

Track Based Alignment

- Define a Global Track χ^{2} function:
$x^{2}=\sum_{j=1}^{N_{\text {tacks }}} \sum_{i=1}^{n_{\text {nits }}} r_{i j}^{T}\left(p, q_{j}\right) V_{i j}^{-1} r_{i j}\left(p, q_{j}\right)$

$$
r_{i j}\left(p, q_{j}\right)=m_{i j}-f_{i j}\left(p, q_{j}\right)
$$

where:

- $\mathrm{V}_{\mathrm{ij}}=$ covariance matrix from fit
- $p=$ alignment parameters
(module position/orientation) - $q_{j}=$ track parameters
- $r_{i j}\left(p, q_{j}\right)=$ residual: difference between measured position $m_{i j}$ and position extrapolated from fit $f_{i j}\left(p, q_{j}\right)$ (depending on p and q_{j})
- Aligment algorithms attempt to minimize this χ^{2} function and therefore track residuals

Alignment with cosmic rays

First complete alignment of the CMS Traker

 performed at the Cosmic Run at Four Tesla (CRAFT) A "global run": all CMS subdetectors participating to the data takingData taking 24/7 for 3 weeks (Oct 2008)
Major milestone demonstrating CMS capability of running over long periods
300 Million cosmic muon triggers collected @ 3.8 T Chance of performing alignment and calibration as an input to collision data taking

Alignment Strategy
Run a multi-step approach for both algorithms:
large structure movements (coherent valignment of Single Sided modules)
Alignment of the two sides of 2 D strip modules. (units): u, w, γ
module-level alignment of strip and pixel modules

The challenge is to determine at $\mathrm{O}(10 \mu \mathrm{~m})$ corrections for the 6 d.o.f (3 rotations + 3 translations) for each of the $>16 \mathrm{k}$ modules in CMS Silicon Tracker!

- A complex system of equations to be solved: 16.5 k modules $\times 6$ d.o.f. $\simeq 100 \mathrm{k}$ unknowns Fast and robust algorithms are deployed in the CMS framework.

Minimization leads to the matrix equation

 $C a=b$ which has to be solved to extract a| Pros model module less CPU with one or |
| :--- | :--- | :--- | correlations Cons simple helix trajectory model

few iterations arge matrix may limit total N of alignables

Implications for first collisions

- The all-silicon design of the tracking system of the CMS experiment is expected to provide $1-2 \%$ resolution for 100 GeV tracks and an efficient tagging of b -jets.

Get the best from both algorithm, combining the two:

1) run the global method \rightarrow solves global 2) run the
2) run the local method \rightarrow solves locally to match track model in all degrees of freedom All the three results are compatible but th
Combined shows the best performance

Validation Methods

- Alignment recovers the average position
of modules along the sensitive coordinate: check the Distribution of Median of Residuals (DMR)

Monte Carlo Studies
B-tagging relies completely on tracking performance:

- There are systematic distortions which affect slightly the χ^{2} but bias significantly physics results
-As an example: twist distortion cannot be recovered
only with cosmic rays \Rightarrow collisions needed!

