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Abstract

These lectures describe the treatment of mass divergences
in perturbative QCD, concentrating on hadron production
in electron-positron annihilation. I perform an explicit and
detailed one-loop calculation, and use it to infer some
results and techniques valid to all orders in perturbation
theory. I introduce some of the tools necessary to prove
factorization theorems, and show how they can be used
also to resum certain classes of logarithmic contributions
to all orders in perturbation theory.

Ubi maior ... :
G. Sterman: An introduction to quantum field theory.
P. Nason: http://castore.mib.infn.it/~nason/misc/QCD...
M.L. Mangano: http://home.cern.ch/~mlm/talks/cern98...
G. Sterman: hep-ph/9606312.
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Outline

• On mass divergences in perturbative QCD

– Mass divergences, low energies e long distances.
– Cancellation for physical observables, KLN theorem.
– Factorizable and IR/C safe observables in PQCD.

• An explicit example: Re+e−

– Definitions, cut diagrams, tree level.
– O(αs): the calculation.
– Approximations and observations.

• Other infrared finite quantities

– Sterman–Weinberg jets.
– Event shapes.

• Methods for all-order calculations

– Singularities of Feynman diagrams and trapped surfaces.
– Landau equations and Coleman-Norton picture.
– Infrared power–counting and finiteness of Re+e−.

• Factorization and resummation

– Multi-scale problems and large logarithms.
– From factorization to resummation.
– Examples: the quark form factor; the thrust.
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Mass divergences: qualitative discussion

• Fact: in quantum field theory, two kinds of divergences are
associated with the presence of massless particles.

– Infrared (IR). Emission of particles with vanishing four
momentum (λDB → ∞); in gauge theories only; they are
present also when matter particles are massive.

– Collinear (C). Emission of particles moving parallel to the
emitter; they are present if all particles in the interaction
vertex are massless.

• Example: a massless fermion emits a gauge boson in the final
state.

p + k

k

p
M

→ − igu(p)ε/(k)ta
i(p/ + k/)

(p + k)2 + iε
M ,

Singularities: 2p · k = 2p0k0(1 − cos θpk) = 0 ,

→ k0 = 0 (IR); cos θpk = 0 (C).

Note: p0 = 0 not a problem (singularities are always
integrable).
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• Origin of mass singularities

– In covariant perturbation theory ( pµ conserved in every
vertex; intermediate particles generally off–shell): the
emitting fermion is on–shell, so that it can propagate
indefinitely.

– In time-ordered perturbation theory (all particles are on–
shell, energy however is not generally conserved in the
interaction vertices): the IR/C emission vertex conserves
energy, so it can be placed at arbitrary distance from the
primary process.

– Mass divergences originate from physical processes
happening at large distances.

• Available terapies .

– The sickness is serious. Because of mass divergences, the S
matrix cannot be constructed in the Fock space of quarks
and gluons

– Observe. Mass divergences are associated with the
existence of experimentally indistinguishable, energy
degenerate states. All physical detectors have finite
resolution in energy and angle.

– KLN Theorem. Physically measurable quantities (such
as transition probabilities, cross sections, after summing
coherently over all physically indistinguishable states) are
finite, mass divergences cancel.

– Parma, 05/09/2002 – 3



• KLN theorem.

Consider a theory defined by its hamiltonian H, and let Dε(E0)
be the set of eigenstates of H characterized by energies
E0 − ε ≤ E ≤ E0 + ε, with ε %= 0. Let P (i → j) be the
transition probability per unit volume and per unit time from
eigenstate i to eigenstate j. Then the quantity

P (E0, ε) ≡
X

i,j∈Dε(E0)

P (i → j)

is finite in the massless limit to all orders in perturbation
theory

• Note. In an asimptotically free field theory the limit m → 0

and the high-energy limit formally coincide. Masses acquire a
scale dependences such that m2(µ2) → 0 as µ2 → ∞.

• The situation in perturbative QCD

– Long distance (d ∼> 1fm), or low energy (E <∼ 1GeV)
physics is not perturbatively calculable.

– The KLN theorem is not directly applicable when a sum
over initial states is necessary (we have no control on the
structure of hadronic initial states).

– Working at the perturbative, partonic level one identifies
sufficiently inclusive cross sections, such that
∗ long-distance effects are suppressed thanks to

cancellations (IR–safe cross sections);
∗ long-distance effects can be isolated in universal factors,

depending on the initial state but not on the hard process
being studied (factorizable cross sections).

– Parma, 05/09/2002 – 4



The strategy of perturbative QCD

• All calculations are performed at partonic level, with an infrared
regulator (e. g.: ε = 2 − d/2 < 0), requiring the presence of
at least one hard scale Q2. One computes

σpart = σpart

 
Q2

µ2
, αs(µ

2),

(
m2(µ2)

µ2
, ε

)!
.

• IR–safe quantities are selected, having a finite limit when the
IR regulator removed (ε→ 0, m2(µ2) → 0).

σpart = σpart

 
Q2

µ2
, αs(µ

2), {0, 0}
!

+ O
 ( 

m2

µ2

!p

, ε

)!
.

• These partonic, inclusive quantities, admitting a perturbative
expansion in powers of αs(Q

2) * 1, are interpreted as
estimates of the corresponding hadronic quantities, valid
modulo O

`
(ΛQCD/Q)p´ corrections.

• With hadrons in the initial state, the goal is constructing
factorizable quantities, such that

σpart = f

 
m2

µ2
F

!
∗ bσpart

 
Q2

µ2
,
µ2

F

µ2

!
+ O

  
m2

µ2
F

!p!
.

• Factorization, proved at parton level, is transcribed at hadron
level. Distribution functions f are measured, cross sections
bσpart are derived with a perturbative calculation.
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An explicit example: Re+e−

The prototype of IR–safe cross sections is the total annihilation
cross section for e+e− → hadrons.

σtot(q
2) =

1

2q2

X

X

Z
dΓX

1

4

X

spin

|M(k1 + k2 → X)|2 ,

normalized dividing out the total muon-pair production cross
section

Re+e− ≡
σtot

“
e+e− → hadrons

”

σtot (e+e− → µ+µ−)

In d = 4 − 2ε, to leading order in α,

σtot(q
2) =

1

2q2
Lµν(k1, k2)H

µν(q2) ,

Lµν(k1, k2) =
e2µ2ε

q4

`
kµ
1 kν2 + kν1kµ

2 − k1 · k2gµν´ ,

Hµν(q2) = e2µ2εq2
f

X

X

〈0|Jµ(0)|X〉〈X|Jν(0)|0〉(2π)dδd(q − pX) .

Current conservation implies qµHµν = qνHµν = 0, so that

Hµν(q2) =
“

qµqν − q2gµν
”

H(q2) .

This leads to

−gµνHµν(q
2) = (3 − 2ε) q2H(q2) ,

σtot(q
2) =

e2µ2ε

2q4

1 − ε
3 − 2ε

“
−gµνHµν(q

2)
”

.

– Parma, 05/09/2002 – 6



A technical interlude: cut diagrams

A useful representation for |M|2 can be constructed in terms of
cut diagrams. Pictorially

pp∗

∗

uiui

uiui ufuf

vivi

vivi vfvf

2πδ+(p2) p/

To the right of the cut all explicit i’s in the Feynman rules and
all momentum components change sign.
Consistency with spinor and color algebra is easily verified using

`
ω1
ˆ
γµ1γµ2 . . . γµiγ5 . . . σµν . . . γµn

˜
ω2
´∗

=

ω2
ˆ
γµn . . . σµν . . . γµiγ5 . . . γµ2γµ1

˜
ω1 ,

as well as hermiticity of group generators,
ˆ
(ta)ij

˜∗
=(ta)ji.

Note that

• the rules apply for fixed final state momenta; the loop momentum integral
for cut loops, if needed, becomes the phase space integral;

• for particles with spin %= 0 the cut carries the sum over polarizations;

• cut fermion loops carry the expected minus sign.
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Exercise: Re+e− at tree–level

µ ν

k

q
σtot(q

2) = e2µ2ε

2q4
1−ε
3−2ε (−gµν)

−Hµ
µ = e2µ2εq2

f

Z
ddk

(2π)d−2
δ+(k2)δ+((k−q)2)Tr

`
k/γµ(k/ − q/)γµ´ .

In he center of mass frame (k−q)2 = q2−2
p

q2k0; use the two δ+
distributions to perform k0 and |k| integrals; the trace evaluates
to 4(1 − ε)q2.

Summing over quark colors and flavors one finds

−Hµ
µ = 2(1 − ε)e2µ2εNc

X

f

q2
f

 
q2

4

!1−ε
Ω2−2ε

(2π)2−2ε
.

The d-dimensional solid angle is given by the classic formula

Ωd =
2dπd/2Γ(d/2)

Γ(d)
.

In d = 4 − 2ε one finds then

−Hµ
µ = 2 α

Γ(2 − ε)
Γ(2 − 2ε)

q2

 
4πµ2

q2

!ε
Nc
X

f

q2
f ,

whence the famous result, for ε→ 0,

σtot =
4πα2

3q2
Nc
X

f

q2
f → R

(0)

e+e−
= Nc

X

f

q2
f .
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Radiative corrections

Enumerating graphs contributing to the one-loop correction is
easy in terms of cut diagrams

h
−Hµ

µ

i(1)
= + c.t.

Summing over positions of the cuts one obtains real and virtual
diagrams in turn. We examine them separately.

Real emission

It is convenient to compute separately the transition probability
and three-body space. Following the rules for cut diagrams one
finds
h
−Hµ

µ

i(1,R)
=

Z
ddpddk

(2π)2d−3
δ+(p2)δ+(k2)δ+((p+ k − q)2)

h
−Hµ

µ

i
.

The transition probability depends on a single polar angle. Let
u ≡ cos θpk in the center of mass frame: one finds

δ+((p + k − q)2) = ϑ
“

p′
0

”
δ
“

s − 2
√

s(p̂ + k̂) + 2p̂k̂(1 − u)
”

,

where p̂ = |p|, k̂ = |k|. One can integrate over the energies of p

and k using the respective δ+. All angular integrations are trivial
except the one on u.
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Introduce dimensionless variables (quark and gluon energy
fractions)

z =
2k̂
√

s
, x =

2p̂
√

s
,

and define y = (1 − u)/2. The result is

h
−Hµ

µ

i(1,R)
=

1

8

Ω2−2εΩ1−2ε

(2π)5−2ε

„
s

2

«1−2ε Z 1

0
dxx1−2ε

Z 1

0
dzz1−2ε

×
Z 1

0
dy [y(1 − y)]−ε

1

1 − yz
δ

„
x −

1 − z

1 − yz

«h
−Hµ

µ

i
.

The transition probability can be computed from the Feynman
rules.

−Hµ
µ = −2e2µ2εX

f

q2
fg2µ2εTr(tata)

0

@
Tr
h
γµ(p/ + k/)γσp/γµ(−p/′ − k/)γσp/′

i

(2p · k)(2p′ · k)

+
Tr
h
γµ(p/ + k/)γσp/γσ(p/ + k/)γµp/′

i

(2p · k)2

1

A ,

and can be simplified using Tr(tata) = NcCF , Clifford algebra
identities such as

γµp/γµ = −2(1 − ε)p/ ,

γµp/k/γµ = 4p · k − 2εp/k/ ,

γµp/k/q/γµ = −2q/k/p/ + 2εp/k/q/ ,

and with the identifications p·q = sx/2, p·k = sxyz/2, k·q = sz/2.
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One can integrate out the quark energy fraction x, using the
remaining δ. The expression simplifies considerably and one gets

h
−Hµ

µ

i(1,R)
= 2NcCF

X

f

q2
fααs(1 − ε)

Ω2−2εΩ1−2ε

(2π)3−4ε
q2

 
2µ2

q2

!2ε

Z 1

0
dzdy

»
(1 − ε)(1 − z)−2ε(1 − yz)−2−2εz1−2ε(1 − y)1−ε

1

y1+ε
+

(1 − z)1−2ε(1 − yz)−2−2εz1−2ε [y(1 − y)]−ε
 

(1 − yz)2

yz2(1 − y)
− ε
!#

.

One recognizes the announced singularities

• Infrared: z−1−2ε, gives a pole in ε when the gluon energy z

tends to 0.

• Collinear: y−1−ε e (1 − y)−1−ε, singular when y → 0 (gluon
collinear to the quark), and y → 1 (gluon collinear to the
antiquark).

Note: mass singularities are regulated choosing ε < 0.

The y and z integrations yield Euler B functions (typical of one-
loop calculations in one-scale problems). Expanding around ε = 0
one gets the final result for real emission, displaying the double
infrared–collinear pole,

h
−Hµ

µ

i(1,R)
= NcCFα

X

f

q2
f
αs

π
q2

 
4πµ2

q2

!2ε

×
1 − ε

Γ(2 − 2ε)

»
2

ε2
+

3

ε
− π2 +

19

2
+ O(ε)

–
.
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Virtual contribution

Purely virtual contributions to the production amplitude are given
to all orders by the quark form factor.

Γν
“

p1, p2; µ2, ε
”

=

p1

p2

ν

The calculation greatly simplifies by taking into account the
general properties of the form factor.

• For massles quarks, the form factor is expressed in terms of a
single scalar function, multiplying the Dirac structure of the
threee amplitude.

Γµ(p1, p2; µ2, ε) ≡ 〈p1, p2|Jµ(0)|0〉

= −ieqf u(p1)γµv(p2) Γ

 
q2

µ2
, αs(µ

2), ε

!
.

As a consequence, the transition probability is proportional to
the tree–level result, with an overall factor given by 2 ReΓ.

• The form factor is renormalization group invariant (it has
a vanishing anomalous dimension), as a consequence of the
conservation of the electromagnetic current.

„
µ
∂

∂µ
+ β(ε, αs)

∂

∂αs

«
Γ

 
Q2

µ2
, αs, ε

!
= 0 .

QCD does not violate the QED Ward identity. Z1 = Zψ.
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• Reducible (1PR) graphs on each fermion line, including the
respective counterterms, reconstruct the residue Rψ of the
quark propagator. Since, according to the reduction formulas,
every external line must be multiplied times R

−1/2
ψ , it is

necessary to include these graphs on one of the two lines only.

• In Feynman gauge and in dimensional regularisation all 1PR
graphs with the loop on the external fermion line vanish
because they are expressed by scale-less integrals (p2

i = 0).
– Note! This is false in general in axial gauges (∃ n · pi);

furthermore it depends on a cancellation of IR and UV
effects ...

At one loop these observations are summarized by the identity

0

One is left with only one graph to be computed, the vertex
correction

Γ
(1)
ν

“
p1, p2; µ2, ε

”
=

which can be written as

Γ(1)
ν = −eqfg2µ2εCF

Z
ddk

(2π)d

u(p1)γσ(p/1 − k/)γν(p/2 + k/)γσv(p2)

k2(p1 − k)2(p2 + k)2
.
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The steps to compute this diagram are standard. Summarizing

• Sistematically use the mass–shell conditions (Dirac equation),
u(p1)p/1 = p/2v(p2) = 0, then isolate integrals with different
powers of k.

Γ(1)
ν =−eqfg2µ2εCF u(p1)

h
2q2γνI0 + 2(γνγαp/1 − p/2γαγν)I

α

−γσγαγνγβγσIαβ
i

v(p2) .

• The tensor integrals

I0 =

Z
ddk

(2π)d

1

k2(p1 − k)2(p2 + k)2
,

Iα =

Z
ddk

(2π)d

kα

k2(p1 − k)2(p2 + k)2
,

Iαβ =

Z
ddk

(2π)d

kαkβ

k2(p1 − k)2(p2 + k)2
,

can be computed with the usual Feynman parametrization.

– Note: only I0 can have IR divergences, and only Iαβ can
have UV divergences. Iα may have collinear poles ...

• It may be useful to decompose tensor integrals à la Passarino–
Veltman, in order to get directly the scalar form factor Γ. The
result is

Iα = pα1 I1 + pα2 I2 ,

Iαβ = gαβ I3 + pα1 pβ1 I4 + pα2 pβ2 I5 + (pα1 pβ2 + pβ1pα2 ) I6 .
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• In terms of the scalar integrals I1, . . . , I6 one finds

Γ(1) = g2µ2εCF

h
4(1 − ε)2I3 − 2q2 (I0 + I2 − I1 + (1 − ε)I6)

i
.

• The final result for the form factor is

Γ(1) = −
αs

4π
CF

 
4πµ2

−q2

!ε
Γ2(1 − ε)Γ(1 + ε)

Γ(1 − 2ε)

»
2

ε2
+

3

ε
+ 8 + O(ε)

–
.

When taking the real part one must use

(−q2 + iε)−ε = (q2)−ε e−iπε .

Note! The sign of q2 is dictated by the Cutkosky rules.
Because of the double pole, the factor exp(−iπε) must be
expanded to second order in ε. It generates numerically
important contributions.

Result

We observe that, as expected, the virtual contribution has the
same IR-C poles as real emission. Summing the two, the poles
cancel and one can take the limit ε→ 0, with the result

σtot =
4πα2

3q2
Nc
X

f

q2
f

„
1 +

αs

π

3

4
CF + O(α2

s)

«
,

For SU(3), where CF = 4/3, the (classical) result is

R
(0)

e+e−
= Nc

X

f

q2
f

„
1 +

αs

π
+ O(α2

s)

«
.
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Soft approximation

The cancellation that was just exhibited is possible only because,
in the IR and C limits the amplitude for the emission of a real
gluon becomes proportional to the Born amplitude, just as was the
case for the virtual diagram. This result can be made systematic
introducing the soft approximation.

Aaµ
ij =

p, ip, i

p′, jp′, j

k, a
k, a

µµ

Aaµ
ij = gta

iju(p)

"
ε/(k)(p/ + k/)Γµ

2p · k
−
Γµ(p/′ + k/)ε/(k)

2p′ · k

#
v(p′) .

When the gluon is soft one can

• neglect k in the numerator, and in the definition of p′;

• commute p/ and p/′ in order to impose the mass-shell condition,
p/′v(p′) = u(p)p/ = 0.

The result is

Aaµ
ij

˛̨
˛
soft

= gta
ij

"
p · ε
p · k

−
p′ · ε
p′ · k

#
Aµ

0 ,

where Aµ
0 = u(p)Γµv(p′) is the Born amplitude (whatever the

explicit form of the vertex Γµ).
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Remarks

• The soft amplitude is gauge–invariant (it vanishes if ε ∝ k).

• Soft gluon emission has universal characters. Long-wavelength
gluons cannot analyze the short-distance properties of the
emitter (spin, internal structure), they only detect the global
color charge and the direction of motion These considerations
generalize to multiple emission.

• Identical considerations apply to gluon emission from gluons.

Soft cross section

It’s easy to recover the singular part of the real emission cross
section. The transition probability can be computed summing
over colors and polarizations (using

P
εµε

∗
ν = −gµν, which is

allowed in this case).

|Asoft|
2 = g2CF |A0|

2 2p · p′

p · k p′ · k
.

To get the cross section one integrates over phase space

σsoft
qq̄g = g2CFσqq̄

Z
d3k

2|k|(2π)3
2p · p′

p · k p′ · k
.

In the center of mass frame (q = 0) and in the soft approximation
the quark and the antiquark are still back to back. One then
recovers the structure of IR and C singularities,

σsoft
qq̄g = σqq̄CF

αs

π

Z 1

−1
d cos θpk

Z ∞

0

d|k|
|k|

2

(1 − cos θpk)(1 + cos θpk)
.
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Virtual diagrams

The soft approximation can be applied to virtual diagrams as well,
with some care.

• When kµ *
p

q2, ∀µ, one can neglect k2 with respect to
pi · k in denominators, as well as k in numerators (eikonal
approximation).
– Note: the approximation is not uniformly valid, in some

cases it becomes necessary to deform integration contours,
or the approximation may break down.

• Using light-cone coordinates one can set

pµ =
“

p+, 0, 0⊥
”

, (p′)µ =
“
0, (p′)−, 0⊥

”
.

– Note: For a generic four-vector, vµ =
“

v+, v−, v⊥
”
, v± =

(v0 ± v3)/
√

2, v2 = 2v+v− − |v⊥|2.

• Consider for example the integral I0, containing the virtual
double pole. In the eikonal approximation and in d = 4

I
(eik)
0 =

1

32π4q2

Z
dk+dk−d2k⊥

(−k− + iε)(k+ + iε)(2k+k− − |k⊥|2 + iε)
.

There are three integration regions giving rise to divergences.
One can parametrize them introducing a scaling variable λ,
according to

kµ ∼ λ
q

q2 , ∀µ , → IR ;

k± ∼
q

q2 , k∓ ∼ λ2
q

q2 , |k⊥| ∼ λ
q

q2 , → COLL .
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Angular ordering

The soft approximation is of great practical relevance in
perturbative QCD.

• It displays the universal properties of soft color radiation (color
transparency, angular ordering)

• It links perturbative and non–perturbative regimes
(resummations, hadronization Monte Carlo)

The simplest example of angular ordering is the differenzial cross
section dσqq̄g in a frame in which the decaying photon has a large
momentum q. In that frame the quark and the antiquark are
typically emitted forming a small angle (θpp′ * π), and one has

dσsoft
qq̄g = dσqq̄CF

αs

π

d|k|
|k|

d cos θk
dφk

2π

1 − cos θpp′

(1 − cos θpk)(1 − cos θp′k)

= dσqq̄CF
αs

π

d|k|
|k|

d cos θk
dφk

2π

1

2

`
Wq + Wq̄

´

where

Wq =
1 − cos θpp′

(1 − cos θpk)(1 − cos θp′k)
+

1

(1 − cos θpk)
−

1

(1 − cos θp′k)
.

while Wq̄ is found exchanging p ↔ p′.
The full angular distribution is positive definite, but singular for
emissions parallel to either the quark or the antiquark. The partial
distributions Wi are not positive definite, but they enjoy special
properties.
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Properties of Wq e Wq̄

• Wq is singular only when cos θpk → 1, while the opposite is
true for Wq̄.

• The azimuthal average of Wq (with respect to the axis defined
by p) vanishes if θpk > θpp′.

1

2π

Z 2π

0
dφ Wq(φ) =

2

1 − cos θpk
Θ
“
θpp′ − θpk

”
,

as can be proven using

cos θp′k = cos θpk cos θpp′ + sin θpk sin θpp′ cosφ .

An identical equation applies to Wq̄.

• Azimuthal averages are positive definite and can be interpreted
as probability distributions for the emission of soft gluons
independently of the quark and of the antiquark.

Thus: the distribution of soft radiation on average is given by a
sum of uncorrelated contributions from the quark and from the
antiquark, each vanishing outside the cones built rotating the
direction of one of the fermions around that of the other one.

Comments
• This property can be generalized to higher orders. Gluons

which are radiated later are forced on average to the inside of
the cones defined by previously emitted gluons and quarks.

• Perturbative evolution in the soft limit is local in phase space,
so that color singlet parton clusters are likely to be formed
inside collimated particle beams (jets).
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Sterman–Weinberg jets

Momentum configurations responsible for singularities and needed
for their cancellation are infrared and collinear, as expected.

Thus it is not necessary to integrate real emission over the entire
phase space in order to obtain a finite result, it is sufficient
to consider sufficiently inclusive observables, such that gluon
emission be integrated over IR and C configurations.

Prototype: two-jet cross section

Eout < ε
√

s

Ein > (1 − ε)
√

sδ

Definition: an event is a two-jet event iff ∃ two opposite cones
with opening angle δ, such that all the energy, except at most a
fraction ε, flows into the cones.

At parton level:

• All events are two-jet events at leading order.

• At O(αs) two-jet events are those in which the gluon is IR
(and emitted in any direction), or C (with any energy). All
other events are three-jet events.

• Virtual contributions are two-jet events. Therefore the partonic
two-jet cross section is finite.
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More precisely:

• At LO one finds simply σ(0)
2j (ε, δ) = σ

(0)
tot = Nc

P
f q2

f
4πα2

3q2 .

• At NLO one finds only two- or three-jet events, so that

σ
(1)
2j (ε, δ) = σ

(1)
tot − σ(1)

3j (ε, δ) ,

• σ
(1)
3j is easily computed from the real emission matrix element

with appropriate cuts on phase space. In d = 4

h
−Hµ

µ

i(1,R)

3j
= 2NcCF

X

f

q2
fα
αs

π
q2
Z 1

2ε
dz

×
Z 1−δ2(1−z2/2)

δ2
dy

»
z(1 − y)

y(1 − yz)2
+

1 − z

yz(1 − y)

–
.

• It is easy to compute the dominant contributions as ε, δ → 0.
Combining with the leptonic tensor one finds

σ
(1)
3j (ε, δ) = σ

(0)
totCF

αs

π

"
4 log(δ) log(2ε) + 3 log(δ) +

π2

3
−

7

4

#
.

Observe:

• The total cross section is dominated by two-jet events at large
q2 (asymptotic freedom for jets ...).

• For increasing q2 the perturbative result remains reliable for
narrower cones, jets are more collimated.

• It is possible to compute (and verify experimentally) the
angular distribution of two-jet events dσ2j/d cos θ ∝ 1+cos2 θ,
as expected for spin 1/2 quarks.
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Event–shape variables

The mechanism underlying the cancellation of IR and C
divergences suggests a further generalization: study distributions
of observables constructed with final state momenta so as to
assign equal weights to events differing by IR or C emissions.

Given a final state with m partons, let Em(p1, . . . , pm) be the
observable. The corresponding distribution is defined by

dσ

de
=

1

2q2

X

m

Z
dLIPSm |Mm|2 δ (e − Em(p1, . . . , pm)) ,

and its moments (and in particular the average value) are

〈en〉 =

Z emax

emin

de endσ

de
.

Note: These are “weighted” cross sections.
At order αm−1

s one must sum contributions with m + 1 partons
in the final state, with one virtual m real partons, and so on.

σ(e)

˛̨
˛̨
O
“
αm+1

s

” =

Z
dσ

(R)
m+1 +

Z
dσ(1V )

m + . . . .

IR-C cancellation is preserved if the observable takes the same
value for those configurations differing only by the IR/C radiation.

lim
p
µ
j →0

Em+1(p1, . . . , pj, . . .) = Em(p1, . . . , pj−1, pj+1, . . .) ,

lim
p
µ
k
→αp

µ
j

Em+1(p1, . . . , pj, . . . , pk, . . .) = Em(p1, . . . , pj + pk, . . .) .
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Examples of event–shape variables
There is a variety of available IR/C safe event shapes.

• Thrust

Tm = maxn̂

Pm
i=1 |pi · n̂|
Pm

i=1 |pi|
.

Clearly 0 < Tm ≤ 1, and Tm = 1 corresponds to two precisely

collimated back to back particle beams.

• C parameter

Cm = 3 −
3

2

mX

i,j=1

`
pi · pj

´2

(pi · q)
`
pj · q

´ .

Also in this case 0 ≤ Cm ≤ 1; two-jet eventi have C = 0. The definition
can be expressed in terms of the eigenvalues of the space part of the energy-
momentum tensor of the final state, C = 3(λ1λ2 + λ1λ3 + λ2λ3).

• Jet masses

ρ(H)
m =

1

q2

0

@
X

pi∈H

pi

1

A
2

H is one of the two hemispheres identified by the thrust axis.

Observe
• Perturbative distributions are singular in the two-jet limit

(logarithms of the form αn
s log2n−1 C), but expectation values

are finite.

• Great phenomenological relevance (for example: determination
of αs, hadronization corrections).

• Jet algorithms and the related definitions of multi-jet events
can be seen as particular event-shapes.
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A comparison with QED

QED also has IR divergences, as well as collinear divergences in
the massless limit. There are similarities and differences.

• In QED, consider for example the process e+e− → µ+µ−.

– σ(e+e− → µ+µ− diverges starting at O(α3).
– Therefore σBorn is not a good approximation for σ. This

is not a problem. The true observable is σtot(∆) =
P

n σ(e
+e− → µ+µ− + nγ,∆), and for σtot(∆), which

is finite, σBorn is a good approximation.
– IR divergences in QED can be explicitly resummed

σtot(∆) = σfin exp

"
α

π
log

 
∆2

q2

!
f(m2, q2)

#
.

so that lim∆→0 σtot(∆) = 0.
– Interpretation: it is not possibile to produce only µ+µ−;

asimptotic states of QED are not isolated fermions.

• In QCD, considering e+e− → qq̄, the situation is almost
analogous.

– σ(e+e− → qq̄ diverges starting at O(α2αs).
– Therefore σBorn is not a good approximation for σ = 0

(confinement). On the other hand it is a good
approximation for σtot(e

+e− → hadrons), which is finite.
– Interpretation: it is not possible to produce only qq̄; the

asimptotic states of QCD are not quarks and gluons.
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On singularities of Feynman diagrams

To study IR and C divergences to all orders one must characterize
the generic singularity structure of Feynman diagrams. Let us
begin with a simple example, I0.

Example: the scalar form factor
Introduce Feynman parameters y1, y2, y3. Then

I0 = 2

Z
ddk

(2π)d

Z 1

0

3Y

i=1

dyi
δ(1 − y1 − y2 − y3)ˆ

y1k2 + y2(p − k)2 + y3(p′ + k)2 + iε
˜.

Let D0 be the denominator. The only possible singularities of I0

must lie on surfaces where D0 = 0. Furthermore

• The integrand is a function of the complex variables kµ, yi,
with an analytic structure determined by the iε prescription.

• The vanishing of D0 on one integration contour is not sufficient
to determine a singularity of the integral. The contour can be
deformed.

• Only in two cases the singularity cannot be avoided by a
deformation: either the contour is trapped between two poles,
or one has end-point singularities, a pole migrates to the edge
of an integration contour.

P1

P2

P

O
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• Singularities of I0

– dkµ integrals cannot have end-point singularities (I0 is UV
convergent). D0 however is quadratic in kµ, so that two
poles can trap the contour if they coalesce,

∂

∂kµ
D0

“
yi, kµ, p, p′

”
= 0 .

– dyi integrals can only have end-point singularities (in yi =

0), since D0 is linear in yi. Alternatively, D0 can be
independent of yi on the surface D0 = 0, so that yi

becomes useless for the deformation.

• Landau equations for I0

A necessary condition for a singularity of I0 is that all
integration variables be trapped. This is expressed by the
Landau equations

y1kµ − y2(p − k)µ + y3(p
′ + k)µ = 0 and

yi = 0 or l2i = 0 ,

where lµi is the momentum flowing through the line with
parameter yi.

• Solutions of Landau equations
It’s easy to find the expected solutions.

kµ = 0 ; y2/y1 = y3/y1 = 0 IR

kµ = αpµ ; y3 = 0 ; αy1 = (1 − α)y2 C

kµ = −βpµ ; y2 = 0 ; βy1 = (1 − β)y3 C

We recognize the expected IR and C singularities. Are there
other solutions of Landau equations?
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• Coleman–Norton physical picture

The search for solutions of Landau equations is simplified
by the fact that they admit a simple physical representation.
Observe that

– if line i in a loop is off–shell it must be that yi = 0.
– Let ∆xµ

i ≡ yil
µ
i , for each on-shell line li. Then

∆xµ
i = ∆x0

i vµ
i ; vµ

i =

 
1,

li
l0i

!
.

Interpretation: ∆xµ
i describes classical propagation of a

massless particle with momentum li.
– The Landau equations for I0 can now be written as

X

i

σ(i) ∆xµ
i = 0 on shell

∆xµ
i = 0 off shell .

• Interpretation: the solutions of Landau equations are given by
reduced diagrams, where

– Off–shell lines are contracted to points.
– On–shell lines describe physically admissible processes for

the classical propagation of massless particles.
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General case

• Feynman parametrization
Thanks to the identity

NY

i=1

1

D
ai
i

=
Γ
“PN

i=1 ai

”

QN
i=1 Γ(ai)

Z 1

0

NY

i=1

„
dyiy

ai−1
i

« δ
“
1 −

PN
i=1 yi

”

“PN
i=1 yiDi

”PN
i=1 ai

,

an arbitrary Feynman diagram G(pr) can be written as

G(pi) =
Y

linee

Z 1

0
dyiδ

0

@1 −
X

i

yi

1

A
Y

loops

Z
ddkl

N
`
yi, kl, pr

´

ˆ
D
`
yi, kl, pr

´˜N ,

where the denominator D is a sum of propagators

D
`
yi, kl, pr

´
=
X

linee

yi

“
l2i (p, k) − m2

i

”
+ iε ,

and the momenta li are linear functions of pr and kl.

• Landau equations
X

i

ηij ∆x
µ
i = 0 on shell , ∀j/i ∈ j ,

∆x
µ
i = 0 off shell .

• Coleman–Norton picture
Solutions are again reduced diagrams (with off–shell lines
contracted to points), where all remaining loops can be
interpreted as classically permitted processes. For any loop,
it must be possible to associate to all its vertices coordinates
xµ

k , k = 1, . . . , M such that

∆xµ
12 + . . . +∆xµ

M1 = 0 , ∆xµ
ij ≡ xµ

i − xµ
j .
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Example: the two-point function

Consider an arbitrary 1PI diagram for the two-point function
G(q2, m2), in a theory with only one species of particle with mass
m2.

qq
G(q2, m2) =

Theorem: the only singularities of the diagram (and thus of
G(q2, m2)) are normal thresholds q2 = n2m2, n = 1, 2 . . ..

Proof:

• Normal thresholds are solutions of Landau equations.

In fact, when q2 > 0 one can choose qµ =
“p

q2, 0
”
. The

Coleman–Norton process is the creation of n > 1 particles at
rest, which do not move, and interact until they are absorbed,
for an arbitrarily long time. An example with n = 4 is

qq

• No other reduced diagram satisfies Coleman–Norton.

If one produced particle has non-vanishing momentum the
other ones must compensate moving in the opposite direction.
Once separated they cannot meet again in free motion.
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IR/C power counting
The Landau equations are only necessary conditions for the
manifestation of IR/C divergences. If phase space has high enough
dimension singularities are suppressed (e.g.: IR divergences in φ3

6).

One must develop power counting techniques, similar to those
employed in the UV, to determine the strength of the singularities.

• Given a diagram, use the CN representation to identify a
trapped surface S in the space {kµ

i , yi}.
• For every S, identify among the {kµ

i } intrinsic coordinates
(movement in S) and normal coordinates (distance from S).

n̂

î1

î2S

Example: for I0, k‖p, k+ is intrinsic, {k−, k⊥} are normal.

• Introduce a scaling variable determine the relative weight
(integration volume)/singularity. Set ni = λai n̂i and consider
λ→ 0, n̂i finite.

Example: for I0, k‖p, k− ∼ λ2
p

q2, |k⊥| ∼ λ
p

q2.

• Construct the homogeneous integral for S, taking the
dominant power of λ in every factor of the graph.

Example: for I0, the homogeneous integral is the eikonal one.

– Parma, 05/09/2002 – 31



• The degree of divergence is given by the power of λ associated
with the homogeneous integral. If, for every line, l2i (p, k) −
m2

i → λAif(n̂), then

nS =
X

i

ai −
X

i

Ai + nnum .

nS ≤ 0 signals a divergence, logarithmic when nS = 0.

Application: finiteness of Re+e−

The all-order finiteness of σtot(e
+e− → hadrons) follows from its

relationship with the correlator of two elettromagnetic currents,
which in turn comes from unitarity,

pipi kjkj

2 Im
P

C

C

generalizing TT † = −i(T − T †). Define then

ρµν(q) ≡ ie2
Z

d4xeiqx〈0|T
ˆ
Jµ(x)Jν(0)

˜
|0〉

=
“

qµqν − q2gµν

”
π(q2) .

Unitarity gives

2 Im
ˆ
ρµν(q)

˜
= e2X

n

〈0|Jµ(0)|n〉〈n|Jν(0)|0〉(2π)4δ4 (q − pn) ,
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σtot(e
+e− → hadrons) =

e2

q2
Im
h
π(q2)

i
.

It is then sufficient to prove the finiteness of π(q2). This follows
from the Coleman-Norton representation.

• In a frame in which qµ =
“p

q2, 0
”

one sees that there are no
allowed classical processes with non-vanishing momenta such
that the photon decays and then reconstitutes. Thus there
are no trapped surfaces with non-vanishing momenta.

• The only trapped surfaces are those with all particles having
vanishing momentum, and reduced diagram

H

S

These however are finite by power counting, as may be
expected (all lines in H are off–shell).

• To see it note that fermion lines at zero momentum are less
singular than gluon lines. The worst case is then if S contains
only gluons. In that case, in d dimensions, with LS loops and
gS gluons in S,

nS = d LS − 2gS = 2(1 − ε)gS

which is positive in d > 2.
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Application: the quark form factor

Considering Γ(q2) one finds collinear divergences associated with
observed quarks. The most general reduced diagram is

J

H S

J

Γν
“

p1, p2; µ2, ε
”

=

Further simplifications are possible

• Gluons connecting S directly to H are suppressed (one more
off–shell propagator, plus a new soft propagator dominated by
the new soft loop).

• Fermion lines connecting different subgraphs (except the
necessary q e q̄) are suppressed.

• In an axial gauge, n ·A = 0, only the (anti)quark line connects
the jet J to H. In fact the axial gauge gluon propagator is

Gax
µν(k) =

1

k2 + iε

„
−gµν +

nµkν + nνkµ

n · k
− n2 kµkν

(n · k)2

«
.

Contracting with kµ cancels the denominator

kµGax
µν(k) =

nν

n · k
− n2 kν

(n · k)2
,

so that the degree of IR/C singularity is reduced.

• These considerations suggest a factorization Γ = J1J2SH.
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Diagrammatics of factorization

Identifying the leading integration regions in momentum space is
only the first step towards factorization. One must then

• exploit simplifications in Feynman diagrams in the leading
regions (soft/collinear approximations, Ward identities).

• organize all-order subtractions a tutti gli ordini so as to
avoid double counting (different factor functions have operator
definitions, in general non local).

Microexample: again the one-loop form factor, collinear region
k‖p1, Feynman gauge.

• Kinematics: pµ
1 =

“
p+
1 , 0, 0⊥

”
, kµ =

“
k+, k−, k⊥

”
, con k+ 7

{k−, k⊥}.
• Grammer-Yennie approximation in the numerator

u(p1)γσ(p/1 − k/)γµ(p/2 + k/)γσv(p2) → u(p1)γ+(p/1 − k/)γµ(p/2 + k/)γ−v(p2)

→
1

k+
u(p1)γ+(p/1 − k/)γµ(p/2 + k/)k+γ−v(p2) →

→
1

k · û2
u(p1)γ+(p/1 − k/)γµ(p/2 + k/) k/ v(p2) .

• Ward identity: k/ = (p/2 + k/) − p/2. One finds

Γ(coll)
µ ∝

Z
ddk

u(p1) u/2 (p/1 − k/) γµ v(p2)

k2 (p1 − k)2 k · u2
.

The gluon-antiquark coupling simplifies, recognizing only
charge and direction, it becomes eikonal.
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• Eikonal lines

Graphically, one may introduce eikonal Feynman rules

= iguαta
ij =

iδij
u·k+iεuj

j

i

i

α, a

in terms of these rules the previous calculation reads

coll

• More than one gluon
Summing over all possible insertions of two or more collinear
gluons, one finds sistematic cancellations, due to Ward
identities. One uses then eikonal identities like

1

k1 · u

1

k2 · u
=

1

(k1 + k2) · u

1

k1 · u
+

1

(k1 + k2) · u

1

k2 · u
.

All collinear gluons couple to the same eikonal line.

• Typical result
In an axial gauge the form factor factorizes

Γ

 
q2

µ2

!
= J1

 
(p1 · n)2

µ2n2

!
J2

 
(p2 · n)2

µ2n2

!
S (ui · n) H

 
q2

µ2

!
.
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Multi-scale problems and large logarithms
For observables depending on a single hard scale all logarithms
are resummed using the renormalization group

σ

 
q2

µ2
, αs(µ2)

!
= σ

“
1, αs(q2)

”
.

Most problems however have several hard scales. If for example
q2
1 7 q2

2 7 ΛQCD, the reliability of perturbation theory is put
in jeopardy by terms like αn

s logp(q2
1/q2

2), with p ≤ n (single
logarithms) or p ≤ 2n (double logarithms). They all arise from
IR/C dynamics. Some examples.

• The “Sudakov” form factor.

Γ

 
q2

µ2

!
= 1 −

αs

4π
CF log2

 
q2

µ2

!
+ . . . .

In a massless theory one may choose µ2 = q2, and be left
with IR/C poles. With masses one finds duble logarithms
log2

“
q2/m2

”
.

• DIS. The two hard scales are Q2 = −q2 and W 2 = (p +

q)2 = Q2(1 − x)/x. There are single log(1/x), resummed by
the BFKL equation, and double log(1 − x), resummed à la
Sudakov.

• Drell–Yan. The process is qq̄ → µ+µ−(q2), the two hard scales
are s = (p1 + p2)

2 and q2. Double log(1− q2/s) are resummed
à la Sudakov.

• The transverse momentum distribution in Drell–Yan. The two
scales are q2 and q2

⊥, giving double log(q2
⊥/q2).
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Factorization and resummation
The deep connection between factorization and resummation, can
already be seen from the renormalization group.

G
(n)
0 (pi,Λ, g0) =

nY

i=1

Z
1/2
i (Λ/µ, g(µ)) G

(n)
R (pi, µ, g(µ)) ,

dG
(n)
0

dµ
= 0 →

d log G
(n)
R

d log µ
= −

nX

i=1

γi (g(µ)) .

Solving this equation resums in exponential form the logarithmic
dependence on µ.

The Altarelli–Parisi equation similarly leds to the resummation of
(single) logarithms of µF . In terms of Mellin moments

eF2

 
N,

Q2

m2
, αs(Q

2)

!
= eC

 
N,

Q2

µ2
F

, αs(Q
2)

!
ef
 

N,
µ2

F

m2
, αs(Q

2)

!
,

d eF2

dµF
= 0 →

d log ef
d log µF

= γN

“
αs(Q

2)
”

.

Double logarithms are more difficult. Ordinary renormalization
group is not sufficient. Gauge invariance plays a key role. Or: use
effective filed theory (SCET).

The quark form factor
Consider the factorization

Γ

 
q2

µ2

!
=J1

 
(p1 · n1)

2

µ2n2
1

!
J2

 
(p2 · n2)

2

µ2n2
2

!
S (ui · ni) H

 
q2

µ2
, ni

!
.
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The form factor is gauge invariant, so that

∂ log Γ

∂p1 · n1
= 0 →

∂ log J1

∂ log(p1 · n1)
= −

∂ log H

∂ log(p1 · n1)
−

∂ log S
∂ log(u1 · n1)

.

The two functions on the r.h.s. have different arguments. Then

∂ log J

∂ log q
= KJ

“
αs(µ

2), ε
”

+ GJ

 
q2

µ2
, αs(µ

2), ε

!
.

The K function contains all singularities in ε (H is finite as ε→ 0).
The function G contains all q2 dependence.

The whole form factor obeys an equation of identical form.
Furthermore the form factor is renormalization group invariant,
so that

dG

d log µ
= −

dK

d log µ
= γK(αs(µ)) ,

with a finite anomalous dimension, independent of q2.

The equation for Γ can be solved. Since Γ is divergent, one needs
to keep consistently the dependence on ε < 0 to all orders. αs(µ

2)
becomes αs(µ

2, ε) which implies Γ(q2 = 0, ε < 0) = 0; then

Γ

 
Q2

µ2
, αs(µ2), ε

!
= exp

8
<

:
1

2

Z −Q2

0

dξ2

ξ2

h
K
“
ε, αs(µ2)

”
+

G

 
−1, α

 
ξ2

µ2
, αs(µ2), ε

!
, ε

!
+

1

2

Z µ2

ξ2

dλ2

λ2
γK

 
α

 
λ2

µ2
, αs(µ2), ε

!!3

5

9
=

; .

The exponentiation is non trivial, the exponent has only single
poles in ε of the form αn

s /εn+1.
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The thrust distribution

The thrust distribution is singular as T → 1, behaving as
αn

s log2n−1(1 − T )/(1 − T ). These logs can be resummed with
similar methods.

As T → 1 the distribution can be factorized in a manner similar
to Γ. The jets J now enter the final state, so they have a
non-vanishing invariant mass m2

J ∝ (1 − T )q2 as T → 1.

σ(N) ≡
1

σ0

Z 1

0
dT T N dσ

dT
= Ĵ1

 
q2

Nµ2
,
(p1 · n)2

n2µ2

!
Ĵ2 Ŝ Ĥ .

In an axial gauge, leading logarithms are in the jet functions J,
which satisfy

∂ log Ĵ

∂ log q
= K̂J

 
q2

Nµ2
, αs(µ

2)

!
+ ĜJ

 
q2

µ2
, αs(µ

2)

!
.

One can then solve for Ĵ(N) in terms of Ĵ(1), as

Ĵ

 
q2

Nµ2

!
=Ĵ

 
q2

µ2

!
exp

2

4−
1

2

Z q2

q2/N

dλ2

λ2

„
log

µ

λ
Γ

Ĵ

“
αs(λ2)

”
− Γ′

Ĵ

“
αs(λ2)

”«
3

5 .

Leading logarithms are determined by Γ
Ĵ

= γK + . . .. Neglecting
running coupling effects one easily finds Ĵ ∼ exp(αs log2 N).
Inverting the Mellin transform,

1

σ0

dσ

dT
= −2CF

αs

π

log(1 − T )

1 − T
exp

»
−CF

αs

π
log2(1 − T )

–
.

Note: dσ/dT → 0 as T → 1 (“Sudakov suppression”).
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The borders of the perturbative regime

Resummations test the limits of the perturbative theory. One gets
in fact integrals of the form

fa(q2) =

Z q2

0

dk2

k2
(k2)aαs(k

2) ,

One sees esplicitly the non–convergence of perturbation theory at
high orders, consequence of the Landau pole. In fact

αs(k
2) =

αs(q
2)

1 + β0αs(q2) log
`
k2/q2

´ .

Letting z ≡ log q2/k2, one observes that

• The perturbative expansion in powers of αs(q
2) diverges.

fa(q2) = (q2)a
∞X

n=0

βn
0α

n+1
s (q2)

Z ∞

0
dze−azzn =

∞X

n=1

cnα
n
s n! .

• The integral is ambiguous, but the ambiguity is suppressed by
powers of q2. In fact

fa(q
2) = (q2)aαs(q

2)

Z ∞

0
dz

e−az

1 − β0αs(q2)z
.

The Landau pole on the integrazion contour induces an
ambiguity of the same parametric size as the residue

˛̨
˛δfa(q

2)
˛̨
˛ ∝ exp

»
−

a

β0αs(q2)

–
=

 
Λ2

QCD

q2

!a

.
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