OUTLINE INTROL	UCTION FORM FACT	TORS RESULTS	Perspective
00	0000	00	
000	66	00	

Factorization and Universality for massless gauge theory amplitudes

Lorenzo Magnea

Università di Torino - INFN, Sezione di Torino

Work in collaboration with L. Dixon and G. Sterman

 $HP^{2}.2 - Buenos Aires - 07/10/08$

Outline	INTRODUCTION	Form factors	Results	Perspective
	00	0000	00	
	000	00	0	
	000		00	

Outline

Introduction

History Motivation Tools

Form factors

Detailed factorization Evolution equations

Results

Form factors Maximal SYM Single poles

Perspective

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

INTRODUCTION

Form factors

RESULT 00 0 PERSPECTIVE

Ancient History

JULY 15, 1937

PHYSICAL REVIEW

VOLUME 52

Note on the Radiation Field of the Electron

F. BLOCH AND A. NORDSIECK* Stanford University, California (Received May 14, 1937)

Previous methods of treating radiative corrections in nonstationary processes such as the scattering of an electron in an atomic field or the emission of a β -ray, by an expansion' in powers of e^{β}/hc , are defective in that they predict infinite low frequency corrections to the transition probabilities. This difficulty can be avoided by a method developed here which is based on the alternative assumption that e^{α}/mc^2 , h_{α}/mc^2 and $h_{\alpha}/d\Delta p$ (c- angular frequency of radiation, Δp =change in momentum of electron) are small compared to unity. In contrast to the expansion in powers of e^{β}/hc , this permits the transition to the classical limit h=0. External perturbations on the electron are treated in the Born approximation. It is shown that for frequencies such that the above three parameters are negligible the quantum mechanical calculation yields just the directly reinterpreted results of the classical formulae, namely that the total probability of a given change in the motion of the electron is unaffected by the interaction with radiation, and that the mean number of emitted quanta is infinite in such a way that the mean radiated energy is equal to the energy radiated classically in the corresponding trajectory.

・ロト ・ 雪 ト ・ ヨ ト

A remarkable achievement, before quantum field theory was born.

- 10

Outline	INTRODUCTION	Form factors	Results	Perspective
	OO 000 000	0000	00 0 00	

Modern History

Factorization

$$\begin{split} \mathcal{M}_{\{r_i\}}^{[\mathbf{f}]} \left(\beta_j, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2), \epsilon\right) &= \sum_{L=1}^{N^{[\mathbf{f}]}} \mathcal{M}_L^{[\mathbf{f}]} \left(\beta_j, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2), \epsilon\right) \, (c_L)_{\{r_i\}} \\ \mathcal{M}_L^{[\mathbf{f}]} \left(\beta_j, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2), \epsilon\right) &= \prod_{i=1}^{n+2} J^{[i]} \left(\frac{Q'^2}{\mu^2}, \alpha_s(\mu^2), \epsilon\right) \\ &\times \, S_{LI}^{[\mathbf{f}]} \left(\beta_j, \frac{Q'^2}{\mu^2}, \frac{Q'^2}{Q^2}, \alpha_s(\mu^2), \epsilon\right) \, H_I^{[\mathbf{f}]} \left(\beta_j, \frac{Q^2}{\mu^2}, \frac{Q'^2}{Q^2}, \alpha_s(\mu^2)\right) \,, \end{split}$$

Progress

- Exponentiation applies to *non-abelian* gauge theories.
- Exponentiation extends to *collinear* divergences.
- Exponentiation is performed at the *amplitude* level.
- An optimal *regularization scheme* is used.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

	0			
OUTDINE	U	1	1	P.

INTRODUCTION	
00 000	
000	

Form factors 0000 00 RESULTS 00 0 00

・ロト ・ 一下・ ・ ヨト ・

Perspective

Motivation: LHC phenomenology

Higgs boson spectrum at LHC (M. Grazzini, hep-ph/0512025)

Predictions for the q_T spectrum of Higgs bosons produced via gluon fusion at the LHC, with and without resummation.

Dutline	INTRODUCTION	Form factors	Results	F
	00	0000	00	
	000	00	0	
	000		00	

Motivation: LHC phenomenology

Z boson spectrum at Tevatron (A. Kulesza et al., hep-ph/0207148)

CDF data on Z production compared with QCD predictions at fixed order (dotted), with resummation (dashed), and with the inclusion of power corrections (solid).

• • • • • • • • • • •

Perspectivi

OUTLINE					
	U	Т			

INTRODUCTION 00 00 00 00 00 Form factors

RESULT 00 0 00 Perspective

Motivation: gauge field theories

- *Remarkable progress* has been achieved in *techniques* to compute *finite order* gauge theory amplitudes.
- *Supersymmetric versions* of *Yang-Mills theory* and *QCD* have remarkable properties.

Example: $\mathcal{N} = 4$ SYM is conformal invariant: $\beta_{\mathcal{N}=4}(\alpha_s) = 0$.

- *Exponentiation* of IR/C poles in QCD amplitudes *simplifies* Note: at most *double* poles in the exponent.
- AdS/CFT suggests that $\mathcal{N} = 4$ SYM must 'be simple' at strong coupling. Can this be seen in perturbation theory?
- *Exponentiation* has been observed for MHV amplitudes with up to *five legs* (Z. Bern *et al.*).
- A *stringy* calculation at *strong coupling* is consistent with the *perturbative result* (L. Alday and J. Maldacena).

0	* *		Υ.		
U	U	T	Ŀ		

INTRODUCTION	
00	
000	
000	

Form factors 0000 00 RESULT 00 0 00 Perspective

Tools: dimensional regularization

Nonabelian exponentiation of IR poles requires d-dimensional evolution equations. The running coupling in $d = 4 - 2\epsilon$ obeys

$$\mu \frac{\partial \overline{\alpha}}{\partial \mu} \equiv \beta(\epsilon, \overline{\alpha}) = -2 \epsilon \overline{\alpha} + \hat{\beta}(\overline{\alpha}) \quad , \quad \hat{\beta}(\overline{\alpha}) = -\frac{\overline{\alpha}^2}{2\pi} \sum_{n=0}^{\infty} b_n \left(\frac{\overline{\alpha}}{\pi}\right)^n \; .$$

The *one-loop* solution is

$$\overline{\alpha}\left(\mu^2\right) = \alpha_s(\mu_0^2) \left[\left(\frac{\mu^2}{\mu_0^2}\right)^{\epsilon} - \frac{1}{\epsilon} \left(1 - \left(\frac{\mu^2}{\mu_0^2}\right)^{\epsilon}\right) \frac{b_0}{4\pi} \alpha_s(\mu_0^2) \right]^{-1} .$$

The β function develops an *IR free* fixed point, so that $\overline{\alpha}(0,\epsilon) = 0$ for $\epsilon < 0$. The Landau pole is at

TLINE	Introduction	Form factors	Results	Perspectiv
	00	0000	00	
	000	00	0	
	000		00	

Tools: factorization

All *factorizations* separating dynamics at different energy scales lead to *resummation* of logarithms of the ratio of scales.

• Renormalization group logarithms.

Renormalization *factorizes* cutoff dependence

 $\begin{aligned} G_0^{(n)}\left(p_i, \Lambda, g_0\right) &= \prod_{i=1}^n Z_i^{1/2}\left(\Lambda/\mu, g(\mu)\right) \ G_R^{(n)}\left(p_i, \mu, g(\mu)\right) \ ,\\ \frac{dG_0^{(n)}}{d\mu} &= 0 \quad \to \quad \frac{d\log G_R^{(n)}}{d\log \mu} = -\sum_{i=1}^n \gamma_i\left(g(\mu)\right) \ . \end{aligned}$

• RG evolution resums $\alpha_s^n(\mu^2) \log^n (Q^2/\mu^2)$ into $\alpha_s(Q^2)$.

Note: Factorization is the difficult step

UTLINE	INTRODUCTION	Form factors	Results	Perspective
	00	0000	00	
	000	00	0	
	000		00	

$Tools:\ factorization$

• Collinear factorization logarithms.

Mellin moments of partonic DIS structure functions factorize

$$\begin{split} \widetilde{F}_2\left(N,\frac{Q^2}{m^2},\alpha_s\right) &= \widetilde{C}\left(N,\frac{Q^2}{\mu_F^2},\alpha_s\right)\widetilde{f}\left(N,\frac{\mu_F^2}{m^2},\alpha_s\right)\\ &\frac{d\widetilde{F}_2}{d\mu_F} = 0 \quad \rightarrow \quad \frac{d\log\widetilde{f}}{d\log\mu_F} = \gamma_N\left(\alpha_s\right) \;. \end{split}$$

• *Altarelli-Parisi* evolution *resums* collinear logarithms into *evolved* parton distributions.

Note: *Sudakov* logarithms are more difficult. Ordinary renormalization group is not sufficient. Gauge invariance plays a key role. *Or:* use effective field theory (SCET).

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Outline	INTRODUCTION	Form factors
	00	0000
	000	00

Results
00
0
00

Perspective

Gauge theory form factors

Consider as an example the *quark form factor*

$$\Gamma_{\mu}(p_1,p_2;\mu^2,\epsilon) \equiv \langle 0|J_{\mu}(0)|p_1,p_2\rangle = \overline{v}(p_2)\gamma_{\mu}u(p_1)\; \Gamma\left(\frac{Q^2}{\mu^2},\alpha_s(\mu^2),\epsilon\right)\;.$$

• The form factor obeys the *evolution equation*

$$Q^2 \frac{\partial}{\partial Q^2} \log \left[\Gamma\left(\frac{Q^2}{\mu^2}, \alpha_s(\mu^2), \epsilon\right) \right] = \frac{1}{2} \left[K\left(\epsilon, \alpha_s(\mu^2)\right) + G\left(\frac{Q^2}{\mu^2}, \alpha_s(\mu^2), \epsilon\right) \right] \,,$$

Renormalization group invariance requires

$$\mu \, \frac{dG}{d\mu} = -\mu \, \frac{dK}{d\mu} = \gamma_K \left(\alpha_s(\mu^2) \right) \; , \label{eq:gamma}$$

Note: $\gamma_K(\alpha_s)$ is the cusp anomalous dimension.

• Dimensional regularization provides a trivial initial condition for evolution if $\epsilon < 0$ (for IR regularization).

$$\overline{\alpha}(\mu^2 = 0, \epsilon < 0) = 0 \quad \rightarrow \Gamma\left(0, \alpha_s(\mu^2), \epsilon\right) = \Gamma\left(1, \overline{\alpha}\left(0, \epsilon\right), \epsilon\right) = 1 \; .$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Outline	INTRODUCTION	Form factors	Results	Perspecti
	00	0000	00	
	000	00	0	
	000		00	

Detailed factorization

 $Operator\ factorization\ of\ the\ Sudakov\ form\ factor,\ with\ subtractions.$

ヘロト ヘアト ヘヨト ヘ

Outline	INTRODUCTION	Form factors	Results	Perspectivi
	00	0000	00	
	000	00	0	
	000		00	

Operator definitions

The *functional form* of this graphical factorization is

$$\begin{split} \Gamma\left(\frac{Q^2}{\mu^2}, \alpha_s(\mu^2), \epsilon\right) &= C\left(\frac{Q^2}{\mu^2}, \frac{(p_i \cdot n_i)^2}{n_i^2 \mu^2}, \alpha_s(\mu^2), \epsilon\right) \times \mathcal{S}\left(\beta_1 \cdot \beta_2, \alpha_s(\mu^2), \epsilon\right) \\ &\times \prod_{i=1}^2 \left[\frac{J\left(\frac{(p_i \cdot n_i)^2}{n_i^2 \mu^2}, \alpha_s(\mu^2), \epsilon\right)}{\mathcal{J}\left(\frac{(\beta_i \cdot n_i)^2}{n_i^2}, \alpha_s(\mu^2), \epsilon\right)}\right] \,. \end{split}$$

We introduced factorization vectors n_i^{μ} , with $n_i^2 \neq 0$, to define the jets,

$$J\left(\frac{(p\cdot n)^2}{n^2\mu^2},\alpha_s(\mu^2),\epsilon\right)\,u(p)\,=\,\langle 0\,|\Phi_n(\infty,0)\,\psi(0)\,|p\rangle\,.$$

where Φ_n is the *Wilson line* operator along the direction n_i^{μ} .

$$\Phi_n(\lambda_2,\lambda_1) = P \exp\left[\, \mathrm{i}g \int_{\lambda_1}^{\lambda_2} d\lambda \, n \cdot A(\lambda n) \,
ight] \; ,$$

The jet J has *collinear* divergences only along p.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

INTRODUCTION 00 000 000 Form factors

RESULT:

Perspective

Operator definitions

The *soft function* S is the *eikonal limit* of the massless form factor

 $\mathcal{S}\left(\beta_1 \cdot \beta_2, \alpha_s(\mu^2), \epsilon\right) = \langle 0 | \Phi_{\beta_2}(\infty, 0) \Phi_{\beta_1}(0, -\infty) | 0 \rangle \ .$

Soft-collinear regions are subtracted dividing by eikonal jets \mathcal{J} .

$$\mathcal{J}\left(\frac{\left(\beta_1\cdot n_1\right)^2}{n_1^2},\alpha_s(\boldsymbol{\mu}^2),\epsilon\right) \,=\, \langle 0|\Phi_{n_1}(\infty,0)\,\Phi_{\beta_1}(0,-\infty)\,|0\rangle\;,$$

- \mathcal{S} and \mathcal{J} are *pure counterterms* in dimensional regularization.
- *S* only depends on kinematics through the *cusp anomaly*.
- A single pole function where the cusp anomaly cancels is

$$\overline{\mathcal{S}}\left(\rho_{12},\alpha_{s}(\mu^{2}),\epsilon\right) \equiv \frac{\mathcal{S}\left(\beta_{1}\cdot\beta_{2},\alpha_{s}(\mu^{2}),\epsilon\right)}{\prod_{i=1}^{2}\mathcal{J}\left(\frac{(\beta_{i}\cdot n_{i})^{2}}{n_{i}^{2}},\alpha_{s}(\mu^{2}),\epsilon\right)}$$

It can only depend on the scaling variable

$$\rho_{12} \equiv \frac{(-\beta_1 \cdot \beta_2)^2 \ n_1^2 \ n_2^2}{(-\beta_1 \cdot n_1)^2 \ (-\beta_2 \cdot n_2)^2} \, .$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Dutline	INTRODUCTION	Form factors	Results	Perspecti
	00	0000	00	
	000	•0	0	
	000		00	

Jet evolution

The *full form factor* does not depend on the *factorization vectors* n_i^{μ} . Defining $x_i \equiv \left(-\beta_i \cdot n_i\right)^2 / n_i^2$,

$$x_i \frac{\partial}{\partial x_i} \log \Gamma\left(\frac{Q^2}{\mu^2}, \alpha_s(\mu^2), \epsilon\right) = 0.$$

This *dictates* the evolution of the jet J

$$\begin{array}{lll} x_i \; \frac{\partial}{\partial x_i} \log J_i & = & -x_i \; \frac{\partial}{\partial x_i} \log C \, + \, x_i \; \frac{\partial}{\partial x_i} \log \mathcal{J}_i \\ \\ & \equiv & \displaystyle \frac{1}{2} \left[\mathcal{G}_i \left(x_i, \alpha_s(\mu^2), \epsilon \right) + \mathcal{K} \left(\alpha_s(\mu^2), \epsilon \right) \right] \end{array}$$

Imposing RG invariance of the form factor

 $\gamma_{\overline{\mathcal{S}}}\left(\rho_{12},\alpha_{s}\right)+\gamma_{C}\left(\rho_{12},\alpha_{s}\right)+2\gamma_{J}\left(\alpha_{s}\right)=0\,.$

leads to the final evolution equation

$$Q\frac{\partial}{\partial Q}\log\Gamma = \beta(\epsilon, \alpha_s)\frac{\partial}{\partial \alpha_s}\log C - \gamma_{\bar{S}} - 2\gamma_J + \sum_{i=1}^2 (\mathcal{G}_i + \mathcal{K}) \cdot \frac{100 \cdot 2004}{\Lambda_{\rm LMA}}$$
UNIVERSITATE TAURINENSIS

0		¥.		
U	1	Ŀ		

INTRODUCTION 00 000 000 Form factors

Results

Perspective

Collinear evolution

It is *useful* to establish a connection to conventional *collinear factorization*. Define a *parton-in-parton* distribution as

$$\phi_{q/q}\left(x,\epsilon\right) = \frac{1}{4N_c} \int \frac{d\lambda}{2\pi} \mathrm{e}^{-\mathrm{i}\lambda x p\cdot\beta} \left\langle p | \overline{\psi}_q(\lambda\beta) \,\gamma\cdot\beta \,\Phi_\beta(\lambda,0) \,\psi_q(0) | p \right\rangle,$$

The virtual contribution can be isolated. At the amplitude level it is

$$\overline{\Gamma}_{q/q}\left(\frac{p\cdot\beta}{\mu},\alpha_s(\mu^2),\epsilon\right) \equiv \langle 0|\Phi_\beta(\infty,0)\,\psi_q(0)\,|p\rangle\,,$$

Comparing *factorizations* for this amplitude and the jet J, and enforcing *Altarelli-Parisi* evolution one finds

$$\begin{split} \frac{\left[J\left(\frac{(\beta_{p}\cdot n)^{2}}{n^{2}}, \alpha_{s}(\mu^{2}), \epsilon\right)\right]_{\text{pole}}}{\mathcal{J}\left(\frac{(\beta_{p}\cdot n)^{2}}{n^{2}}, \alpha_{s}(\mu^{2}), \epsilon\right)} &= \frac{\overline{\Gamma}_{q/q}\left(\beta_{p}\cdot \beta, \alpha_{s}(\mu^{2}), \epsilon\right)}{\overline{\Gamma}_{q/q}^{\text{eik}}\left(\beta_{p}\cdot \beta, \alpha_{s}(\mu^{2}), \epsilon\right)} \\ &= \exp\left[\frac{1}{2}\int_{0}^{\mu^{2}}\frac{d\xi^{2}}{\xi^{2}}B_{\delta}^{\left[q\right]}\left(\overline{\alpha}(\xi^{2}, \epsilon)\right)\right]. \end{split}$$

NE	INTRODUCTION	Form factors	Results	Persp
	00	0000	•0	
	000	00	0	
	000		00	

Results for Sudakov form factors

• In dimensional regularization ($\epsilon < 0$) one has the *boundary value* $\Gamma(0, \epsilon) = 1$. Then

$$\log\left[\Gamma\left(Q^{2},\epsilon\right)\right] = \frac{1}{2} \int_{0}^{-Q^{2}} \frac{d\xi^{2}}{\xi^{2}} \left[K\left(\epsilon\right) + G\left(\overline{\alpha}\left(\xi^{2}\right),\epsilon\right) + \frac{1}{2} \int_{\xi^{2}}^{\mu^{2}} \frac{d\lambda^{2}}{\lambda^{2}} \gamma_{K}\left(\overline{\alpha}\left(\lambda^{2}\right)\right)\right]$$

• The functions K and γ_K are *not independent*

$$\mu \frac{d}{d\mu} K(\epsilon, \alpha_s) = -\gamma_K(\alpha_s) \quad \Longrightarrow \quad K\left(\epsilon, \alpha_s(\mu^2)\right) = -\frac{1}{2} \int_0^{\mu^2} \frac{d\lambda^2}{\lambda^2} \gamma_K\left(\bar{\alpha}(\lambda^2, \epsilon)\right) \; .$$

• The *form factor* can be written in terms of just G and γ_K ,

$$\begin{split} \Gamma\left(Q^2,\epsilon\right) &= & \exp\left\{\frac{1}{2}\int_0^{-Q^2}\frac{d\xi^2}{\xi^2}\left[G\left(-1,\overline{\alpha}\left(\xi^2,\epsilon\right),\epsilon\right)\right.\\ & & - & \left.\frac{1}{2}\,\gamma_K\left(\overline{\alpha}\left(\xi^2,\epsilon\right)\right)\,\log\left(\frac{-Q^2}{\xi^2}\right)\right]\right\}\,. \end{split}$$

Outline	INTRODUCTION	Form factors	Results	Perspective
	00	0000	0	
	000		00	

Implications

The exponent is not affected by the Landau pole for ε < 0. Γ is an analytic function of the coupling and ε. At one loop in QCD

$$\log \Gamma\left(\frac{Q^2}{\mu^2}, \alpha_s(\mu^2), \epsilon\right) = \log \Gamma\left(1, \alpha_s(Q^2), \epsilon\right)$$
$$= -\frac{1}{b_0} \left\{\frac{\gamma_K^{(1)}}{\epsilon} \operatorname{Li}_2\left[\frac{a(Q^2)}{a(Q^2) + \epsilon}\right] + 2G^{(1)}(\epsilon) \log\left[1 + \frac{a(Q^2)}{\epsilon}\right]\right\}$$

• The *ratio* of the *timelike* to the *spacelike* form factor admits a simple representation

$$\log\left[\frac{\Gamma(Q^2,\epsilon)}{\Gamma(-Q^2,\epsilon)}\right] = i\frac{\pi}{2}K(\epsilon) + \frac{i}{2}\int_0^{\pi} \left[G\left(\overline{\alpha}\left(e^{i\theta}Q^2\right),\epsilon\right) - \frac{i}{2}\int_0^{\theta}d\phi\,\gamma_K\left(\overline{\alpha}\left(e^{i\phi}Q^2\right)\right)\right]$$

which is *physically relevant* for resummed EW annihilation processes.

UTLINE	INTRODUCTION	Form factors	Results	Perspective
	00	0000	00	
	000	00	•	
	000		00	

Form factors in $\mathcal{N} = 4$ SYM

- In $d = 4 2\epsilon$ conformal invariance is *broken* and $\beta(\alpha_s) = -2\epsilon \alpha_s$.
- All integrations are trivial. The exponent has *only double* and *single* poles to *all orders*.

$$\begin{split} \log\left[\Gamma\left(\frac{Q^2}{\mu^2},\alpha_s(\mu^2),\epsilon\right)\right] &= -\frac{1}{2}\sum_{n=1}^{\infty}\left(\frac{\alpha_s(\mu^2)}{\pi}\right)^n \left(\frac{\mu^2}{-Q^2}\right)^{n\epsilon} \left[\frac{\gamma_K^{(n)}}{2n^2\epsilon^2} + \frac{G^{(n)}(\epsilon)}{n\epsilon}\right] \\ &= -\frac{1}{2}\sum_{n=1}^{\infty}\left(\frac{\alpha_s(Q^2)}{\pi}\right)^n e^{-i\pi n\epsilon} \left[\frac{\gamma_K^{(n)}}{2n^2\epsilon^2} + \frac{G^{(n)}(\epsilon)}{n\epsilon}\right], \end{split}$$

- In the *planar limit* this captures *all singularities* of fixed-angle amplitudes in N = 4 SYM.
- The *analytic continuation* yields a *finite* result in *four dimensions*, arguably *exact*.

$$\frac{\Gamma(Q^2)}{\Gamma(-Q^2)} \bigg|^2 = \exp\left[\frac{\pi^2}{4} \gamma_K\left(\alpha_s(Q^2)\right)\right] \,. \tag{Alma}$$

(日) (同) (三) (三) (三) (○) (○)

DUTLINE	INTRODUCTION	Form factors	Results	Perspec
	00	0000	00	
	000	00	0	
	000			

Characterizing
$$G(\alpha_s, \epsilon)$$

The single pole function $G(\alpha_s, \epsilon)$ is a sum of anomalous dimensions

$$G(\alpha_s) = \beta(\epsilon, \alpha_s) \frac{\partial}{\partial \alpha_s} \log C - \gamma_{\bar{S}} - 2\gamma_J + \sum_{i=1}^2 \mathcal{G}_i \,,$$

In $d = 4 - 2\epsilon$ finite remainders can be neatly exponentiated

$$C\left(\alpha_{s}(Q^{2}),\epsilon\right) = \exp\left[\int_{0}^{Q^{2}} \frac{d\xi^{2}}{\xi^{2}} \left\{\frac{d\log\overline{C}\left(\overline{\alpha}\left(\xi^{2},\epsilon\right),\epsilon\right)}{d\ln\xi^{2}}\right\}\right] \equiv \exp\left[\frac{1}{2} \int_{0}^{Q^{2}} \frac{d\xi^{2}}{\xi^{2}} G_{\overline{C}}\left(\overline{\alpha}\left(\xi^{2},\epsilon\right),\epsilon\right)\right]$$

The *soft function* exponentiates *like* the full form factor

$$\mathcal{S}\left(\alpha_s(\mu^2),\epsilon\right) = \exp\left\{\frac{1}{2}\int_0^{\mu^2} \frac{d\xi^2}{\xi^2} \left[G_{\rm eik}\left(\overline{\alpha}\left(\xi^2,\epsilon\right)\right) - \frac{1}{2}\gamma_K\left(\overline{\alpha}\left(\xi^2,\epsilon\right)\right)\log\left(\frac{\mu^2}{\xi^2}\right)\right]\right\} \ .$$

 $G(\alpha_s, \epsilon)$ is then simply related to collinear splitting functions and to the eikonal approximation

$$G(\alpha_{s},\epsilon) = 2 B_{\delta}(\alpha_{s}) + G_{\text{eik}}(\alpha_{s}) + G_{\overline{C}}(\alpha_{s},\epsilon) ,$$

UNIVERSITAS TAURINENSIS

UTLINE	INTRODUCTION	Form factors	Results	Perspect
	00	0000	00	
	000	00	0	
	000		0.	

Single logarithms in resummation

A deeper characterization of infrared and collinear *single poles* in *amplitudes* should be reflected in *single logarithms* in *cross sections*.

For a resummation as in the Drell-Yan cross section

$$\begin{split} \widehat{\omega}_{\overline{\mathrm{MS}}} \left(N \right) &= \left| \frac{\Gamma(Q^2, \epsilon)}{\phi_V(Q^2, \epsilon)} \right|^2 \exp\left[F_{\mathrm{DY}}(\alpha_s) + \int_0^1 dz \, \frac{z^{N-1} - 1}{1 - z} \\ &\left\{ 2 \int_{Q^2}^{(1-z)^2 Q^2} \frac{d\mu^2}{\mu^2} \, A\left(\alpha_s(\mu^2)\right) + D\left(\alpha_s\left((1-z)^2 Q^2\right)\right) \right\} \right]. \end{split}$$

the function $D(\alpha_s)$ should be *related* to $B_{\delta}(\alpha_s)$ and to $G(\alpha_s)$. Indeed,

$$\begin{split} A(\alpha_s) &= \gamma_K(\alpha_s)/2 ,\\ D(\alpha_s) &= 4 B_{\delta}(\alpha_s) - 2 \, \tilde{G}(\alpha_s) + \hat{\beta}(\alpha_s) \, \frac{d}{d\alpha_s} F_{\rm DY}(\alpha_s) ,\\ B(\alpha_s) &= B_{\delta}(\alpha_s) - \tilde{G}(\alpha_s) + \hat{\beta}(\alpha_s) \, \frac{d}{d\alpha_s} F_{\rm DIS}(\alpha_s) , \end{split}$$

where $B(\alpha_s)$ is the *single log* function for *DIS* resummation.

Outline	INTRODUCTION	Form factors	Results	Perspective
	00	0000	00	
	000	00	0	
	000		00	

Perspective

- The *all-order* analysis of infrared and collinear divergences in gauge theories has a *long history*.
- This history is *entering a new phase*
 - New motivations from *LHC phenomenology*
 - New (non)-perturbative input from $\mathcal{N} = 4$ SYM.
- We are beginning to unravel *all-order structure* in the resummed *exponent*.
- *Exact results* are in sight in $\mathcal{N} = 4$ SYM.
- For infrared and collinear divergences in *fixed-angle* massless gauge theory *amplitudes* only *three functions* play a role: γ_K(α_s), G_{eik}(α_s) and B_δ(α_s), possibly even *beyond* the *planar limit*.