Jets at colliders	Analytic study	MonteCarlo results	Optimizing R	Perspective
000000	0000 00 0000	0 0 000	000	

Non-perturbative effects for QCD jets at hadron colliders

Lorenzo Magnea

Università di Torino - INFN, Sezione di Torino

Work in collaboration with M. Dasgupta and G. Salam.

Milano - 03/04/08

Jets at colliders	Analytic study	MonteCarlo results	Optimizing R	Perspective
000000	0000	0	0	
000	00	0	00	
	0000	000		

Outline

Jets at colliders

The making and usage of jets Jet energy scale studies

$Analytic\ study$

Factorization and resummation Soft gluons in dipoles Jet size dependence

MonteCarlo results

Modeling power correction Comparing jet algorithms Comparing parton channels and energies

Optimizing R

Varying jet parameters Looking for the best R

Perspective

ETS AT COLLIDERS	Analytic study	MonteCarlo results	Optimizing R	Perspective
00000 000	0000 00 0000	0 0 000	0 00	

Jets at Tevatron and LHC

• Jets are *ubiquitous* at hadron colliders

 \longrightarrow the most common high- p_t final state

• Jets need to be understood in detail

 \longrightarrow top mass, Higgs searches, QCD studies, new particle cascades

• Jets at LHC will be numerous and complicated

 $\longrightarrow t\bar{t}H \rightarrow 8\,{\rm jets}\,\dots$, underlying event, pileup \dots

• Jets are *inherently ambiguous* in QCD

 \longrightarrow no unique link $\ hard \ parton \rightarrow jet$

• Jets are theoretically interesting

 \longrightarrow IR/C safety, resummations, hadronization ...

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Jets at colliders	Analytic study	MonteCarlo results	Optimizing R	Perspective
00000	0000	0	0	
000	00	0	00	
	0000	000		

$t\bar{t} \rightarrow 4\,\text{jets} + \text{lepton} + E_t$: a cartoon

Jets at colliders	Analytic study	MonteCarlo results	Optimizing R	Perspective
00000	0000 00 0000	0 0 000	000	

$t\bar{t} \rightarrow 4\,\text{jets} + \text{lepton} + E_t$: real life at CDF

・ロト ・ 日 ・ ・ 日 ・ ・ 日

	TIVE
00000 0000 0 0 0 000 0	

From hard partons to jets

Hard scattering provides us with high- p_t partons *initiating* the jets. Jet momenta receive *several* PT and NP corrections.

• *Perturbative* radiation + parton *showering*

 \longrightarrow expensive: $5\cdot 10^2\,m\cdot y \sim \$\,5\cdot 10^7$ at NNLO ...

• Universal *hadronization*, induced by *soft radiation*

 \longrightarrow from hard scattering, as in DIS, e^+e^-

- Underlying event, colored fragments from proton remnants
 → no perturbative control, large at LHC
- Pileup, multiple proton scatterings per bunch crossing

 \longrightarrow experimental issue, up to $10^2 \, {\rm GeV}$ per unit rapidity at LHC

ETS AT COLLIDERS	Analytic study	MonteCarlo results	Optimizing R	Perspective
00000	0000	0	0	
00	00	0	00	
	0000	000		

Jet algorithms

- Requirements. IR/C *safe*, for theoretical stability; *fast*, for implementation; limited *hadronization corrections*
- Algorithm structures.
 - Cone. Top-down, intuitive, Sterman-Weinberg inspired.
 → IR/C safety issues → SISCone
 - Sequential recombination. Bottom-up, clustering, from e^+e^- . Metric: $d_{ij}^{(p)} \equiv \min\left(k_{t,i}^{2p}, k_{t,j}^{2p}\right) \frac{\Delta y_{ij}^2 + \Delta \phi_{ij}^2}{R^2}$, $d_{iB}^{(p)} \equiv k_{t,i}^{2p}$, Choices: p = 1: k_t , p = 0: Cambridge, p = -1: Anti- k_t
- Recent progress.
 - G. Salam *et al.*: FastJet, SISCone, Anti- k_t , Jet Area, Jet Flavor
 - Also S. Ellis et al.: SpartyJet

Jets at colliders	Analytic study	MonteCarlo results	Optimizing R	Perspective
000000	0000	0	0	
000	00	0	00	
	0000	000		

Nonperturbative effects at TeV colliders

Why bother?

- Do power corrections *matter* for TeV jets? $\Lambda/Q \sim 10^{-3} \longrightarrow \text{true asymptotics}?$
- Precision measurements require precise *jet energy scale* 1% uncertainty $\longleftrightarrow \Delta M_{\text{top}} \sim 1 \text{GeV}/c^2$
- Steeply falling distributions *magnify* power corrections power corrections *necessary* to fit Tevatron data
- Hadronization and underlying event: *different* physics
 → disentangle computable effects
- QCD dynamics *in full colors*.

 \longrightarrow color correlations in hadronization

ETS AT COLLIDERS	Analytic study	MonteCarlo results	Optimizing R	Perspective
00000	0000	0	0	
00	00	0	00	
	0000	000		

Determining the jet energy scale CDF. hep-ex/0510047

• *Precision* for the jet energy scale E_T is *important*

 $\Delta E_T/E_T = 10^{-2} \longrightarrow \Delta \sigma_{\rm jet}/\sigma_{\rm jet}|_{\rm 500 GeV} = 10^{-1}$

• Determining the jet energy scale is experimentally difficult

$$p_T^{\text{parton}} = \left(p_T^{\text{jet}} \times C_\eta - C_{\text{MI}} \right) \times C_{\text{ABS}} - C_{\text{UE}} + C_{\text{OOC}}$$

- Experimental *issues*: C_{η} , C_{MI} , C_{ABS}
 - Calorimeter and detector efficiencies
 - Multiple interactions
- Theoretical *input*: C_{UE}, C_{OOC}
 - Underlying event, hadronization, out-of-cone radiation

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Models, Monte-Carlo, analytic results?

Jets at colliders	Analytic study	MonteCarlo results	Optimizing R	Perspectiv
00000 000	0000 00 0000	0 0 000	0 00	

Fitting jet distributions at Tevatron

M.L. Mangano, hep-ph/9911256

The *ratio* of single-inclusive jet E_T distributions at different \sqrt{S} should *scale* up to logarithms.

- Cross section ratio should *scale* up to *PDF* ad *α_s* effects.
- Data can be fitted with *shift* in distribution.
- Small Λ has impact at high E_T .
- $\sigma(E_T) \sim E_T^{-n} \to \frac{\delta\sigma}{\sigma} \sim -n \, \delta E_T$
- *Several* sources of energy flow *in* and *out* of jets.

UNIVERSITAS

ETS AT COLLIDERS	Analytic study	MonteCarlo results	Optimizing R	Perspectiv
00000	0000	0000	0 00	
	0000	000		

Discriminating power corrections

- *Sources* of power corrections at hadron colliders
 - Soft radiation from $hard antenna \Rightarrow hadronization$.
 - * Accessible with perturbative QCD.
 - * Partially *localized* in phase space.
 - * Tools: resummations, dispersive techniques.
 - Background soft radiation \Rightarrow underlying event.
 - * Not calculable in perturbative QCD.
 - * *Fills* phase space (*minijets*?).
 - * Tools: *models*, *Monte-Carlo*.
- Experimental *issues* impact on theory.
 - Phase space $cuts \longrightarrow non-global$ logarithms.
 - *Pileup* subtraction \longrightarrow *jet* areas.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

TS AT COLLIDERS	Analytic study	MonteCarlo results	Optimizing R	Perspective
00000	0000	0	0	
00	00	0	00	
	0000	000		

Factorization and resummation

Consider *inclusive* production of a *jet* with momentum p_J^{μ} in *hadron-hadron* collisions, near *partonic threshold*.

- Partonic threshold: $s_4 \equiv s + t + u \rightarrow 0$ $\longrightarrow \alpha_s^n \left[\log^{2n-1}(s_4)/s_4 \right]_{\perp}$ in the distribution.
- Sudakov logs arise from *collinear* and *soft* gluons, which *factorize*, with nontrivial *color mixing*

JETS AT COLLIDERS 000000 000 ANALYTIC STUDY 0000 00 0000 MonteCarlo result o o Optimizing R0 00

Perspective

NLL jet E_T distribution

G. Sterman, N. Kidonakis, J. Owens ...

Factorization leads to *resummation*. For $q\bar{q}$ collisions

$$E_J \frac{d^3 \sigma}{d^3 p_J} = \frac{1}{s} \exp \left[\mathcal{E}_{\mathrm{F}} + \mathcal{E}_{\mathrm{IN}} + \mathcal{E}_{\mathrm{OUT}} \right] \cdot \mathrm{Tr} \left[HS \right] \; .$$

Incoming partons build up a Drell-Yan structure

$$\mathcal{E}_{\rm IN} = -\sum_{i=1}^2 \int_0^1 dz \frac{z^{N_i - 1} - 1}{1 - z} \left\{ \frac{1}{2} \nu_q \left[\alpha_s \left((1 - z)^2 Q_i^2 \right) \right] + \int_{(1 - z)^2}^1 \frac{d\xi}{\xi} A_q \left[\alpha_s \left(\xi Q_i^2 \right) \right] \right\} \; .$$

Note: $N_1 = N(-u/s)$, $N_2 = N(-t/s)$, $Q_1 = -u/\sqrt{s}$, $Q_2 = -t/\sqrt{s}$

Outgoing partons near threshold cluster in two jets

$$\begin{split} \mathcal{E}_{\text{OUT}} &= -\sum_{i=J,R} \int_{0}^{1} dz \frac{z^{N-1}-1}{1-z} \bigg\{ B_{i} \left[\alpha_{s} \left((1-z)p_{T}^{2} \right) \right] + C_{i} \left[\alpha_{s} \left((1-z)^{2}p_{T}^{2} \right) \right] \\ &+ \int_{(1-z)^{2}}^{1-z} \frac{d\xi}{\xi} A_{i} \left[\alpha_{s} \left(\xi p_{T}^{2} \right) \right] \bigg\} \,. \end{split}$$

AT COLLIDERS	Analytic study	MonteCarlo results	Optimizing R	Perspecti
00	0000	0	0	
	00	0	00	
	0000	000		

Color exchange near threshold

Soft gluons change the color structure of the hard scattering.

• Choose a basis in color configuration space

 $c_{\{r_i\}}^{(1)} = \delta_{r_1r_3}\delta_{r_2r_4} \quad , \quad c_{\{r_i\}}^{(2)} = \left(T_A\right)_{r_3r_1} \left(T^A\right)_{r_2r_4} = \frac{1}{2}\left(\delta_{r_1r_2}\delta_{r_3r_4} - \frac{1}{N_c}\delta_{r_1r_3}\delta_{r_2r_4}\right)$

• At *tree level*, for $q\bar{q}$ collisions

 $\mathcal{M}_{\{r_i\}} = \mathcal{M}_1 \, c^{(1)}_{\{r_i\}} + \mathcal{M}_2 \, c^{(2)}_{\{r_i\}} \to |\mathcal{M}|^2 = \mathcal{M}_I \mathcal{M}_J^* \, \operatorname{tr} \, \left[c^{(I)}_{\{r_i\}} \left(c^{(J)}_{\{r_i\}} \right)^\dagger \right] \equiv \operatorname{Tr} \, [HS]_0$

• Renormalization group resums soft logarithms

 $\begin{aligned} \operatorname{Tr}\left[HS\right] \, &\equiv \, H_{AB}\left(\alpha_{s}(\mu^{2})\right)S^{AB}\left(\frac{p_{T}}{N\mu},\alpha_{s}(\mu^{2})\right) \, = \\ H\left(\alpha_{s}(p_{T}^{2})\right)\cdot\overline{P}\exp\left(\int_{p_{T}}^{\frac{p_{T}}{N}}\frac{d\mu}{\mu}\Gamma_{S}^{\dagger}\left(\alpha_{s}(\mu^{2})\right)\right)\cdot S\left(1,\alpha_{s}\left(\frac{p_{T}^{2}}{N^{2}}\right)\right)\cdot P\exp\left(\int_{p_{T}}^{\frac{p_{T}}{N}}\frac{d\mu}{\mu}\Gamma_{S}\left(\alpha_{s}(\mu^{2})\right)\right) \end{aligned}$

• Note:
$$\left[\Gamma_S^{q\bar{q}}\right]_{11}^{(1)} = 2C_F \log(-t/s) + i\pi \dots$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

JETS AT COLLIDERS 000000 000

Issues of globalness and jet algorithms

Resummations in hadron-hadron collisions *require* a precise definition of the observable.

- Precisely defining *threshold*
 - For dijet distributions: $M_{12} = (p_1 + p_2)^2$ differs from $M_{12} = 2p_1 \cdot p_2$ at LL level.
 - For single inclusive distributions: fixed and integrated rapidity differ $(N_i \rightarrow N)$.
- Precisely defining the *observable*
 - Jet *algorithm*: IR safety *a must*.
 - Jet momentum: four-momentum recombination

 $p_{\perp} = \sum_{i} E_{i} \sin \theta_{i}$ VS. $p_{\perp} = \sum_{i} E_{i} \cdot \sin \theta_{\text{eff}}$.

- Beware of *nonglobal* logarithms
 - Pick *global* observable: satisfied by x_T distribution.
 - Minimize impact of nonglobal logs: k₁ algorithm for energy flows; *joint* distributions.

JETS AT COLLIDERS 000000 000 ANALYTIC STUDY

MonteCarlo results o o Optimizing R 0 00 Perspective

Soft gluons in dipoles

Y. Dokshitzer, G. Marchesini

• Given hard antenna, define eikonal soft gluon current.

$$j^{\mu,b}(k) = \sum_{i=1}^{N_p} \frac{\omega \, p_i^\mu}{(k \cdot p_i)} T_i^b \, ; \qquad \quad \sum_{i=1}^{N_p} T_i^b \, = \, 0.$$

• Eikonal *cross section* is built by *dipoles*.

$$j^{2}(k) = 2\sum_{i>j} T_{i} \cdot T_{j} \frac{\omega^{2} (p_{i} \cdot p_{j})}{(k \cdot p_{i})(k \cdot p_{j})} \equiv 2\sum_{i>j} T_{i} \cdot T_{j} w_{ij}(k)$$

• By color conservation, up to three hard emitters have no color mixing (unique representation content).

•
$$-2T_1 \cdot T_2 = T_1^2 + T_2^2 = 2C_F$$
; $-2T_1 \cdot T_2 = T_1^2 + T_2^2 - T_3^2$,

• $-j^2(k) = T_1^2 \cdot W_{23}^{(1)}(k) + T_2^2 \cdot W_{13}^{(2)}(k) + T_3^2 \cdot W_{12}^{(3)}(k)$,

•
$$W_{23}^{(1)} = w_{12} + w_{13} - w_{23}$$
.

• Note: $W_{ik}^{(i)}$ isolates *collinear* singularity along *i*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ ● のへで

T COLLIDERS	Analytic study	MonteCarlo results	Optimizing R
0	0000	0	0
	0.	0	00
	0000	000	

Soft gluons in dipoles

Beyond three emitters different color representations contribute.

• The *eikonal cross section* acquires *noncommuting* dipole combinations

$$\begin{split} -j^2(k) &= T_1^2 \, W_{34}^{(1)}(k) + T_2^2 \, W_{34}^{(2)}(k) + T_3^2 \, W_{12}^{(3)}(k) + T_4^2 \, W_{12}^{(4)}(k) + T_t^2 \cdot A_t(k) + T_u^2 \cdot A_u(k) \, . \\ \text{with $nonCasimir$ color factors} \end{split}$$

 $T_t^2 = (T_3 + T_1)^2 = (T_2 + T_4)^2, \qquad T_u^2 = (T_4 + T_1)^2 = (T_2 + T_3)^2.$

• The resulting *distributions* are *collinear safe*

 $A_t = w_{12} + w_{34} - w_{13} - w_{24} , \qquad \qquad A_u = w_{12} + w_{34} - w_{14} - w_{23} ,$

• Angular integrals yield momentum dependence of radiators

 $\int \frac{d\Omega}{4\pi} A_t(k) = -2\ln\frac{-t}{s}; \qquad \int \frac{d\Omega}{4\pi} A_u(k) = -2\ln\frac{-u}{s}.$

• Dipole approach *practical* for power corrections.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

S AT COLLIDERS	Analytic study	MonteCarlo results	Optimizing R	Perspective
0000	0000	0	0	
C	00	0	00	
	0000	000		

Power corrections by dipoles

- Consider the single inclusive distribution for a jet observable $O(y, p_t, R)$, with jet radius $R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2}$.
- Measure the effect of single soft gluon emission on the distribution, as done in e⁺e⁻ and DIS, but dipole by dipole.
- *Define R*-dependent power correction

$$\Delta O_{ij}^{\pm}(R) \equiv \int_{\pm} d\eta \frac{d\phi}{2\pi} \int_{\mu_c}^{\mu_f} d\kappa_t^{(ij)} \ \delta \alpha_s \left(\kappa_t^{(ij)}\right) k_t \left| \frac{\partial k_t}{\partial \kappa_t^{(ij)}} \right| \ \frac{p_i \cdot p_j}{p_i \cdot k \cdot p_j \cdot k} \, \delta O^{\pm} \left(k_t, \eta, \phi\right) \ . \label{eq:DeltaO}$$

• Compute in-cone and out-of-cone contributions

 $\Delta O_{ij}(R) = \Delta O_{ij}^+(R) + \Delta O_{ij}^-(R) = \Delta O_{ij}^+(R) + \Delta O_{ij}^{-\operatorname{all}}(R) - \Delta O_{ij}^{-\operatorname{in}}(R) \,.$

• *Express* leading power *R* dependence in terms of (*universal?*) moment of the *non-perturbative* coupling, $\mathcal{A}(\mu_f)$

$$\mathcal{A}(\mu_f) = \frac{1}{\pi} \int_0^{\mu_f} d\kappa_\perp \, \delta\alpha_s(\kappa_\perp)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

AT COLLIDERS	Analytic study	MonteCarlo results	Optimizing R	Perspective
000	0000	0	0	
	00	0	00	
	0000	000		

Radius dependence: p_T distribution

Let $O = \xi_T \equiv 1 - 2p_T/\sqrt{S}$. In this case

• In-In dipole

$$\Delta \xi_{T,12}(R) = \frac{-4}{\sqrt{S}} \mathcal{A}(\mu_f) R J_1(R) = -\frac{4}{\sqrt{S}} \mathcal{A}(\mu_f) \left(\frac{R^2}{2} - \frac{R^4}{16} + \ldots\right).$$

• In-Jet dipoles

$$\begin{aligned} \Delta \xi_{T,1j}(R) &= -\sqrt{\frac{2}{S}} \int_{\eta^2 + \phi^2 < R^2} d\eta \frac{d\phi}{2\pi} \alpha_s(\kappa_t) \frac{d\kappa_t}{\kappa_t} \kappa_t \frac{\cos \phi \, e^{\frac{5\eta}{2}}}{(\cosh \eta - \cos \phi)^{\frac{3}{2}}} \\ &= \frac{2}{\sqrt{S}} \mathcal{A}(\mu_f) \left(\frac{2}{R} - \frac{5}{8}R + \frac{23}{1536}R^3 + \ldots\right) \end{aligned}$$

9

• Jet-Recoil dipole

$$\Delta \xi_{T,jr}(R) = \frac{2}{\sqrt{S}} \mathcal{A}(\mu_f) \left(\frac{2}{R} + \frac{1}{2}R + \frac{1}{96}R^3 + \ldots\right)$$

ETS AT COLLIDERS	Analytic study	MonteCarlo results	Optimizing R	Perspective
00000	0000	0	0	
000	00	0	00	
	0000	000		

Radius dependence: mass distribution

For comparison, let $O = \nu_J \equiv M_J^2/S$. Now only gluons *recombined* with the jet contribute, and one finds *nonsingular* R dependence.

• In-In dipole

$$\Delta \nu_{J,12}(R) = \frac{1}{\sqrt{S}} \mathcal{A}(\mu_f) \left(\frac{1}{4} R^4 + \frac{1}{4608} R^8 + \mathcal{O}\left(R^{12} \right) \right) \;,$$

• In-Jet dipoles

$$\Delta\nu_{J,1j}(R) = \frac{1}{\sqrt{S}}\mathcal{A}(\mu_f) \left(R + \frac{3}{16}R^3 + \frac{125}{9216}R^5 + \frac{7}{16384}R^7 + \mathcal{O}\left(R^9\right)\right) \,,$$

• Jet-Recoil dipole

$$\Delta \nu_{J,jr}(R) = \frac{1}{\sqrt{S}} \mathcal{A}(\mu_f) \left(R + \frac{5}{576} R^5 + \mathcal{O}\left(R^9 \right) \right) \ ,$$

• In-Recoil dipoles

$$\Delta\nu_{J,1r}(R) = \frac{1}{\sqrt{S}}\mathcal{A}(\mu_f) \left(\frac{1}{32}R^4 + \frac{3}{256}R^6 + \frac{169}{589824}R^8 + \mathcal{O}\left(R^{10}\right)\right) .$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

00000 0 00000 0 00000	
0000 000	

$Combining \ dipoles$

Example: leading power shift in p_t after dipole recombination for $qq' \rightarrow qq'$ parton process, at *central rapidity*.

$$\Delta p_t(R)|_{\mathrm{qq'}\to\mathrm{qq'}} = \mathcal{A}(\mu_f) \left[-\frac{2}{R} C_F + \frac{1}{8} R \left(5 C_F - \frac{9}{N_c} \right) + \mathcal{O}\left(R^2\right) \right] \;.$$

- Hadronization has a singular R dependence. 1/R has a collinear origin, like the log R behavior of PT.
- The color structure at 1/R level is abelian, with the hard parton color charge. For gluon jets, $C_F \rightarrow C_A$.
- Possible universality: $\mathcal{A}(\mu_f)$ is the same as defined for event shapes in e^+e^- and DIS.
- Universality generically broken by nonlinear effects in jet algorithm, except for Anti-k_t.
- At $\mathcal{O}(R^2)$ hadronization is *overtaken* by *underlying* UNIVERSITY TAURINENSIS event, entering with a *new scale* Λ_{UE} .

Jets at colliders	Analytic study
000000	0000
000	00
	0000

MonteCarlo results

Optimizing R0 00 Perspective

Power corrections by MonteCarlo

The *analytical* estimate of power corrections provided by resummation is valid *near threshold*. It can be compared with *numerical* estimates from QCD-inspired *MonteCarlo models* of hadronization.

- Run MC at parton level (p), hadron level without UE (h) and finally with UE (u)
- Select events with hardest jet in chosen p_T range, *identify* two hardest jets, *define* for each hadron level

$$\begin{split} \Delta p_T^{(h/u)} &= \frac{1}{2} \left(p_{T,1}^{(h/u)} + p_{T,2}^{(h/u)} - p_{T,1}^{(p)} - p_{T,2}^{(p)} \right) \, . \\ \Delta p_T^{(u-h)} &= \Delta p_T^{(u)} - \Delta p_T^{(h)} \, . \end{split}$$

• Compare results for different *jet algorithms*, *hadronization models*, *parton channels*.

Jets at colliders	Analytic study	MonteCarlo results	Optimizing R	Perspective
000000	0000	0	0	
000	00	•	00	
	0000	000		

Quark scattering at Tevatron: comparing jet algorithms

◆□> ◆□> ◆三> ◆三> ● ○ ○ ○

Jets at colliders	Analytic study	MonteCarlo results	Optimizing R	Perspective
000000	0000 00 0000	0 0 000	0 00	

Gluon scattering at Tevatron

イロト イポト イヨト イヨト ヨー のの(

Jets at colliders	Analytic study	MonteCarlo results	Optimizing R	Perspective
000000	0000	0	0	
000	00	0	00	
	0000	000		

Gluon scattering at LHC

Jets at colliders	Analytic study	MonteCarlo results	Optimizing R	Perspective
000000	0000	0	0	
000	00	○ ○○●	00	
	0000	000		

Underlying event, scaled

э

Jets at colliders	Analytic study	MonteCarlo results	Optimizing R	Perspective
000000	0000	0	00	
	0000	000		

Jetography

The change in p_t from the *hard parton* to the *hadronic jet* has *several sources*, each with its own *scale* and radius, energy and color dependence.

	Dependence of jet Δp_t on			
	scale	colour factor	R	\sqrt{s}
PT	$\alpha_s(p_t) p_t$	C_i	$\ln R + \mathcal{O}(1)$	-
H	$\mathcal{A}(\mu_f)$	C_i	$-1/R + \mathcal{O}(R)$	-
$U\!E$	Λ_{UE}	_	$R^2 + \mathcal{O}(R^4)$	s^{ω}

- Jet *algorithm* dependence is *weak* at this level
- Parameters *tunable to optimize* specific physics searches

Radius dependence usable to disentangle p_t sources.

Jets at colliders	Analytic study	MonteCarlo results	Optimizing R	Perspective
000000	0000	0	○ ●○	
	0000	000		

Looking for the best R

<ロト <回ト < 注ト < 注ト

3

Jets at colliders	Analytic study	MonteCarlo results	Optimizing R	Perspective
000000	0000	0	0	
000	00	0	0.	
	0000	000		

Looking for the best R

000000 00000 0 00000000000000000000000	Jets at colliders	Analytic study	MonteCarlo results	Optimizing R	Perspective
0000 000	000000	0000	0	000	

Perspective on hadronization

- Single inclusive jet distributions have Λ/p_T power corrections from hadronization.
- *Hadronization* corrections are *distinguishable* from *underlying event* effects because of *singular R* dependence.
- In a "dispersive model" the size of leading power corrections can be related to parameters determined in e^+e^- annihilation.
- Power corrections *near partonic threshold* are qualitatively compatible with *Monte Carlo* results.
- Work in progress.
 - Study *rapidity* dependence.
 - Investigate role of *jet algorithms*.
 - Combine with *resummation* to go *beyond shift*.

Jets at colliders	Analytic study	MonteCarlo results	Optimizing R	Perspective
000000	0000	0	0	
000	0000	000	00	

Perspective

- In recent years: great progress in theoretical jets studies
 - Several IR/C safe jet algorithms available; fast implementation
 - Operational definitions of *jet area*, *jet flavor*
 - Progress in PT, shower, resummation, hadronization
- Progress will be necessary for complex LHC environment (multi-jet, large UE, pileup, ...)
 - To take advantage of available tools: flexibility
 - Use different (safe) algorithms, vary parameters
- QCD is now precision physics
 - New frontiers in quantum field theory
 - Useful for new physics studies
 - Necessary for precision studies

