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The Landau pole in d > 4

QCD resummations (renormalons, threshold,...) typi-

cally yield expressions of the form

fa(Q
2) =

∫ Q2

0

dk2

k2
(k2)aαs(k

2) ,

which are ill–defined because of the Landau pole in the

running coupling. Expansion in powers of αs(Q2) yields

fa(Q
2) =

∞∑

n=0

c
(a)
n

(
αs(Q

2)
)n

→ c
(a)
n ∝ n!→ δfa(Q

2) ∝

(
Λ2

Q2

)a
.

The ambiguity in the resummed perturbative result sig-

nals a nonperturbative power correction.

Consider however using consistently dimensional regu-

larization, with d = 4− 2ε > 4→ ε < 0. Then

β(ε, αs) = µ
∂αs

∂µ
= −2εαs+ β̂(αs) ,

β̂(αs) = −
α2s
2π

∞∑

n=0

bn

(
αs

π

)n
.
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The one–loop β–function in d > 4 has two fixed points:

an asymptotically free one at αs = −4πε/b0, and a Wilson-

Fisher fixed point at αs = 0. Thus, at one loop, the

running coupling

α
(
µ2
)
=

αs(µ20)(
µ2

µ2
0

)ε
− 1

ε

(
1−

(
µ2

µ2
0

)ε)
b0
4παs(µ

2
0)

,

• vanishes as µ2 → 0 for ε < 0

• has a Landau pole in the complex µ2–plane at

µ2 = Λ2 ≡ Q2

(
1+

4πε

b0αs(Q2)

)−1/ε
,

The pole is not on the real axis in the µ2 plane,

i.e. not on the integration contour of resummed

formulas, provided

ε < −b0αs(Q
2)/(4π) .

We then expect resummed expressions to be integrable

for general ε: scale integrals will yield analytic functions

of ε and αs, with a “Landau cut”.
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A neat example: the quark form factor

The on-shell, timelike, dimensionally regularized electro-

magnetic quark form factor,

Γµ(p1, p2;µ
2, ε) = 〈0|Jµ(0)|p1, p2〉

= −ieeq v(p2)γµu(p1) Γ

(
Q2

µ2
, αs(µ

2), ε

)
,

satisfies

QµΓµ(p1, p2;µ
2, ε) = 0 ,(

µ
∂

∂µ
+ β(ε, αs)

∂

∂αs

)
Γ

(
Q2

µ2
, αs, ε

)
= 0 .

Double logarithms of the energy are known to exponen-

tiate (Sudakov, 1956)

Γ(Q2)
∣∣∣
LLA

= exp

[
−
αsCF
4π

log2(−Q2)

]
.

The ratio of the timelike to the spacelike form factor

∣∣∣∣∣
Γ(Q2)

Γ(−Q2)

∣∣∣∣∣

2

LLA

= exp

[
αsCF
2π

π2
]
,

is phenomenologically relevant, e.g. for the Drell–Yan

cross section (Parisi, 1980).
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Evolution Equation

Summation of subleading logarithms requires the tech-

niques of IR/collinear factorization in QCD. One derives

the evolution equation (see Collins, 1990)

Q2 ∂

∂Q2
log

[
Γ

(
Q2

µ2
, αs(µ

2), ε

)]
=

1

2

[
K
(
ε, αs(µ

2)
)
+G

(
Q2

µ2
, αs(µ

2), ε

)]
.

The functions K and G are characterized by

• K(ε, αs) is a pure counterterm, thus

K(ε, αs) =
∞∑

n=1

Kn(αs)

εn
,

Kn(αs) =
∞∑

m=n
K
(m)
n

(
αs

π

)m
.

• G(x, αs, ε) contains the energy dependence and is

finite as ε→ 0

• K and G renormalize additively, to preserve the in-

variance of Γ,

µ
d

dµ
G = −µ

d

dµ
K = γK(αs) .
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Solution at ε < 0

Dimensional regularization provides the means to con-

struct an explicit solution for the form factor. Recall

that

β(ε, αs) = µ
∂αs

∂µ
= −2εαs+ β̂(αs) ,

so that, for ε < 0

lim
µ2→0

α
(
µ2, αs(µ

2
0), ε

)
= 0 .

This establishes the initial condition for the evolution

Γ
(
0, αs(µ

2), ε
)
= 1 ,

In fact note that every perturbative contribution to Γ

carries a factor (µ2/(−Q2))mε, m > 0. Then (LM, GS

1990)

Γ

(
Q2

µ2
, αs(µ

2), ε

)
= exp

{
1

2

∫ −Q2

0

dξ2

ξ2

[
K (ε, αs)

+ G
(
−1, α

(
ξ2
)
, ε
)
+
1

2

∫ µ2

ξ2

dλ2

λ2
γK

(
α
(
λ2
))]}
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The counterterm function K(ε, αs)

In minimal schemes the counterterm function K has no

explicit scale dependence, thus it obeys

β(ε, αs)
∂

∂αs
K (ε, αs) = −γK(αs) .

Using the finiteness of the anomalous dimension the

RG equation turns into a recursion relation for infrared

poles

αs
d

dαs
K1(αs) =

1

2
γK(αs) ,

αs
d

dαs
Kn+1(αs) =

1

2
β̂(αs)

d

dαs
Kn(αs) .

As usual, all counterterms are determined by the residue

of the simple pole, which is determined by the anoma-

lous dimension γK. It is useful to define the sum of

(next− to)m–leading poles as

K(ε, αs) =
∞∑

m=0

Km(ε, αs) ,

Km(ε, αs) =
∞∑

n=1

K
(n+m)
n

(
αs

π

)n+m 1

εn
.
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Solving the recursion relation

One can establish the following facts

• the recursion relation for K(m)
n can be solved includ-

ing all orders in the β function.

• All the resulting series of poles, Km(ε, αs), can be

summed.

• Upon summation, Km(ε, αs) is an analytic function

of αs and ε, regular as ε→ 0 for m > 0. The only

singularity at ε→ 0 is logarithmic and completely

determined by a one loop calculation.

• The finite limits Km(0, αs), (m > 0) can be com-

puted for all m in terms of the perturbative co-

efficients of β and γK. They reconstitute a power

series in αs.
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At one loop ...

... using

K
(m)
1 =

1

2m
γ
(m)
K ,

and truncating the β function at O(α2
s), one readily

finds

K
(m)
n =

1

2m

(
−
b0
4

)n−1
γ
(m−n+1)
K ,

which is exact for n = m. Then

K0(ε, αs) =
∞∑

n=1

K
(n)
n

(
αs

πε

)n

=
2γ

(1)
K

b0
ln

(
1+

b0αs

4πε

)
.

At two loops ...

... one can sum next-to-leading poles, obtaining

K1(ε, αs) =
∞∑

n=1

K
(n+1)
n

(
αs

π

)n+1 1

εn

=
2αs

πb0


γ(2)K −

γ
(1)
K b1

b0


+O(ε) .
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Including all loops

Formally, one can perform the resummation including

all orders in the perturbative expansion of the functions

β and γK. All the series of poles, Km(ε, αs) sum up to

polylogarithms, and the resulting functions have finite,

calculable limits as ε→ 0. Explicitly

K(ε, αs) = KDIV (ε, αs) +KFIN(αs) +O(ε)

where

KDIV (ε, αs) =
2γ

(1)
K

b0
ln

(
1+

b0αs

4πε

)
.

The finite terms are given by

KFIN(αs) =
2

b0

∞∑

m=1

1

m

(
αs

π

)m
Am .

with the coefficients Am given by

Am =
m∑

p=0

B
(m)
p γ

(m+1−p)
K .

and B(m)
p constructed out of the coefficients bi of the

β function.
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Analytic resummation of one loop effects

Retaining only one-loop effects in the exponent of Γ,
and in the β function, direct integration yields

lnΓ

(
−Q2

µ2
, αs(µ

2), ε

)
= −

2CF

b0

{
1

ε
Li2

[(
µ2

Q2

)ε
a(µ2)

a(µ2) + ε

]

− C(ε) ln

[
1−

(
µ2

Q2

)ε
a(µ2)

a(µ2) + ε

]}
,

where a(µ2) = b0αs(µ2)/(4π) and

C(ε) = G(1)(−1, ε)/CF = 3/2+O(ε) .

Since we used the solution of the one-loop RG equation
to perform the integral, and Γ is RG-invariant, the above
should be independent of µ2. It is ... in fact

logΓ

(
−Q2

µ2
, αs(µ

2), ε

)
= logΓ

(
−1, αs(Q

2), ε
)

= −
2CF

b0

{
1

ε
Li2

[
a(Q2)

a(Q2) + ε

]
+ C(ε) log

[
1+

a(Q2)

ε

]}
.

The quark form factor is expressed in terms of a sim-

ple analytic function of the coupling and of ε, which

is manifestly independent of the renormalization scale,

and resums the first two towers of IR/collinear poles.
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Features of the resummation

• RG invariance is natural if one uses the coupling αs

as integration variable

dµ

µ
=

dαs

β(αs)
= −

dαs

αs

1

ε+ b0αs
4π

,

One observes

– the Landau singularity as the new fixed point of
the β function at ε < 0;

– a natural generalization to higher orders in β.

• It is possible to study the “physical” limit ε→ 0:

logΓ
(
−1, αs(Q

2), ε
)
=

2CF

b0

[
−
ζ(2)

ε
+

1

a(Q2)

+

(
1

a(Q2)
−
3

2

)
log

(
a(Q2)

ε

)
+O(ε, ε log ε)

]
.

Note that

– all leading and next-to-leading poles resum to
a single pole, whose residue receives no correc-
tions at two loops;

– a term generating power behavior as ε→ 0 arises
in a gauge invariant manner.
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Partonic cross sections: threshold

resummation in DIS and Drell–Yan

The simplest finite cross section to which this idea can
be applied is DIS. Consider the following expression for
the Mellin transform of F2(x,Q2/µ2, αs(µ2), ε), where one
resums leading logarithms of N

F2

(
N,

Q2

µ2
, αs(µ

2), ε

)
= F2 (1) exp

[
CF

π

∫ 1

0

dz
zN−1 − 1

1− z

×

∫ (1−z)Q2

0

dξ2

ξ2
ᾱ

(
ξ2

µ2
, αs(µ

2), ε

)]
.

Integration of the running coupling around ξ2 = 0 gen-
erates the collinear divergence. It can be factorized by
subtracting the resummed parton distribution (CLS)

ψMS

(
N,

Q2

µ2
, αs(µ

2), ε

)
= exp

[
CF

π

∫ 1

0

dz
zN−1 − 1

1− z

×

∫ Q2

0

dξ2

ξ2
ᾱ

(
ξ2

µ2
, αs(µ

2), ε

)]
.

The IR and collinear finite, resummed partonic DIS
cross section is then defined by

F̂2

(
N,

Q2

µ2
, αs(µ

2), ε

)
=

F2

(
N, Q

2

µ2 , αs(µ
2), ε

)

ψMS

(
N, Q

2

µ2 , αs(µ2), ε
) .
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Using again dµ/µ = dαs/β(ε, αs) one easily performs the
inner integrals obtaining the RG invariant expression

F̂2

(
N,

Q2

µ2
, αs(µ

2), ε

)
= F̂2 (1) exp

[
−
4πCF

b0

∫ 1

0

zN−1 − 1

1− z

× log

(
4πε+ b0 ᾱ((1− z)Q2)

4πε+ b0 ᾱ(Q2)

)]
,

manifestly finite as ε→ 0.

As was done for the form factor, the expected power
correction can be evaluated by taking the limit ε→ 0
with αs(Q2) fixed. One is lead to

L2

(
N,αs(Q

2)
)
≡ log

[
F̂2

(
N,1, αs(Q2),0

)

F̂2 (1)

]

= −
4πCF

b0

N−2∑

k=0

Ik
(
αs(Q

2)
)
,

where

Ik
(
αs(Q

2)
)

=

∫ 1

0

dzzk log

[
1+

b0αs(Q2)

4π
log(1− z)

]
.

Each of these integrals carries an imaginary part due to
the cut, proportional to integer powers of exp(−1/a(Q2)),
with a(Q2) = b0αs(Q2)/(4π), as above. Thus we find,
collecting the leading power corrections

δL2

(
N,αs(Q

2)
)
∝ N

Λ2

Q2

(
1+O

(
1

N

)
+O

(
Λ2

Q2

))
,

as expected in DIS.
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Drell–Yan

The resummed expression for the Drell-Yan partonic
cross section, at the leading logN level, is very simi-
lar. One finds

σ̂DY

(
N,

Q2

µ2
, αs(µ

2), ε

)
=

σDY

(
N, Q

2

µ2 , αs(µ
2), ε

)

ψ2
MS

(
N, Q

2

µ2 , αs(µ2), ε
) ,

while σDY differs from F2 because of a factor of two in
the exponent, and because phase space dictates that the
upper limit of the scale integration should be (1− z)2Q2.
Thus

LDY
(
N,αs(Q

2)
)
≡ log

[
σ̂DY

(
N,1, αs(Q2),0

)

σ̂DY (1)

]

= −
8πCF

b0

N−2∑

k=0

Ik
(
2 αs(Q

2)
)
,

which is twice the DIS result with a(Q2)→ 2 a(Q2).
Then

δLDY
(
N,αs(Q

2)
)
∝ N

Λ

Q

(
1+O

(
1

N

)
+O

(
Λ

Q

))
.

This result is wrong, but it follows from the leading

log approximation used above (BB,SV ). Only includ-

ing nonlogarithmic terms (suggested by kinematics) one

finds that the leading power correction cancels.
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Dimensionally continued g functions

At NLL accuracy, it is customary (CT ) to replace the
Mellin integral with the prescription

∫ 1

0

dz
zN−1 − 1

1− z
f(z) → −

∫ 1−1/N

0

dz
1

1− z
f(z) ,

which leads to an expansion of the form

LDY
(
N,αs(Q

2)
)

= logN g1(b0αs logN)

+ g2(b0αs logN) +O(αks log
k−1N) .

This approximation makes it possible to evaluate ex-
plicitly the integrals in the exponent, also for ε < 0. One
finds, in the MS scheme,

LDY
(
N,αs(Q

2)
)
= −

8CF

b0

[
logN log

(
−
a(Q2)

ε
N2ε

)

−
1

2ε

(
Li2

(
1+

ε

a(Q2)

)
− Li2

(
a(Q2) + ε

a(Q2)N2ε

))
− ε log2N

]
.

One can get a similar expression in the DIS scheme,
by dividing σDY by F 2

2 . One gets

L(DIS)
DY

(
N,αs(Q

2)
)
= −

8CF

b0

[
1

2ε
Li2

(
a(Q2) + ε

a(Q2)N2ε

)

−
1

2ε
Li2

(
1+

ε

a(Q2)

)
−
1

ε
Li2

(
a(Q2) + ε

a(Q2)N ε

)
−
ε

2
log2N

]
.

Similar, lengthier expressions may be obtained at NLL

level.
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Perspectives

• For ε < 0 the QCD β function develops a second
fixed point, corresponding to the Landau singular-
ity; for sufficiently large negative ε the Landau pole
migrates off the real axis; resummed expressions in
QCD are then explicitly computable.

• Consistent usage of dimensional regularization leads
to explicit expressions for the quark form factor,
the DIS and Drell-Yan cross sections, in terms of
RG invariant analytic functions of ε, αs and N , to
the desired accuracy in β(αs). These expressions
carry reliable information about power corrections
in compact form.

• Power corrections exponentiate; scheme dependence
is under control; all expressions are gauge invariant.

• Generalization to more complicated QCD ampli-
tudes is hard (tensor structures in color space) but
techniques exist. Phenomenological applications are
possible, as in the case of the exponentiation of π2

terms for the Drell-Yan cross section. Work is in
progress.
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