
Phenomenology course: Problem Sheet 1

1. In the lecture I approximated the quark mass threshold by a step func-
tion. What actually happens at the threshold ?

2. Since R(e+e−) is the only quantity for which we have NNNLO results,
it is our only chance to calibrate how good different schemes for fixing
µ are. Looking at the figure for the µ scale dependence, K(n) vs µ,
discuss the relative merits of the three schemes defined there.

3. Convince yourself, without any algebra, that the thrust of a three-
parton configuration is given by max(x1, x2, x3), where xi = 2Ei/

√
s,

with Ei being the parton energy and
√

s the collider energy.

4. Draw all the Feynman diagrams for the following three processes

1. e+(1)e−(2) → q(3)q̄(4)g(5)g(6)

2. e+(1)e−(2) → q(3)q̄(4)Q(5)Q̄(6) [q 6= Q]

3. e+(1)e−(2) → q(3)q̄(4)Q(5)Q̄(6) [q = Q]

(Include only diagrams of order α2α2
s and ignore Z propagators, only

use photon ones.) Note down the relative signs among all diagrams in
each case (beyond those that emerge from adopting the QED and QCD
Feynman rules). Justify the relative signs in terms of Bose-Einstein and
Fermi-Dirac statistics.
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Solutions to Problem Sheet 1

1. The width of the quark would model the threshold behaviour more
smoothly. More importantly, you have the formation of hadronic reso-
nances ! This cannot be modelled in perturbative QCD. There is a plot
in page 19 of the lecture notes showing some resonances explicitely.

2. The answer to this was actually given in the lecture, so that the purpose
of this exercise is to fix in the mind of the students, at least qualitatively,
the issues which emerge in higher order calculations, that they may
never have to tackle in the remainder of the PhD course.

3. It suffices to project the three-momentum of the two lowest energy
particles along the axis of the most energetic one to convince oneself.

4. The Feynman diagrams can be found in Figs. 1–3. For processes
1. and 2. all diagrams have the same relative sign. In process 3,
diagrams 1, 4, 5, 6 have opposite sign relative to 2, 3, 7, 8. The
latter account for the fact that, when p3 = p5 (for four-momenta),
s3 = s5[λ3 = λ5] (for spin[helicity]) and the colour is the same for
quarks 3 and 5, the amplitude should be zero, as two fermions cannot be
produced in the same quantum mechanical state, according to Fermi-
Dirac statistics: this is indeed a manifestation of Pauli’s Principle.
(The argument can equally be formulated for antiquarks 4 and 6.) The
relative sign among all diagrams in process 2. is always the same, as
there can never be two identical quantum-mechanical states here. In
process 1, despite the two gluons 5 and 6 can be in an identical quantum
mechanical state (when p5 = p6, s5 = s6[λ5 = λ6] and their colour is
the same), no relative minus sign is required between graphs 2, 4, 6 (on
the one hand) and 5, 1, 8 (on the other hand), the two sets being one-
to-one related by swapping 5 ↔ 6, in accordance with Bose-Einstein
statistics. Finally, notice that to swap 5 ↔ 6 in diagrams 3 and 7 of
process 1 does not generate new graphs, because of the symmetry of
the triple gluon vertex. Recall that in verifying the last statement, you
ought to permutate not only the four-momenta, but also the Lorentz
and colour indices associated to each gluon entering the ggg (triple-
gluon) Feynman rule. (Besides, do not forget that gαβ = gβα and
fABC = −fBAC .)

Hence, always recall that:
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• Any two diagrams which differ in the exchange of two identical
external (anti)particles have a relative plus(minus) sign, if the
two identical (anti)particles are bosons(fermions).

The Feynman diagram formalism contains lots of real physics !
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Diagrams for process 1
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Figure 1: Diagrams for e+(1)e−(2) → q(3)q̄(4)g(5)g(6).
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Diagrams for process 2
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Figure 2: Diagrams for e+(1)e−(2) → q(3)q̄(4)Q(5)Q̄(6) [q 6= Q].
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Diagrams for process 3
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Figure 3: Diagrams for e+(1)e−(2) → q(3)q̄(4)Q(5)Q̄(6) [q = Q].
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Phenomenology course: Problem Sheet 2

1. Solve the differential equation

µ2 dαs(µ
2)

dµ2
= β(αs(µ

2)) = −β0α
2
s(µ

2) + O(α3
s)

(also called the αs evolution equation) through first order: i.e., ignore
the higher order terms O(α3

s). Recall that in QCD:

β0 ≡
11NC − 2nf

12π
=

33 − 2nf

12π
.

Determine the integration constant by setting αs(µ
2 = M2

Z) ≡ αs(M
2
Z) =

0.12 and calculate the value of αs at µ = 10 GeV. (Use nf = 5 and
MZ = 91.1 GeV.)

2. In the lecture, I said that F2 and FL depend only on x and Q2, and
that the cross section is given by the linear combination:

d2σ

dx dQ2
=

4πα2

xQ4

[

(1 + (1 − y)2)F2(x, Q2) + y2FL(x, Q2)
]

.

How would you measure F2 and FL separately?

3. The most general form of the DIS cross section has three non-zero
structure functions, F1, F2 and F3, while the e+e− cross section only
has one (which I called B). Why the difference ?

4. Given that the +-distribution is defined by:
∫ 1

0

f(x)

(1 − x)+
dx =

∫ 1

0

f(x) − f(1)

(1 − x)
dx,

and
1

(1 − x)+
=

1

1 − x
for 0 ≤ x < 1,

show that
∫ 1

0

P (0)
qq (x)dx = 0,

where

P (0)
qq (x) = CF

[

1 + x2

(1 − x+)
+

3

2
δ(1 − x)

]

.

What is the significance of this result ?
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Phenomenology course: Problem Sheet 3

1. On proving gauge invariance (referred to several times in the lectures):
show that in the so-called Landau gauge,

∑

λ

ǫµ(k, λ)ǫν∗(k, λ) = −gµν +
kµkν

k2 + iε
,

the term ∝ kµkν added to the photon spin sum −gµν of the Feynman
gauge does not contribute to QED Compton scattering e−γ → e−γ.
Neglect the electron mass.

(Hint: To prove gauge invariance is sufficient to replace, e.g., ǫµ(k, λ) → kµ

in the expressions you derived (i.e., prior to any squaring, tracing, etc.) and
show, after some manipulations, that the sum of the two amplitudes is zero.
Do it for just one photon.)
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Phenomenology course: Problem Sheet 4

1. Consider the process (photon exchange only)

e−(k) + Q(ξp) → e−(k′) + Q(ξp + q)

where Q represents a generic massless quark of EM charge eq and e− a
massless electron. Schematically:

Show that

d2σ̂

dxdQ2
=

4πα2

Q4

[

1 + (1 − y)2
] 1

2
e2

qδ(x − ξ).

You may use the expression

|M|2 = 2e2
qe

4 ŝ2 + û2

t̂2

for the matrix element squared summed/averaged over final/initial
colours and spins. (Hint: express ŝ, t̂ and û in terms of the standard
DIS variables

Q2 = −q2, x =
−q2

2p · q and y =
q · p
k · p.)
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2. In calculating the Z0 lineshape I neglected the interference between the
γ and Z contributions (i.e. the correct result should have been obtained
by computing |Mγ + MZ0|2 instead of |Mγ|2 and |MZ0|2 separately.
Estimate the interference contribution. What is its value on the peak
(
√

s = MZ0) ?

3. Given that neutrinos cannot be detected, how is Γν , the partial decay
width of a Z0 into neutrinos, measured ?
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Phenomenology course: Problem Sheet 5

1. Show that in the Standard Model the decay width ΓWW of the Higgs
boson into two W bosons is

ΓWW =

√
2GFM2

W MH

8π

√
1 − xW

2xW

(3x2
W − 4xW + 4),

where

GF =
√

2
4πα

8 sin2 θW M2
W

and

xW =
4M2

W

M2
H

.

Use the expression

ΓWW =

∫

dΩ
|M|2
32π2

|qCM|
M2

H

,

where |qCM| is the modulus of the three-momentum of either W boson
in the Centre-of-Mass (CM) frame (i.e., where the Higgs boson is at
rest).
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