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Abstract

The techniques leading to the resummation of threshold
logarithms in the Drell–Yan cross section and other
processes can be used to show that also terms independent
on the Mellin variable N exponentiate. Comparison with
explicit two–loop calculations shows that within this class
of terms the exponentiation of the one–loop result together
with the running of the coupling is the dominant effect at
two loops.
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Summary

• Tools: factorizations and resummations

– The Sudakov form factor Γ(Q2, ε)

– The unsubtracted Drell–Yan cross section ω(N,Q2, ε)

– The unsubtracted DIS cross section F2(N,Q
2, ε)

– The MS quark distribution φ
MS

(N,Q2, ε)

• DIS factorization scheme

– Virtual diagrams: recovering the ratio of form factors

– Real diagrams: running couplings

– Complete exponentiation

• MS factorization scheme

– Virtual diagrams: cancelling virtual poles

– Real diagrams: running couplings

– Complete exponentiation

• Does it work?

– Analytical tests

– Numerical tests

• Outlook – future work
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Factorization of Γ(Q2, ε)
Begin by considering the quark form factor – an important source of N-independent terms

Γµ(q, ε) = 〈p1, p2|Jµ(0)|0〉 = −ieeq u(p1)γµv(p2) Γ
(
Q

2
, ε
)
.

In dimensional regularization the form factor obeys a factorization of the form

PSfrag replacements

J

J

H S Γ
(
Q2, ε

)
= J (p1 · n, ε) J (p2 · n, ε)S (ui · n, ε)H

(
Q2
)
.

Every factorization leads to an evolution equation. In this case

Q
2 ∂

∂Q2
log
[
Γ
(
Q

2
, ε
)]

=
1

2

[
K (ε) +G

(
Q

2
, ε
)]

.
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The evolution equation can be solved in d = 4 − 2ε, with the boundary condition
Γ(0, ε < 0) = 1, in terms of the d-dimensional running coupling

α
(
ξ
2
)
= αs(µ

2
)

[(
ξ2

µ2

)ε
−

1

ε

(
1−

(
ξ2

µ2

)ε)
b0

4π
αs(µ

2
)

]−1

.

The result is an exponential of functions of only the running coupling

Γ
(
Q

2
, ε
)
= exp




1

2

∫ −Q2

0

dξ2

ξ2


K (ε) +G

(
α
(
ξ
2
)
, ε
)
+

1

2

∫ µ2

ξ2

dλ2

λ2
γK

(
α
(
λ

2
))




 .

Here γK(αs) is the cusp anomalous dimension of the Wilson line representing the quarks.

This resummation of IR and collinear poles leads to a simple representation for the ratio of
timelike to spacelike form factors, in terms of a contour integral in the complex Q2 plane.
∣∣∣∣∣
Γ(Q2, ε)

Γ(−Q2, ε)

∣∣∣∣∣ = exp

{∣∣∣∣∣
i

2

∫ π

0

[
G
(
α
(
e
iθ
Q

2
)
, ε
)
−

i

2

∫ θ

0
dφ γK

(
α
(
e
iφ
Q

2
)) ]∣∣∣∣∣

}
.

which is manifestly finite as ε→ 0.
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Expanding the running couplings in terms of αs(Q2) one predicts that at two loops

∣∣∣∣∣
Γ(Q2, ε)

Γ(−Q2, ε)

∣∣∣∣∣

2

= 1 +
αs

π

3ζ2γ
(1)
K

2
+

(
αs

π

)2 [ 9
8
ζ
2
2

(
γ

(1)
K

)2
+

3

4
ζ2b0G

(1)
(0) +

3

2
ζ2γ

(2)
K

]
,

where

γ
(1)
K

= 2CF ; G
(1)

(0) =
3

2
CF ; γ

(2)
K

= CACF

(
67

18
− ζ2

)
− nfCF

(
5

9

)
.

This illustrates the “predictive power” of exponentiation, even when applied to coefficients

with no dependence on dynamical scales.

• The finiteness of the ratio can be predicted to all orders.

• Numerically the exponentiation of the one loop result together with running coupling

effects provides roughly three quarters of the two–loop result.

• The only genuine two–loop contribution to this quantity is given by the cusp anomalous

dimension, much simpler to compute than the full form factor.
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Factorization of ω(N,Q2, ε)

The resummation of threshold logarithms in the Drell–Yan

process (log(Q2/s)→ logN upon Mellin transform) relies upon a

factorization of the unsubtracted cross section ω at large N .

PSfrag replacements

ψ

ψ

HH U

In an axial gauge ψ is a parton distribution containing collinear and
soft-collinear enhancements, U is an eikonal function responsible
for wide-angle soft emission. One finds

ω(N, ε) = |HDY|
2
ψ(N, ε)

2
U(N) +O(1/N) .

To recover the form factor, one must separate purely virtual
contribution from real emission.

ψ(N, ε) = R(ε) ψR(N, ε) ,

U(N) = UV (ε) UR(N, ε) ,

where R(ε) is the residue of the axial gauge quark propagator.
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The result is

ω(N, ε) = |HDYR(ε)
√
UV (ε)|

2
ψR(N, ε)

2
UR(N, ε) +O(1/N)

= |Γ(Q
2
, ε)|

2
ψR(N, ε)

2
UR(N, ε) +O(1/N) .

Purely virtual contributions reconstruct the form factor squared.

Real emission contributions (at least one gluon in the final state)
can also be shown to exponentiate (Sterman 1987). Up to 1/N
corrections

ψR(N, ε) = exp

[∫ 1

0
dz
zN−1

1− z

∫ 1

z

dy

1− y
κψ

(
α
(
(1− z)

2
Q

2
)
, ε
)]

.

Eikonal graphs also exponentiate, thus

UR(N, ε) = exp

[
−

∫ 1

0
dz
zN−1

1− z
gU

(
α
(
(1− z)

2
Q

2
)
, ε
)]

.

The functions κψ and gU can be explicitly defined as operator
matrix elements. At one loop

κ
(1)
ψ

= 2CF
Γ(2− ε)

Γ(2− 2ε)
; g

(1)
U

= −2CF
Γ(1− ε)

Γ(2− 2ε)
.

Infrared and collinear poles are explicitly generated by the

integrations.

We can conclude that ω(N, ε) exponentiates up to corrections

suppressed by powers of 1/N .
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Factorization of F2(N,Q
2, ε)

A similar factorization can be performed at large N (xBj → 1) on

the unsubtracted DIS structure function F2.

PSfrag replacements

χ

HH

V

J

The functions χ and V differ from their counterparts ψ and U
because of their phase space integration. The function J represent
the narrow current jet (of mass (1− x)Q2). One finds

F2(N,Q
2
, ε) = |HDIS|

2
χ(N, ε)V (N) J(N) +O(1/N) .

Separating again virtual contributions from real emission, and
noting that JV is again given by the residue of the quark
propagator, F2 can be expressed as

F2(N, ε) = |Γ(−Q
2
, ε)|

2
χR(N, ε)VR(N, ε) JR(N, ε) .

Once again purely virtual contributions reconstruct the form factor

squared. Real emission contributions exponentiate as they do in

the case of ω.
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The MSquark distribution φMS (N,Q
2, ε)

The MS quark distribution is known to exponentiate near
threshold. One can write

φ
MS

(N,Q
2
, ε) = exp



∫ Q2

0

dξ2

ξ2


Bδ

(
α(ξ

2
)
)

+

∫ 1

0
dz
zN−1 − 1

1− z
A
(
α(ξ

2
)
)



+O(1/N) .

The function A is essentially the cusp anomalous dimension, the
function Bδ is the virtual part of the nonsinglet quark splitting
function.

A
(1)

= CF ; A
(2)

=
1

2
γ

(2)
K

; B
(1)
δ

=
3

4
CF .

It is useful to split the distribution into “virtual” and “real”
contributions, matching the corresponding factorization of
ω(N,Q2, ε). Define then φV to cancel all poles of the timelike
form factor, by

φV (Q
2
, ε) = exp




1

2

∫ Q2

0

dξ2

ξ2


K (ε) + G̃

(
α(ξ

2
)
)

+
1

2

∫ µ2

ξ2

dλ2

λ2
γK

(
α(λ

2
)
)




 ,
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with the same counterterm K and anomalous dimension γK as

the form factor, but a different finite correction G̃.

G̃(αs) is uniquely determined by the following criteria

• It must be finite and independent of ε, not to generate finite

correction to the MS distribution, which must have only poles.

• The perturbative coefficients of G̃ must be chosen to cancel

all poles in the (real) ratio Γ(−Q2, ε)/φV (Q
2, ε).

It can be shown recursively that such a G̃ exists, and its
perturbative coefficients can be computed in terms of those of G.
Let

G (αs, ε) =

∞∑

n=1

∞∑

m=0

G
(m)
n ε

m
(
αs

π

)n
.

then one finds

G̃M+1 = G
(0)
M+1

−
b0

4
G

(1)
M
−
b1

4
G

(1)
M−1

+
b20
16
G

(2)
M−1

−
b2

4
G

(1)
M−2

+
b0b1

8
G

(2)
M−2

−
b30
64
G

(3)
M−2

+ . . .

The real part of φ
MS

is then defined by subtraction, as φR =

φ
MS

/φV . Note that φV and φR have cancelling double poles of

IR-collinear nature, while φ
MS

has only collinear simple poles.
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Exponentiation in the DIS scheme

Collecting the results for the factorizations of ω and F2 one can
construct the Drell–Yan hard part in the DIS scheme as

ω̂DIS(N) =
1

|HDIS|
2

∣∣∣∣∣
Γ(Q2, ε)

Γ(−Q2, ε)

∣∣∣∣∣

2
ψR(N, ε)

χR(N, ε)

U(N)

V 2(N)

1

J2(N)
,

One recognizes the ratio of form factors (Parisi, 1980). Collecting
all other exponentiated terms in a familiar form one finds

ω̂DIS(N) =

∣∣∣∣∣
Γ(Q2, ε)

Γ(−Q2, ε)

∣∣∣∣∣

2

exp

[
FDIS(N,αs)

]

× exp



∫ 1

0
dz
zN−1 − 1

1− z



2

∫ (1−z)2Q2

(1−z)Q2

dξ2

ξ2
A
(
αs(ξ

2
)
)

− 2B
(
αs
(
(1− z)Q

2
))

+D
(
αs
(
(1− z)

2
Q

2
))





 .

where

F
(1)
DIS

= CF

(
1

2
+ ζ2

)
; D

(1)
= 0 (1)

while a subset of terms in F (2)
DIS

are dictated by running coupling

F
(2)
DIS

=
1

2
CF b0

[
(2 + ζ2) (logN + γE)

−
3

8
(4 + ζ2 − 2ζ3)

]
+ δF

(2)
DIS

.
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Exponentiation in the MS scheme

For the Drell–Yan hard part in the MS scheme we have

ω̂
MS

(N) =

∣∣∣∣∣
Γ(Q2, ε)

φV (Q
2, ε)

∣∣∣∣∣

2 [
UR(N, ε)

(
ψR(N, ε)

φR(N, ε)

)2
]
,

This also can be expressed as a product of real and finite terms,
in the familiar form

ω̂
MS

(N) =

∣∣∣∣∣
Γ(Q2, ε)

Γ(−Q2, ε)

∣∣∣∣∣

2

·

(
Γ(−Q2, ε)

φV (Q
2, ε)

)2

· exp

[
F

MS
(αs)

]

× exp



∫ 1

0
dz
zN−1 − 1

1− z



2

∫ (1−z)2Q2

Q2

dµ2

µ2
A
(
αs(µ

2
)
)

+ D
(
αs
(
(1− z)

2
Q

2
))





 .

where D is the same function appearing in the DIS scheme, and

F
(1)

MS
= −

3

2
CF ζ2 ,

F
(2)

MS
= −

1

4
CF b0

(
1−

3

8
ζ2 +

7

16
ζ3

)
+ δF

(2)

MS
,

Note that the full set of constants at two loops can be determined

only with a two–loop calculation, although simpler than the full

cross section.
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Does it work?

Exponentiation techniques described here can be applied/tested

in at least two different ways

• Analytical results: factorization into real and virtual parts,

separately finite, leads to simplified calculations.
– RG invariance of the exponent κψ of the distribution ψ

leads to

κψ(ξ, ε) =
αs

π
κ

(1)
ψ

(ε) ξ
−2ε

+

(
αs

π

)2 (
κ

(2)
ψ

(ε) ξ
−4ε

+
b0

4ε
κ

(1)
ψ

(ε) ξ
−2ε

(
ξ
−2ε

− 1
))

,

– Let κ
(2)
ψ

(ε) ≡
∑∞
m=0 κ

(2)
ψ,m

εm. One can show that

– NNL logs at two loops are completely determined by κ(2)
ψ,0

– κ
(2)
ψ,0

is in turn determined by the cancellation of double
poles in the ratio URψR/φR as

κ
(2)
ψ,0

= γ
(2)
K

+
1

2
CF b0 .

– Similarly, cancellation of simple poles in the ratio URψR/φR
determines the function D(αs) at two loops in terms of the
purely virtual quantities G(2)(ε = 0) and B(2)

δ
, as

D
(2)

=
3

4
CF b0ζ2 + 4B

(2)
δ
− 2G̃

(2)
.
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• Numerical impact

Given a g–loop calculation of one of the cross sections

discussed, one can use exponentiation and RG to estimate

the (g+1)–loop result. Given the existing results at two loops

(Van Neerven et al., 1992), one can test the case g = 1.
Define

ωs(N) =

∞∑

p=0

ω
(p)
s (N)

(
αs

π

)p
,

ω
(p)
s (N) =

2p∑

i=0

ω
(p)
s,i (logN + γE)

i
,

∆ω
(2)
s,i ≡

ω̃
(2)
s,i − ω

(2)
s,i

ω
(2)
s,i

.

where ω̃(2)
s,i is the estimate obtained using only one loop results

with running coupling effects. One finds

i 4 3 2 1 0

MS 0 0 - 0.33 - 1.79 0.69

DIS 0 0 - 0.13 - 1.17 - 0.26

– Satisfactory result for constants, particularly DIS scheme.

– Overcompensated running coupling effects for i = 1.

“Excess” of factorization?

– Discrepancy at i = 2 disappears introducing γ(2)
K

.
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Outlook

• We have shown that threshold resummation implies complete

exponentiation of N–independent terms for the Drell–Yan

cross section, both in the DIS and MS scheme.

Corollary: the same applies to the MS scheme DIS cross

section.

• We have tested the exponentiation technique reproducing

known results and gauged the numerical impact at two loops.

Running coupling effects deteriorate the prediction at single

log level, while constants are correctly estimated.

• Exponentiation of of N–independent terms does not have the

same predictive power as for threshold logarithms. It can be

used to gauge impact of higher order corrections and simplify

computation of given subsets of them.

• What else exponentiates? Empirical evidence suggests

log(N)/N terms do in the Drell–Yan cross section.

Note: log(N)/N terms are known to have considerable

numerical impact. Worth studying.

• Other processes? Threshold resummation applies to cross

sections with multiple colored particles (e.g. tt̄ production).

Do “large π2” terms exponentiate also in these cases?
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