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The Landau pole in d > 4

QCD resummations (renormalons, threshold,...) typi-
cally yield expressions of the form
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which are ill—defined because of the Landau pole in the
running coupling. Expansion in powers of a,(Q?) yields
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The ambiguity in the resummed perturbative result sig-
nals a nonperturbative power correction.

Consider however using consistently dimensional regu-
larization, with d =4 —2¢ >4 — ¢ < 0. Then
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The one—loop p—function in d > 4 has two fixed points:
an asymptotically free one at a; = —4we/bg, and a Wilson-
Fisher fixed point at a«s = 0. Thus, at one loop, the
running coupling

oy 6 as(pg) 6 |
(1) () 1 (1 (£)) ot

® vanishes as ;1> — 0 for e < 0

e has a Landau pole in the complex p°—plane at
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The pole is not on the real axis in the p? plane,
i.e. not on the integration contour of resummed
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formulas, provided
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We then expect resummed expressions to be integrable
for general €: scale integrals will yield analytic functions
of ¢ and o, with a “Landau cut’.



A neat example: the quark form factor

The on-shell, timelike, dimensionally regularized electro-
magnetic quark form factor,
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Double logarithms of the energy are known to exponen-
tiate (Sudakov, 1956)
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The ratio of the timelike to the spacelike form factor
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iIs phenomenologically relevant, e.g. for the Drell-Yan
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cross section (Parisi, 1980).



Evolution Equation

Summation of subleading logarithms requires the tech-
niques of IR/collinear factorization in QCD. One derives
the evolution equation (see Collins, 1990)

Q°~—log

Q- 2 _
8@ [ (?7048(//5 )7€>] -
2
3 | (c0:02) +6 (%antu).o)|

The functions K and G are characterized by
® K(e, ) is a pure counterterm, thus

K(e,a5) = ZM

n= 1
e = 5 K (%)

® (G(x,as,¢) contains the energy dependence and is

finite as ¢ — 0O
® /K and G renormalize additively, to preserve the in-

variance of [,




Solution at e <0

Dimensional regularization provides the means to con-
struct an explicit solution for the form factor. Recall
that
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This establishes the initial condition for the evolution
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In fact note that every perturbative contribution to I
carries a factor (p?/(—Q?))™, m >0. Then (LM, GS
1990)
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The counterterm function K (e, as)

In minimal schemes the counterterm function K has no
explicit scale dependence, thus it obeys
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Using the finiteness of the anomalous dimension the

K (e, as) = =k (as) .

RG equation turns into a recursion relation for infrared

poles
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As usual, all counterterms are determined by the residue

of the simple pole, which is determined by the anoma-
lous dimension ~x. It is useful to define the sum of
(next — to)™—leading poles as
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Solving the recursion relation

One can establish the following facts

® the recursion relation for Kﬁbm) can be solved includ-

ing all orders in the g function.

® All the resulting series of poles, IC,.(e,as), can be

summed.

e Upon summation, IC,,(e, a) is an analytic function
of as and ¢, regular as ¢ — 0 for m > 0. The only
singularity at ¢ — 0 is logarithmic and completely

determined by a one loop calculation.

e The finite limits K,,(0,as),(m > 0) can be com-
puted for all m in terms of the perturbative co-
efficients of g and ~x. They reconstitute a power

series in os.



At one loop ...

. using

LG
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and truncating the g3 function at O(a?), one readily
finds
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At two loops ...

. one can sum next-to-leading poles, obtaining
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Including all loops

Formally, one can perform the resummation including
all orders in the perturbative expansion of the functions
B and ~vg. All the series of poles, IC,,(e,as) sum up to
polylogarithms, and the resulting functions have finite,

calculable limits as ¢ — 0. Explicitly

K(e,as) = Kpry (e, as) + Kprn(as) + O(e)

where
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£ function.
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Analytic resummation of one loop effects

Retaining only one-loop effects in the exponent of [,
and in the @ function, direct integration yields
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where a(p?) = boas(p?)/(47) and

C(e) = GV (=1,e)/Cr =3/24 O(e) .

Since we used the solution of the one-loop RG equation
to perform the integral, and " is RG-invariant, the above
should be independent of p°. in fact
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The quark form factor is expressed in terms of a sim-

ple analytic function of the coupling and of ¢, which
IS manifestly independent of the renormalization scale,

and resums the first two towers of IR/collinear poles.
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Features of the resummation

® RG invariance is natural if one uses the coupling o
as integration variable
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One observes

— the Landau singularity as the new fixed point of
the @ function at € < 0;

— a natural generalization to higher orders in £.

® It is possible to study the “physical” limit ¢ — O:
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Note that

— all leading and next-to-leading poles resum to

a single pole, whose residue receives no correc-
tions at two loops;

— a term generating power behavior as ¢ — 0 arises
in a gauge invariant manner.
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Partonic cross sections: threshold
resummation in DIS and Drell-Yan

The simplest finite cross section to which this idea can
be applied is DIS. Consider the following expression for
the Mellin transform of % (x, Q?/u?, as(p?), €), where one
resums leading logarithms of N
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Integration of the running coupling around £2 = 0 gen-
erates the collinear divergence. It can be factorized by
subtracting the resummed parton distribution
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The IR and collinear finite, resummed partonic DIS
Cross section is then defined by
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Using again du/pu = das/B(e, as) one easily performs the
inner integrals obtaining the RG invariant expression
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As was done for the form factor, the expected power
correction can be evaluated by taking the |limit ¢ — O
with a,(Q?) fixed. One is lead to
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Each of these integrals carries an imaginary part due to
the cut, proportional to integer powers of exp(—1/a(Q?)),
with a(Q?) = boas(Q?)/(47), as above. Thus we find,
collecting the leading power corrections
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as expected in DIS.
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Drell—Yan

The resummed expression for the Drell-Yan partonic
cross section, at the leading log N level, is very simi-
lar. One finds
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while opy differs from F> because of a factor of two in
the exponent, and because phase space dictates that the
upper limit of the scale integration should be (1 — 2)?Q?.
Thus
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which is twice the DIS result with a(Q?) — 2 a(Q?).
Then
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This result is wrong, but it follows from the leading
log approximation used above . Only includ-
ing nonlogarithmic terms (suggested by kinematics) one
finds that the leading power correction cancels.
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Dimensionally continued g functions

At NLL accuracy, it is customary (C'7") to replace the
Mellin integral with the prescription
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which leads to an expansion of the form
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T his approximation makes it possible to evaluate ex-
plicitly the integrals in the exponent, also for e < 0. One
finds, in the M S scheme,
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One can get a similar expression in the DIS scheme,
by dividing opy by FZ. One gets
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Similar, lengthier expressions may be obtained at NLL

level.
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Perspectives

For e < 0 the QCD 3 function develops a second
fixed point, corresponding to the Landau singular-
ity; for sufficiently large negative € the Landau pole
migrates off the real axis; resummed expressions in
QCD are then explicitly computable.

Consistent usage of dimensional regularization leads
to explicit expressions for the quark form factor,
the DIS and Drell-Yan cross sections, in terms of
RG invariant analytic functions of ¢, as and NN, to
the desired accuracy in B(«s). These expressions
carry reliable information about power corrections
in compact form.

Power corrections exponentiate; scheme dependence
is under control; all expressions are gauge invariant.

Generalization to more complicated QCD ampli-
tudes is hard (tensor structures in color space) but
techniques exist. Phenomenological applications are
possible, as in the case of the exponentiation of 72
terms for the Drell-Yan cross section. Work is in
progress.
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