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On event shape distributions

Picturing the final state of high-energy collisions

• Event shape distributions probe QCD at all scales from the
perturbative to the non-perturbative regime.

finite order −→ resummation −→ power corrections

• They provide a global picture of the final state of hard
collisions.

energy flow←→ hadronization←→ mass effects

• A large amount of data is available (LEP, HERA ...)

better theory←→ more analysis ?

• Studies are emerging for hadron-hadron collisions

impact at LHC ?
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On event shape distributions

Examples

• Thrust: T = maxn̂

P
i|~pi·n̂|
Q ; τ = 1− T .

→ n̂ is used to define several other shape variables.

• C-parameter: C = 3− 3
2

∑
i,j

(pi·pj)
2

(pi·q) (pj ·q) .

→ does not require maximization procedures.

• Angularity: τa = 1
Q

∑
i(p⊥)ie−|ηi|(1−a) .

→ recently introduced, one-parameter family.

• Transverse Thrust: T⊥ = maxn̂⊥

P
i|~p⊥i·n̂⊥|P

i ~p⊥i
.

→ defined for hadron-hadron collisions
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Resumming Sudakov logarithms

Infrared and collinear emission dominates the two-jet limit

• Large double logarithms of the variable vanishing in the
two-jet limit (L = log τ ;L = log C ; . . .) enhance finite orders
→ need to resum.

• A pattern of exponentiation emerges∑
k αk

s

∑2k
p ckpL

p → exp
[
Lg1(αsL)+ g2(αsL)+αsg3(αsL)+ . . .

]
• In general the Laplace transform exponentiates. For thrust∫ ∞

0

d τ e−ντ 1
σ

dσ

dτ
= exp

[∫ 1

0

du

u

(
e−uν − 1

)(
B
(
αs

(
uQ2

))
+ 2

∫ uQ2

u2Q2

dq2

q2
A
(
αs(q2)

))]
.
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Reaching beyond perturbation theory

Exponentiating power corrections

• The exponent is ill-defined because of the Landau pole

regularization −→ ambiguity −→ power corrections

• Focus on small τ , large ν, set IR factorization scale µ, expand
in powers of ν/Q (soft), neglecting ν/Q2 (collinear).

SNP(ν/Q, µ) = 2
∫ µ2

0

dq2

q2
A
(
αs(q2)

) ∫ q/Q

q2/Q2

du

u

(
e−uν − 1

)
'

∞∑
n=1

1
n!

(
− ν

Q

)n

λn(µ2) ,

• Non-perturbative parameters

λn(µ2) = 2
n

∫ µ2

0
dq2 qn−2A

(
αs(q2)

)
.
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Parametrizing power corrections

Shape functions

• The parameters λn(µ2) build up a shape function

exp
[
SNP(ν/Q, µ)

]
≡
∫∞
0

dε e−ν ε/Q fτ (ε, µ) .

• The physical distribution is recovered via inverse transform

σ(τ) ∼
∫ τQ

0
dε fτ (ε, µ) σPT (τ − ε/Q) .

• One recovers the perturbative result shifted by the soft energy
flow, and smeared by the shape function.

• Universality of power corrections is in general lost, however
specific observables still related (1− T , ρJ , C, . . .).

• Assumption: smooth transition to
nonperturbative regime.
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Dressed gluon exponentiation

It is possible to combine renormalon methods and Sudakov
resummation to construct models of power corrections. One
method is dressed gluon exponentiation (Gardi).

• Step 1: compute characteristic function F(k2) of the
dispersive method in the Sudakov limit (resum “bubble
graphs”).

• Step 2: define the Borel representation of the SDG cross
section.

1
σ

dσ
dτ

∣∣
SDG

= CF

2β0

∫∞
0

du
(
Q2/Λ2

)−u
B(τ, u) .

Note: the Borel integral is always left unperformed
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• Step 3: exponentiate the Laplace transform of the
distribution

1
σ

dσ
dτ

∣∣
DGE

=
∫ k+i∞

k−i∞
dν
2πi eντ exp

[
S
(
ν, Q2

)]
,

using the single gluon result as kernel

S
(
ν, Q2

)
=
∫∞
0

dτ 1
σ

dσ
dτ

∣∣
SDG

(e−ντ − 1) .

• Step 4: summarize results by Borel exponent

S
(
ν, Q2

)
= CF

2β0

∫∞
0

du
(
Q2/Λ2

)−u
Bτ (ν, u) .

• Example: the Borel exponent for the thrust

Bτ (ν, u) = 2 e5u/3 sinπu

πu

[
Γ(−2u)

(
ν2u − 1

) 2
u

− Γ(−u) (νu − 1)
(

2
u

+
1

1− u
+

1
2− u

)]
.
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• Step 3: exponentiate the Laplace transform of the
distribution

1
σ

dσ
dτ

∣∣
DGE

=
∫ k+i∞

k−i∞
dν
2πi eντ exp

[
S
(
ν, Q2

)]
,

using the single gluon result as kernel

S
(
ν, Q2

)
=
∫∞
0

dτ 1
σ

dσ
dτ

∣∣
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1
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.
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Features of DGE

• NLL Sudakov resummation reproduced by using “gluon
bremsstrahlung” definition of running coupling. All
subleading logs computed in the “large nf” limit.

• Factorial growth of subleading logs detected: a handle on the
range of applicability of NpLL resummation.

• Definite prescription for merging resummed PT with power
corrections.

• Predictive phenomenology: linked models of shape functions
for thrust, jet masses, C-parameter, angularities. Absence of
even power corrections.

• Applications to power corrections in the Sudakov
region for DIS, Drell-Yan, fragmentation, B decays.
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Angularities

• Definition: τa = 1
Q

∑
i (p⊥)i e−|ηi|(1−a) .

Also: τa = 1
Q

∑
i ωi (sin θi)

a (1− | cos θi|)1−a ,

• Some properties
• τ0 = 1− T ; τ1 = B .
• a < 2 for IR safety.
• a < 1 for simplicity of resummation (recoil negligible).

• For negative a, high rapidity particles (w.r.t. the thrust axis)
are weighted less: better collinear behavior.

• At one loop, with the thrust axis given by particle i,

τa = (1−xi)
1−a/2

xi

[
(1− xj)1−a/2(1− xk)a/2 + (j ↔ k)

]
.
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Resummation for angularities

• Sudakov logs at one loop have simple scaling with a.

dσ
dτa

∣∣∣(1)
log

= 2
2−a

2
τa

CF
αs

π ln
(

1
τa

)
= 2

2−a
dσ
dτ

∣∣(1)
log

.

• Resummation is intricate. To NLL accuracy

σ̃a (ν) = exp

{
2

1∫
0

du

u

[ uQ2∫
u2Q2

dq2

q2
A
(
αs(q2)

) (
e−u1−aν(q/Q)a

− 1
)

+
1
2
B
(
αs(u Q2)

) (
e−u ν2/(2−a)

− 1
)]}

.

• General a-dependence of Sudakov logs is nontrivial.

g1(x, a) = − 4
β0

2− a

1− a

A(1)

x

[
1− x

2− a
ln (1− x)

−
(

1− x

2− a

)
ln
(

1− x

2− a

)]
.
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Scaling for the shape function

An analysis of power corrections for angularities using the shape
function approach (Berger, Sterman) shows a remarkable scaling.

• As done for thrust, focus on small τa, large ν, set IR
factorization scale µ, expand in powers of ν/Q (soft),
neglecting ν/Q2 (collinear). In this case

S
(a)
NP(ν/Q, µ) = 2

∫ µ2

0

dq2

q2
A
(
αs(q2)

) ∫ q/Q

q2/Q2

du

u

(
e−u1−aν(q/Q)a

− 1
)

' 1
1− a

∞∑
n=1

1
n!

(
− ν

Q

)n

λn(µ2) ,

• The full result suggested by the resummation can be
expressed in terms of two shape functions

σ̃a (ν) = σ̃a,PT (ν, µ) f̃a,NP

(
ν
Q , µ

)
g̃a,NP

(
ν

Q2−a , µ
)

,
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• Leading power corrections are described by f̃a,NP and obey

f̃a,NP

(
ν
Q , µ

)
=
[
f̃0,NP

(
ν
Q , µ

)]1/(1−a)

.

• Scaling can be traced to boost invariance in the eikonal limit.
A renormalon calculation breaks boost invariance but scaling
survives in the Sudakov limit. DGE (Berger, LM) yields

Bsoft
a (ν, u) = 1

1−a

[
2 e5u/3 sin πu

πu Γ(−2u)
(
ν2u − 1

)
2
u

]
• Collinear contribution shows an intricate structure of

fractional power corrections in DGE, but they are suppressed
by ν/Q2−a, consistent with resummation.

• Scaling is a testable prediction with existing
LEP data!



Event shapes Angularities Applications Perspective

Testing the scaling rule

The scaling rule is a prediction waiting for data analysis ... in the
meantime, it can be compared with PYTHIA output (Berger).
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On the dangers of slicing phase space

Energy flow into Ω and origin of nonglobal logs

• Gluon 1: log(QΩ/Q).

• Gluon 2: log(QΩ/QΩ̄).

• Resummation of nonglobal logs
possible in the large Nc limit.

• Non-global → Non-Sudakov →
Non-linear.

• Can one suppress them?

• Study soft radiation without
hard antenna?
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Event shape/energy flow correlations

• In e+e− annihilation suppress nonglobal logs via BKS joint
distribution

σ (ε, τa) = 1
2s

∑
N |M(N)|2 δ(ε− fΩ(N)) δ (τa − τa(N))

with fΩ(N) =
(∑

i∈Ω ωi

)
/s.

• At small ε, τa, with ε ∼ τa radiation into Ω̄ is forced to the
two-jet limit. Logarithms of ε and τa factor and can be
separately resummed.

• When ε� τa nonglobal logs reappear in the eikonal function
describing wide-ange soft gluons. They can be resummed in
the Nc limit as before. The nonglobal radiator is
evaluated at the reduced scale τaQ (DM).
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What impact at Tevatron/LHC?

Fit of CDF data with NLO QCD assuming

ET -independent shift Λ in jet energy (Mangano,

hep-ph/9911256).

• Cross section ratio should scale up

to PDF ad αs effects.

• Data can be fitted with shift in

distribution.

• Small Λ has impact at high ET .

• σ(ET ) ∼ E−n
T → δσ

σ ∼ −nδET

• Several sources of energy flow in
and out of jets.
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Power corrections and other problems ...

• Sources of power corrections

• Soft radiation from hard antenna ⇒ resummation.

∗ Calculable in perturbative QCD.

∗ Partly localized in phase space.

• Soft radiation from underlying event ⇒ models.
∗ Not calculable in perturbative QCD.

∗ Fills phase space (minijets?)

• Experimental issues.
• Detector coverage and event cuts ⇒ constraints on global

event shapes.
• Observable-specific problems ⇒ jet algorithms,

non-global logarithms.

• Need discriminating observables ...
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Hadronic angularities and more

• In hard hadron collisions there are at least four jets, and
measurements cannot be fully inclusive in the beam region.

• Angularities can be defined w.r.t. the beam direction and
measured jointly with a hard distribution to suppress beam
remnants (Berger).
σAB(τa, p⊥) =

∑
a,b

∫
dxAdxB fa/A (xA) fb/B (xB) σ̂ab(τa, p⊥) .

NOTE: Vanishing variable is τa − τ
(J)
a , depends on jet algorithm.

• Further generalization: introduce auxiliary shape variable vj

or parameter ā to constrain ‘current’ jets. Combinations of
{ε, τa, vj(ā)} serve as handles to tune soft radiation.

• The hunt for perfect hadronic event shapes is on ...
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Perspective

• Event shape distributions map the transition between
perturbative and non-perturbative QCD.

• Theoretical advances lead to testable QCD-motivated models
of power corrections (shape functions).

• Angularities can tune jet sizes using the parameter a. They
obey a simple scaling rule testable on existing data.

• Joint distributions for angularities and energy flows outside
jets enhance control on nonglobal logs.

• Extensions to hadron collisions are desirable, flexible
and targeted observables required.
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