =
2η2

1 + η2
; P5 =

1 + η2

2
; P6 = β > 1

• It is possible to identify precisely on which propagator and on

which boundary the punctures are inserted

• “Broken propagators” yield different expressions in different

segments, but the results are related by modular

transformations, providing highly nontrivial checks on the field

theory limit.
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Two-loop scalar vacuum bubbles

PSfrag replacements

D2 =D1 =

• Leading regions in the field theory limit: k1, k2 → 0.
Furthermore

η1 → 1 ; or η1 → 0

suggested by sewing procedure, integration region and

measure. η1 plays the role of ‘distance between loops’.

• Schwinger parameters:

– η1 → 1: ki = e−ti/α′
; 1 − η1 = e−t3/α′

.

– η1 → 0: qi ≡ ki
η1

= e−ti/α′
; q3 ≡ η1 = e−t3/α′

.

• Master formula: two-loop Green function does not appear.

Change variables to Schwinger parameters, regulate tachyon

poles (dx/x2 → [exp(α′m2 log x)] dx/x), get

D1 =
N3

(4π)d

g2

32

Z ∞
0

dt3

Z ∞
0

dt2

Z t2

0
dt1e

−m2(t1+t2+t3)
(t1t2)

−d/2

D2 =
N3

(4π)d

g2

32

Z ∞
0

dt3

Z t3

0
dt2

Z t2

0
dt1e

−m2(t1+t2+t3)

× (t1t2 + t1t3 + t2t3)
−d/2

Agrees with field theory, color and symmetry factors included.
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Euler-Heisenberg effective action
Field theory

Consider a scalar field in the adjoint of U(N), coupled to a
constant background field strength Fµν.

L = Tr

»

DµΦD
µ
Φ − m

2
Φ

2
+

2

3
λ Φ

3
–

.

Take Aµ
AB

= Aµ δA,NδB,N , with Aµ = B x1 gµ2, corresponding to
a constant color magnetic field. The matrix Φ decomposes as

Φ(x) =
1√
2

„
√

2 Π(x) ξ(x)

ξ†(x) σ(x)

«

Only the U(N −1) vector ξ is charged under the background field.

L = Tr
ˆ

∂µΠ ∂
µ
Π
˜

+
1

2
∂µσ ∂

µ
σ + Dµξ

†
D

µ
ξ

− m
2
Tr
“

Π
2
”

− 1

2
m

2
σ

2 − m
2
ξ
†
ξ

+
2

3
λ Tr

“

Π
3
”

+
√

2
λ

6
σ

3
+

λ√
2

σξ
†
ξ + λ ξ

†
Π ξ .

The charged propagator can be exactly computed.

Gξ(x, y) =
e−iB(x1+y1)(x2−y2)/2

(4π)d/2

Z ∞

0
dt e

−tm2
t
−d/2+1 B

sinh(Bt)

exp

"

(x0 − y0)
2 − (x⊥ − y⊥)2

4 t
− B (x1 − y1)

2 − (x2 − y2)
2

4 tanh(Bt)

#

.
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Euler-Heisenberg effective action

Two-loop diagrams

The two-loop effective action receives contributions from

PSfrag replacements

ξξ

Π σ

Charged diagrams are easily evaluated in coordinate space

W
(2)
ξΠ

(m, B) = −λ
2(N − 1)2

4

Z

d
d
x d

d
y Gξ (x, y) Gξ (y, x) GΠ (x, y)

One finds a Schwinger parameter representation

W
(2)
ξΠ

(m, B) = −i Vd
λ2

(4π)d

(N − 1)2

4

×
Z ∞

0
dt1dt2dt3 e

−m2(t1+t2+t3)
∆

−d
2+1

0 ∆
−1
B

with the B dependence encoded in the factor ∆B,

∆0 = t1t2 + t1t3 + t2t3 ,

∆B =
1

B2
sinh(Bt2) sinh(Bt3) +

t1

B
sinh [B (t2 + t3)] .
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Euler-Heisenberg effective action

String theory

A constant gauge field affects the bosonic string only thorugh
boundary conditions.

h

∂σX
i
+ i ∂τX

j
F

i (A)
j

i

σ=0
= 0 ,

The field-string interaction admits a dual description.

1 N−1 N

PSfrag replacements
τ → −τ−1

A master formula for the g-loop effective action can be derived.

Zε(g) =
e2πiεg − 1

Qg
µ=1 cos πεµ

Cg

Z

[dm]
0
g e

−iπ~ε·τ ·~ε det (τ)

det (τ~ε)
Rg (kα,~ε · τ)

with F
(A)
12 = −F

(A)
21 = tan(πεA). All ingredients can be computed

explicitly in the Schottky representation. For example

Rg (kα,~ε) =

Q

α
′Q∞

n=1(1 − kn
α)2

Q

α
′Q∞

n=1

“

1 − e−2πi~ε· ~Nαkn
α

”“

1 − e2πi~ε· ~Nαkn
α

” .

– Heidelberg, 10/02/2006 – 21



Euler-Heisenberg effective action
Field theory limit

The field theory limit is defined by fixing the dimensionful physical
field B (note F

(A)
ij is dimensionless).

tan(πε) = 2πα
′
B .

The matrix τ~ε encodes the leading ~ε dependence. It is the period
matrix of a set of twisted abelian differentials.

(τ~ε)νµ =
1

2πi

Sν(w)
Z

w

dz

»

ζ
~ε·τ
µ (z)e

2πi
g−1~ε·~∆z

–

, (ν 6= g) ,

(τ~ε)gµ = e
2πi(~ε·τ)µ − 1 ,

The twisted differentials ζ~ε
µ(z) obey twisted boundary conditions

ζ~ε
µ (Sν(z)) dSν(z) = exp (2πiεν) ζ~ε

µ(z)dz. As α′ → 0 one finds

det τ~ε → B

iπα′ ∆B ,

One can now compute individual diagrams, for example

W
(2)
st (m, B) = Vd

λ2

(4π)d

(N − 1)2

2

Z ∞

0
dt1

Z t1

0
dt2

Z t2

0
dt3

× e
−m2(t1+t2+t3)

∆
−d/2+1
0 ∆

−1
B .

Upon symmetrization one recovers the field theory result, with

symmetry and color factors acquiring a string interpretation.
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Outlook

• String theory provides a powerful and efficient method for the

calculation of scattering amplitudes and effectiveactions in a

broad class of field theories.

• The field theory limit can be taken in a controlled way: it

selects boundaries of string moduli space corresponding to

particle graphs of given topology.

• “Master formulas” exist for amplitudes with any number of

legs and loops. They yield directly the Feynman parameter

integrand of individual diagrams, in dimensional regularization.

• Off-shell continuation is possible, exploiting geometric features

of Riemann surfaces.

• Organization of gauge theory amplitudes automatically takes

maximal advantage of gauge invariance: color decomposition

and helicity methods are implemented, and a subtle field-

theory gauge is picked.

• Limitations: difficult to include non-SUSY fermions, not

suited for theories with multiple mass scales, generalized scalar

integrals still to be computed.

• At one loop, two algorithms exist to compute gluon amplitudes

directly from the string master formula. The four- and five-

gluon amplitudes have been computed. The major stumbling

block to the inclusion of more gluons is the computation

ofgeneralized scalar integrals.
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• At two loops.

– The field theory limit of string moduli space is understood,

and scalar amplitudes are easily computed.

– Euler-Heisenberg effective actions for scalar fields can be

derived from string theory.

– Two-loop gluon amplitudes await the understanding of

subleading contributions to proper time assignements.

• On the agenda.

– Further one-loop applications: six gluons, gluon currents,

recursion relations?

– Two-loop gluons?

– All-order analysis in suitable kinematic limits?
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