

**First Alignment of the CMS Tracker and Implications** for the First Collision Data

presented by M. Musich – Università degli Studi di Torino / INFN Torino

# **The CMS Tracker Layout**

 The CMS Tracker is the main tracking device of the CMS experiment, entirely realized with silicon technology and it is the largest detector of its kind in the world

- 3D View of the CMS Tracker **Outer Barrel – TOB Pixels** 6 layers (2 DS) Inner Barrel – TIB 4 layers (2 DS) **Inner Disks – TID** 3+3 disks 5.4 m End-caps – TEC
- Volume 24 m<sup>3</sup>/ covered area 200 m<sup>2</sup>
  - Running temperature: -10° C



- 15148 modules: (pitch 80 205 μm)
- single point resolution of  $20 60 \,\mu m$
- 2D measurements from DS modules, tilt 100mrad
- **PIXEL detector:**

refitted

track

- -1440 modules: (pitch 100(r) x 150(z)  $\mu$ m<sup>2</sup>)
- resolutions: 9(r) x 20(z) μm

reconstructed

real geometry

hit *m*"

impact point

f<sub>ii</sub>(p,q)



# **Alignment goal**

- Tracker alignment in one of the crucial factors to reach the design resolution of the CMS detector.
- Goal: nail down to a few µm the positions of all 16,588 (x 6 dof) silicon modules of CMS Tracker.



 The six alignable degrees of freedom of a CMS Tracker module  $\Delta p = (\Delta u, \Delta v, \Delta w, \alpha, \beta, \gamma)$  3 translations and 3 rotations w.r.t the nominal geometry have to be determined



The CMS Collaboration: The CMS experiment the CERN LHC, 2008

#### Track Based Alignment



 From older experiments: ultimate precision is achieved using track based alignment, i.e. particles crossing in situ the Tracker volume

**Track Based Alignment** 

9+9 disks

Alignment Concepts

design

geometry

Define a Global Track χ<sup>2</sup> function:

N<sub>tracks</sub> n<sub>hits</sub>  $\chi^{2} = \sum \sum r_{ij}^{T}(p,q_{j}) V_{ij}^{-1} r_{ij}(p,q_{j})$ 

 $r_{ij}(p,q_j) = m_{ij} - f_{ij}(p,q_j)$ 

where:

- V<sub>ii</sub> = covariance matrix from fit
- *p* = alignment parameters (module position/orientation)
- q<sub>i</sub> = track parameters
- residual  $r_{ii}(p,q_i)$ •  $r_{ii}(p,q_i)$  = residual: difference between measured position m<sub>ii</sub> and position extrapolated from fit  $f_{ii}(p,q_i)$  (depending on p and  $q_i$ )
- Aligment algorithms attempt to minimize this  $\chi^2$  function and therefore track residuals

# **Alignment with cosmic rays** cosmic muon crossing CMS to the data taking Data taking 24/7 for 3 weeks (Oct 2008) running over long periods

The challenge is to determine at O(10µm) corrections for the 6 d.o.f (3 rotations + 3 translations) for each of the > 16k modules in CMS Silicon Tracker!

degrees

• A complex system of equations to be solved: 16.5k modules x 6 d.o.f.  $\simeq$  100k unknowns

**Alignment Algorithms** 

Fast and robust algorithms are deployed in the CMS framework.

**Local Iterative Method:** "Hit and Impact Points" **Tracks + Surveys**  $\chi^{2}_{loc} = \sum r_{i}^{T}(\boldsymbol{p}_{m}) \boldsymbol{V}_{i}^{-1} \boldsymbol{r}_{i}(\boldsymbol{p}_{m})$ to fix all the

$$\sum_{j}^{surveys} r_{*j}^{T}(\boldsymbol{p}_{m}) \boldsymbol{V}_{*j}^{-1} r_{*j}(\boldsymbol{p}_{m})$$
alignable of freedo

$$\boldsymbol{p}_{m} = \left[\sum_{i} J_{i}^{T} V^{-1_{i}} J_{i}\right]^{-1} \left[\sum_{i} J_{i}^{T} V^{-1_{i}} r_{i}\right]; \quad J_{i} = \partial r_{i} / \partial \boldsymbol{p}_{m}$$

full Kalman Filter simple implementation, Pros all d.o.f. track model large CPU with many **Cons** ignore correlations in one iteration iterations

Global Method: "Millepede II" [NIM A 566, 5 2006] Linearize track model f<sub>ii</sub>(p,q<sub>i</sub>) as a function of the aligment parameters a

| tracks hits<br>$x^2(p,q) - \sum \sum$         | $\left(\mathbf{y}_{ij} - \mathbf{f}_{ij}(\mathbf{p}_{0}, \mathbf{q}_{j0}) + \frac{\partial \mathbf{f}_{ij}}{\partial \mathbf{p}} \mathbf{a} + \frac{\partial \mathbf{f}_{ij}}{\partial \mathbf{q}_{j}} \delta \mathbf{q}_{j}\right)^{2}$ |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(\mathbf{p},\mathbf{q}) = \sum_{j} \sum_{i}$ | $\sigma_{ij}^2$                                                                                                                                                                                                                          |

Minimization leads to the matrix equation Ca=bwhich has to be solved to extract a

| Pros | model module                     | less CPU with one or                            |
|------|----------------------------------|-------------------------------------------------|
|      | correlations                     | few iterations                                  |
| Cons | simple helix<br>trajectory model | large matrix may limit<br>total N of alignables |

### Implications for first collisions



- First complete alignment of the CMS Traker performed at the Cosmic Run at Four Tesla (CRAFT)
- A "global run": all CMS subdetectors participating
- Major milestone demonstrating CMS capability of
- **300 Million cosmic muon triggers collected @ 3.8 T**
- Chance of performing alignment and calibration as an input to collision data taking

#### **Alignment Strategy**

- Run a multi-step approach for both algorithms:
  - large structure movements (coherent v alignment of Single Sided modules)
  - Alignment of the two sides of 2D strip modules (units): u,w,y
- module-level alignment of strip and pixel modules

#### Final Approach

- Get the **best** from **both** algorithm, combining the two:
- 1) run the global method  $\rightarrow$  solves global correlations efficiently
- 2) run the local method  $\rightarrow$  solves locally to match track model in all degrees of freedom

The all-silicon design of the tracking system of the CMS experiment is expected to provide 1-2% resolution for 100 GeV tracks and an efficient tagging of b-jets.

### Impact of Alignment on tracking

• Idea: split the cosmic tracks along impact parameter and compare the five track parameters  $X = (p_T, d_{xy}, d_z, \phi_{tk}, \theta_{tk})$  of top

**CMS 2008** 

0.002

 $\Delta$  (1/p\_) / $\sqrt{2}$  [c/GeV]

- and bottom halves
- **Define residuals as:**

nean = 9.82e-05 c/Ge

RMS = 2.13e-03 c/GeV

nean = 5.98e-05 c/Ge

RMS = 8.36e-04 c/Ge

mean = -1.33e-05 c/Ge'

BMS = 8.67e-04 c/Ge

-0.002

dsg jets, TrackCounting HighEf

0.004

b-tag vs

mistag

frack X2

efficiency



0.02

0.004

refitted lower leg Alignment has a dramatic impact on the resolution of: • **d**<sub>xv</sub> (transverse impact parameter) •  $1/p_{\tau}$ (track curvature)

original

**rack** 

refitted

upper le

### **Monte Carlo Studies**

mean = 1.2 μm

RMS = 29.9 μm

B-tagging relies completely on tracking performance:

**CMS 2008** 

100

Δ d<sub>xv</sub> /√2 [μm]



Needs clear separation between primary and secondary vertices

#### all b-tag algorithm are sensitive to alignment both positions and errors important

#### $\Rightarrow$ All the three results are compatible but the **Combined** <u>shows the best performance</u>



where modules overlap within a layer

**Check difference of residual values** 

DATA combined meth

**DATA** non-aligned

**CMS 2008** 

----- DATA local meth



Drell-Yan only)

Dimuon mass (GeV/&)

Several misalignment scenarios considered

Flight distance significance and hence b-tag efficiency improves with accumulation of statistics for alignment



 There are systematic distortions which affect slightly the χ<sup>2</sup> but bias significantly physics results
As an example: twist distortion cannot be recovered

• only with cosmic rays  $\Rightarrow$  collisions needed!

PIC09: XXIX International Symposium on Physics in Collisions - Kobe, Japan, August 30 - September 2, 2009 – M.Musich (Marco.Musich@cern.ch)



Alignment recovers the average position of modules along the sensitive coordinate:

– check the Distribution of Median of **Residuals (DMR)** 



