- Scuola di Dottorato in Scienza e Alta Tecnologia -
- Indirizzo Fisica e Astrofisica -
- XXIII Ph. D. Cycle -

The Alignment of the CMS Tracker and its laplications for the First Collisions Data

M. Musich

 Università di Torino/INFN TorinoSupervisor: Dott. E. Migliore

Outline

Introduction

\triangleleft The LHC, the CMS Experiment and its Silicon Tracker

Alignment

Basic Concepts

- Track Based Aligment

My past activity:

Tracker Alignment with real data (cosmic muons / collision tracks)
2008-2009 The CMS Global Runs Experience
2009-2010 The First LHC Collisions

My Future Activity:

Impact of tracker alignment in early physics analyis: $\mathrm{J} / \Psi \rightarrow \mu \mu$

The LHC

« World's most powerful particle accelerator!

* will provide pp (and $\mathrm{Pb}-\mathrm{Pb}$) collisions at energy scales never explored before...

Master formula at the hadron collider

$\sigma(p p \rightarrow X, s)=\int d x_{1} d x_{2} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \hat{\sigma}\left(q_{1} q_{2} \rightarrow X ; \hat{s}\right)$

- At the LHC $\sqrt{\boldsymbol{s}}=\mathbf{1 4} \mathbf{T e V}$ (7 TeV in the early phase) and in the partonic scattering: $(\hat{s})^{1 / 2}=\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2} s\right)^{1 / 2} \simeq \mathbf{1 - 2 ~ T e V}$ new physics is foreseen!
- Higgs search and Electroweak symmetry breaking: crucial tests for Standard Model
« But many other interesting processes have large cross-sections!!

The Compact Muon Solenoid

The CMS Experiment is one of the 4 experiments at the p-p accelerator LHC
Multi-purpose experiment (search for Higgs(es), Supersymmetry, new physics at the high energy frontier
\star A system to identify muons and measure their momentum with high efficiency up to the TeV scale
« Uses a powerful ($B=3.8 T$, $2 T$ in return yoke) solenoidal field to provide enough bending power to track high momentum particles in a relatively compact layout

CMS Coordinates

CMS

A Compact Solenoidal Detector for LHC

The CMS Silicon Tracker

\checkmark The all-silicon design of the tracker is expected to provide precise and efficient measurement of the charged particle trajectories in the LHC collisions:

- 1-2\% resolution for 100 GeV tracks in the central region: $\Delta \mathrm{pt} / \mathrm{pt}$ ~ 1-2\% (|n|<1.6)

৯ tracking efficiency: $\varepsilon \sim 99 \%(\mu), \varepsilon \sim 90 \%$ (hadrons)
৯ an efficient tagging of b-jets.
*Double Sided (2 modules mounted back-to-back tilted by 100 mrad)

Why Tracker Alignment is needed?

The Tracker is essential to measure the particle's momentum:

$$
\frac{\delta p_{T}}{p_{T}}=C_{2} \oplus C_{1} p_{T}
$$

 the Multiple Coulomb Scattering (MS) C_{2} factor in the above expression
« while for the high momentum muons, systematic effects of misaligned detectors become relevant.

$$
\begin{aligned}
& C_{1} \propto \frac{\sigma_{\text {pos }}}{\sqrt{N_{\text {hits }}} \cdot B \cdot L^{2}} \\
& \sigma_{\text {pos }}=\sigma_{\text {intr }} \oplus \sigma_{\text {syst }}
\end{aligned}
$$

$\triangleleft \sigma_{i n t r}=O(10 \mu \mathrm{~m})$ in silicon
$\diamond \sigma_{\text {syst }}$ is due to misalignment of the detector
«To reach high presision, a knowledge of the detector geometry at $\mathrm{O}(10 \mu \mathrm{~m})$ is needed

What is alignment?

- The mounting precision of modules is finite:

- Track reconstruction initially assumes a perfectly aligned detector
« Usage of an incorrect assumption on the tracking geometry in the reconstruction leads to incorrect estimate of track parameters $\mathbf{q}=\left(\varphi, \theta, \mathrm{p}_{T}, \mathrm{~d}_{x y}, \mathrm{~d}_{z}\right)$
- less than 20% deterioration of the track parameters for LHC experiments (few $\mu \mathrm{m}, \mu \mathrm{rad}$) is mandatory for physics analysis
- The alignment procedure is aimed to provide the correct geometry to track reconstuction determining the position of modules in situ

Tracker Alignment

- Goal: nail down to a few $\mu \mathrm{m}$ the positions of all 16,588 ($\times 6$ dof) silicon modules of

CMS Tracker.

«Alignment strategy in CMS: use all available data sources:
«Surveys (optical/mechanical/...)
Laser Alignment

- Track Based Alignment
- From older experiments: ultimate precision is achieved using track based alignment, i.e. particles crossing in situ the Tracker volume

Track Based Alignment

- Define a Global Track χ^{2} function:

$$
x^{2}(\mathbf{p}, \mathbf{q})=\sum_{\mathrm{j}=1}^{\text {tracks }} \sum_{\mathrm{i}=1}^{\text {hits }} \mathbf{r}_{\mathrm{ij}}^{\top}\left(\mathbf{p}, \mathbf{q}_{\mathbf{j}}\right) \mathbf{V}_{\mathrm{ij}}^{-1} \mathbf{r}_{\mathrm{ij}}\left(\mathbf{p}, \mathbf{q}_{\mathbf{j}}\right)
$$

- $\mathrm{V}_{\mathrm{ij}}=$ covariance matrix from fit
- p = alignment parameters (module position/orientation)
$-q_{j}=$ track parameters
$-r_{i j}\left(p, q_{j}\right)=$ residual: difference between measured position $m_{i j}$ and position extrapolated from fit $f_{i j}\left(p, q_{j}\right)$ (depending on p and q_{j})

- Aligment algorithms attempt to minimize this χ^{2} function and therefore track residuals

Track Based Alignment in CMS

- The χ^{2} minimization problem can be solved in context of the linear least squares, involving inversion of large matrices:
\checkmark In case of N modules with six degrees of freedom (three rotation and three translations)solving the χ^{2} equation implies solving a system of equations by inversion of a huge 6 Nx 6 N matrix
- In CMS there are $O(16 k)$ modules $\Rightarrow \mathbf{1 6 k x} \mathbf{6}=\mathbf{O}(\mathbf{1 0 0 k})$ unknown parameters to be determined!
- This highly challenging task is faced with two main approaches:

In the global method ("MillePede II"), the $6 N \times 6 N$ matrix is inverted.
Minimization is achieved by fitting track and alignment parameters simultaneously in one step.

In the local method, "Hits and Impact Points HIP" N 6×6 matrices are solved.
Minimization is attained by iterating several times the procedure

Alignment algorithms return O(100k) numbers which must be validated!
\star need to monitor simultaneously the geometry, tracking performance, physics implications, ...
to every of these parameters one needs to assign an error!

My activity during 2008-2009

During the last two years (2008-2009) the CMS collaboration conducted a campaign of long data taking exercises:
« The most important was the Cosmic Run At Four Tesla (CRAFT) in which, with the solenoidal field at its nominal $B=3.8$ T intensity value, several million of cosmic ray triggers were collected and analyzed
\diamond In this context my main activity in the Tracker Alignment effort was devoted to:

- Optimize and run the alignment validation tools
©stimate the remaining misalignment
« Determine the Alignment Position Errors

Tracker Alignment at the Cosmic Run at Four Tesla (CRAFT)

* First attempt of full CMS Tracker alignment with data during the CMS global run

Tracker operating with all other CMS subdetectors

- 270 M of cosmics collected with magnetic field switched on (only ~2\% in Strip Tracker, $\sim 1 \%$ in Pixel Tracker)
$\checkmark 300 \mathrm{~Hz}$ cosmic muon Level 1 trigger rate (6 Hz in the Tracker)
$\Delta \Delta t_{\text {top-botom }}=2 \times B X=2 \times 25 n s=50 n s$ (muon time of flight)

Alignment Strategy

Apply a set of cuts to select good tracks for alignment
 Square pull of hit residual <15
\diamond Run a multi-step approach for both algorithms:
Large structure movements (coherent v alignment of Single Sided modules)
\checkmark Alignment of the two sides of the 2D strip modules (units) u, w, Y
) module-level alignment of strip and pixel modules
Final strategy:
\checkmark Get the best from both algorithm, combining the two:
I. run the global method \rightarrow solves global correlations efficiently
II. run the local method \rightarrow solves locally to match track model in all degrees of freedom

Alignment Validation

\checkmark Alignment performance is validated on the data themselves at three different levels:
\downarrow low level validation: checking the effective improvement of the post-alignment residuals (track χ^{2} and track-to-hit residuals)
\downarrow high level validation: comparing segments of split cosmic ray tracks, and with the analysis of the residuals in overlapping regions of the detector.
\checkmark checks of the geometry of CMS Tracker resulting from track-based alignment
\checkmark Validation is performed after every alignment cycle

- During the CRAFT data analysis I have been responsible for the low-level validation and I have provided the results included in the paper*
\measuredangle Same sample is used for the alignment
(i.e. χ^{2} minization) and validation
\checkmark statistics is critical evaluating the performance for all subdetectors (only 1.5% of tracker in PXE with cosmic rays)
* see bibliography

Track-based Validation (Track Residuals)

Estimation of residual misalignment

\diamond Residual width dominated by stochastic effects, like multiple Coulomb scattering or the intrinsic resolution of the hits

$$
\sigma_{r_{i j}(p, q)}=\underbrace{\sigma_{\text {intr }}}_{\text {Intrinsic }} \oplus \underbrace{\boldsymbol{\sigma}_{\text {mis }}}_{\text {Misalignment }} \oplus \underbrace{\sigma_{M S}}_{\text {Multiple Scattering }}
$$

\diamond Goal: disentangle random effects from systematic ones produced by remaining misalignment
\triangleleft at zero-th order the alignment recovers the true position of modules along the measurement coordinate \Rightarrow check that the residuals are "centered" after the alignment

Re-aligned

Residual misalignment (the DMR)

The mean of residuals is not a robust estimator of the position of the "center" of the residuals distribution because of outliers in real data \Rightarrow I have tested several others

The method:

\checkmark Take MC of the detector in ideal conditions and apply a random gaussian misalignment of known width
Look at the distributions of "peak estimators"
\diamond The Distribution of the Medians of Residuals has RMS very close to the width of input misalignment

- Check also statistical precision of the method by splitting data intc

DMR distributions for CRAFT alignment

\triangleleft DMR are shown as a function of the local coordinates x^{\prime} and y^{\prime} for all subdets

pixels(barrel) strips with rectangular topology(barrel)

	Non aligned	global	local	combi- ned	combi- ned MC	Ideal MC
PXB ($\left.\mathrm{x}^{\prime}\right)$	328,7	7,5	3	$\mathbf{2 , 6}$	2,1	$\mathbf{2 , 1}$
PXB $\left(\mathrm{y}^{\prime}\right)$	$274, \mathbf{1}$	6,9	13,4	$\mathbf{4}$	2,5	$\mathbf{2 , 4}$
PXE $\left(\mathrm{x}^{\prime}\right)$	389	23,5	26,5	$\mathbf{1 3 , 1}$	12	$\mathbf{9 , 4}$
PXE $\left(\mathrm{y}^{\prime}\right)$	385,8	20	23,9	$\mathbf{1 3 , 9}$	11,6	$\mathbf{9 , 3}$
TIB	712,2	4,9	7,1	$\mathbf{2 , 5}$	1,2	$\mathbf{1 , 1}$
TOB	168,6	5,7	3,5	$\mathbf{2 , 6}$	1,4	$\mathbf{1 , 1}$
TID	295	7	6,9	$\mathbf{3 , 3}$	2,4	$\mathbf{1 , 6}$
TEC	216,9	25	10,4	$\mathbf{7 , 4}$	4,6	$\mathbf{2 , 5}$

Module positions w.r.t to cosmic ray trajectory measured with a precision of $3-4 \mu \mathrm{~m}$ in the barrel and of 3-14 $\mu \mathrm{m}$ in the endcap (along r φ)

Alignment Position Errors

\checkmark The alignment position error (APE) characterizes the measurement uncertainty of each detector due to misalignment effects.
\checkmark The APE is combined with the spatial (intrinsic) resolution of the detector giving the total error of hit positioning on the silicon modules:

$$
\sigma_{T O T}^{H I T}=\sigma_{i n t r}^{H I T} \oplus \boldsymbol{A P E}(D E T)
$$

«The APE affects the search window of pattern recognition in track finding

APE have direct impact on:

- performance of track reconstruction efficiency of track reconstruction
- track quality (X^{2})
- fake rate
- momentum resolution
- vertexing resolution

Strategy to determine the APEs

- During CRAFT I have been responsibile for the determination and the validation of tha Alignment Position Errors

\triangleleft Strategy for the determination of the APE:

- They need to be module-dependent since alignment with cosmic rays is better in some regions than others (due to higher illumination in the top and
bottom quandrants of the tracker).

Tob_Layer6

- So find a region of the detector well aligned (top quadrant) and estimate the remaining misalignment (after the alignment procedure) from data
- The APE value has to match the value of the remaining random misalignment
- Finally estimate the APEs in the rest of the Tracker (outside the fiducial volume) by taking into account the different illumination of cosmic rays

Selection of control region

« In order to have a sound estimate of remaining misaligment
«take a well aligned region (upper quarter of Strip Barrel)
Δ select tracks hit pattern in order to satisfy a test-beam like geometry (all tracks cross the tracker volume with the same angle)

Hit Map XY

Then in order to minimize the MS contribution to the track hit:

$$
\sigma_{M S} \simeq \delta X=1 \cdot \delta \theta \simeq \frac{l}{p} \cdot \sqrt{\frac{\mid t}{X_{0}}} \begin{aligned}
& \text { Crossed } \\
& \begin{array}{c}
\text { silicon } \\
\text { thickness }
\end{array}
\end{aligned}
$$

« one requires that the Point of Closest Approach of the track to the nominal Beamline (PCA) lie inside a cylindrical fiducial volume roughly equal to the CMS Pixel Volume

Trends of residuals

- Once selected the control region to estimate the remaining misalignment one has still to disentangle the MS and intrinsic contributions to the track residuals:

$$
\left(\sigma=\sqrt{\sum_{i} \sigma_{i}^{2}}=\sigma_{\text {intr }} \oplus \sigma_{m i s} \oplus \sigma_{M S}\right)
$$

« where the MS contribution goes like $1 / p$

- Track residuals saturate at some threshold, estimated in data to be $\sim 20 \mathrm{GeV}$ for which the MS is dominated by the detector pitch and the misalignment effects

Determination of residual misalignment

- The APE are estimated introducing a random (gaussian smeared) misalignment in the CRAFT MC simulation, to match the DMRs and trends of residuals in CRAFT DATA (in the control region and with the selected track sample).

- $\delta \mathrm{y}$ not affecting DMRs but spread in the residuals - so tune MC in order to reproduce the trend of Barrel layer residuals of DATA

Determination of APE

The APE has to be specified in 3 directions (u, v, w)
© Choose to neglect correlations between directions \Rightarrow use spheres
\triangleleft The radius of the sphere is defined as:
$R_{\text {APE }}=R_{0} \cdot \sqrt{\frac{N_{0}}{N_{\text {hits }}}}$

$$
\begin{aligned}
& R_{0}=R M S\left[\mu_{1 / 2}\right] \\
& R_{0}=k\left(\delta u \oplus \frac{L}{4} \delta \gamma\right)
\end{aligned}
$$

- (1) In TID/TEC (Endcaps) In PXB/PXE (Pixel)
(2) In TIB/TOB (Barrel)

- (1) In the endcaps and in the pixel detectors use the width of the DMR distribution measured in DATA
- (2) In the barrel detectors use the misalignment parameters $\delta u,(\delta v$ for DS), $\delta \gamma$ obtained as described before to match the DATA distribution (in the sensitive coordinate) with the misaligned simulation
- R_{0} asymptotic value reached for the well aligned modules with $N_{\text {hits }}>N_{0}$. The APE radius is scaled according to the statistics available
- k and N_{0} are parameters tuned on data

APE Tuning and validation with cosmic data

« The k -factor is tuned in order to have the pull of residuals $(\mathrm{r} / \sigma) \sim 1$

« Define the normalised residuals:

$$
\begin{gathered}
\frac{r_{i}}{\sigma_{i}}=\frac{u_{i}^{n i t}-u_{i}^{\text {fit }}}{\sigma_{i}}=\frac{m_{i j}-f_{i j}(\boldsymbol{p}, \boldsymbol{q})}{\sigma_{i}} \\
\sigma_{i}=\sigma_{i}(\operatorname{APE}(\boldsymbol{k}))
\end{gathered}
$$

- The \mathbf{k} factor is tuned with an iterative procedure until the contribution to the hit error determines the pull of residual to be ~ 1
\checkmark After the tuning of the APE, the peak of the χ^{2} is shifted to 1 .
The prob $\left(\chi^{2}\right)$ flattens, and the distribution of the RMS (DRR) of normalized residuals goes to 1

Marco Musich - 2nd Year Ph. D. Seminar

APE Validation

« Finally the pull of residuals is evaluated and is found to be consistent with 1.
« Summary plots of RMS of r/ σ on a module-by-module basis are checked

- The entire procedure needs to be repeated aftery every alignment cycle (i.e. after every intervention on the detector)

\downarrow The Alignment Position Errors so determined were used for the reconstruction of the first LHC pp collision data taken by the CMS detector in November 2009

APE Performance

©Track transverse impact parameter d_{0} \checkmark is obtained by comparing segments of cosmic ray tracks split into two halves at the PCA to the nominal beamline.
\diamond Each leg is refitted separately
\checkmark The five track parameters of each leg, updated at the perigee, are compared.

\checkmark Resolution on the x coordinate of Primary vertex.
The resolution is obtained on real data:
« by randomly separating the tracks of an event in 2 independent samples

- refitting separately two primary vertices
\diamond comparing the coordinates

23.11.09 First Tracks with LHC Beams

Primary Vertex Validation

- The d_{xy} residual in the defined as the distance in the transverse plane between the refitted vertex and the perigee of the track:

$$
\begin{aligned}
d_{x y} & =\left[(\vec{b}-\vec{v}) \times \hat{p}_{T}\right] \cdot \hat{z} \\
d_{x y} & =\frac{-\left(v_{x}-b_{x}\right) p_{y}+\left(v_{y}-b_{y}\right) p_{x}}{\sqrt{p_{x}^{2}+p_{y}^{2}}}
\end{aligned}
$$ the pixel detector

- Select a sample of "good" collision tracks
- Extract from those a probe track
- Fit the primary vertex with the remaining ones
- Evaluate the unbiased track residual in the transverse ($r-\varphi$) and longitudinal ($x=0$) planes
- Iterate over all good tracks y \quad I

z beamline

Results on Data (900 GeV Minimum Bias)

\checkmark Run the validation on collision data: should be able to spot systematic misalignments remained uncorrected after alignment with cosmic data

Some trend is visible in the r φ plane, but a clear separation in the z residual is visible.

Hint of a displacement of the two half-shells of Tracker Pixel Barrel

Comparison with MC

Try to quantify the z offset between halfshells by using a misaligned MC (apply an offset in the z direction)
\triangleleft Use two scenarios (strips are kept fixed):
Δz offset $\varepsilon=50 \boldsymbol{\mu m}$ (displace $x>0$)
$\triangleleft z$ offset $\varepsilon=60 \mu \mathrm{~m}$ (displace $x>0$)

$<d_{\mathbf{z}}>$ vs ϕ sector

$$
\sigma_{\mathrm{d}_{2}} \text { vs } \phi \text { sector }
$$

The future: $p p \rightarrow J / \Psi+X \rightarrow \mu^{+} \mu^{-}$cross-section

$\downarrow \mathrm{J} / \psi$ production mechanism in hadronic collisions is not yet completely understood \Rightarrow interesting process to study
\downarrow It has a relatively large cross-section \Rightarrow one of the first analysis in CMS involving muons in the final state
« Muon resonances important to calibrate the detector in early phases

- The production cross-section of J / Ψ 's in the muon channel can be estimated as:

$$
\sigma(p p \rightarrow J / \psi+X) \times B \cdot R .\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)=\frac{N_{J / \psi}^{f i t}}{\int L d t \cdot A \cdot \lambda_{\text {trigger }}^{\text {corr }} \cdot \lambda_{\text {reco }}^{\text {corr }}}
$$

- The ${ }^{\mathrm{fit}}{ }_{\mathrm{J} / \mathrm{\psi}}$ parameter comes from a simultaneous fit to the dimuon mass shape and the apparent measured lifetime.
- This is done in order to disentangle the prompt dimuon from the ones coming from open bottom decay chains ($\mathrm{b} \rightarrow \mathrm{J} / \Psi$)
- the apparent lifetime is proportional to $\mathrm{I}_{\mathrm{xy}} \Rightarrow$ highly sensitive to tracker alignment

Conclusions

Challenging demands of CMS for the momentum measurement led to design a complex inner tracking system.
« Unknown position of the 15 k modules is the main source of systematic error for physics.

- Tracker alignment has been carried out using cosmic tracks \Rightarrow highly non-trivial task that needs frequent and complex validations
- Alignment errors have high impact in tracking and vertexing performance \Rightarrow a data-driven method has been used to estimate them on cosmic data
«Started to look to impact of alignment in collision data

TO DO:
© Finalize and commission alignment validation on collision data
«Start to look into the di-muon physics analysis
Thanks for the attention!

Bibliography

Publications:

1) Title: The CMS experiment at the CERN LHC

Author: R. Adolphi et al.
date: 2008
journal: JINST 3:S08004 (2008)
2) Title: Search strategy for the Higgs boson in the ZZ(*) channel with the CMS experiment Author: S. Baffioni [...] M. Musich, et al.
Date: 2008
Journal: CMS Analysis Note 2008/050
3) Title: Projected exclusion limits on the SM Higgs boson cross sections obtained by combining the H to W^{*} and $Z Z^{*}$ decay channels
Author: S. Baffioni [...] M. Musich, et al.
Date: 2009
Journal: CMS Analysis Note 2009/020
4) Title: Alignment of the CMS Silicon Tracker during Commissioning with Cosmic Rays Author: The CMS Collaboration
Date: 2009
Journal: arXiv:0910.2505 (Accepted by JINST)
5) Title: First Alignment of the CMS Tracker and Implications for the First Collision Data Author: M. Musich
Date: 2009
Journal: CMS Conference Report 2009-317
(to be published in "Proceedings of the XXIX Physics in Collision International Symposium")

Talks / Posters

- Presentations at Conferences / International Schools
- Talk: Allineamento del Tracker di CMS con raggi cosmici XCIV Congresso Nazionale Societa Italiana di Fisica, Genova (ITALY) 22nd - 26th September 2008
\triangleleft Poster: The CMS Silicon Strip Tracker
XVIII International Conference on Particle And Nuclei (PANIC08)
Eilat (ISRAEL) - 9-14th November 2008
- Poster: The CMS Tracker Alignment

The 2009 European School of High Energy Physics (EPSHEP09)
Bautzen (GERMANY),14th - 27th June 2009
«Talk/Poster: First Alignment of the CMS Tracker and its Implications for Collision Data
XXIX International Symposium on Physics in Collision (PIC09) Kobe (JAPAN) - August 30th - September 2, 2009

CMS Experiment and its Tracker

Track Parametrization in CMS

Why Tracker Alignment is needed?

\checkmark The trajectory of a particle of charge \boldsymbol{z} and transverse momentum $\boldsymbol{p}_{\boldsymbol{T}}$ in a magnetic field of intensity \boldsymbol{B} is an helix, these physical quantities are correlated:

$$
p_{T}[\mathrm{GeV}]=0.3 \cdot z \cdot B[T] \cdot R[m]=\frac{0.3 z \cdot B}{k} \quad k=1 / R
$$

- The measured distribution is rather \boldsymbol{R} (or \boldsymbol{k} which is normally distrubuted). The uncertainty on track curvature \boldsymbol{k} depends on two contributions:

$$
\delta k=\sqrt{\delta k_{r e s}^{2}+\delta k_{m s}^{2}}
$$

- Parametrizing in terms of transverse momentum:

Alignment formalism

- The hit position in local coordinates of the module is $\mathbf{p}=(u, v, w)$ and $\boldsymbol{r}=(x, y, z)$ w.r.t the global reference frame of CMS.
- The two sets of coordinates are related via a roto-translation:

$$
\boldsymbol{r}=R^{T} \boldsymbol{p}+\boldsymbol{r}_{\mathbf{0}}
$$

The alignment procedure determines corrections to the original transformation via an additional rototranslation:

$$
\boldsymbol{r}=R^{T} \Delta R(\boldsymbol{p}+\Delta \boldsymbol{p})+\boldsymbol{r}_{\mathbf{0}}
$$

\checkmark The alignment parameters are $\Delta \mathbf{p}=(\Delta \mathbf{u}, \Delta \mathbf{v}, \Delta \mathbf{w})$ which parametrize translations, while the angles $\mathbf{\alpha}, \boldsymbol{\beta}$ and $\mathbf{\gamma}$ appearing in ΔR parametrize the rotation

Final goal of alignment:

 Determine for each of the O(20k) detunits the 6 parameters ($\Delta \mathbf{u}, \Delta \mathbf{v}, \Delta \mathbf{w}, \mathbf{a}, \beta, \mathbf{\gamma}$) 3 translations and 3 rotations w.r.t the nominal geometry- Determine for each of the modules the statistical error associated to the aligned postion (APE)

Inputs to alignment

© Survey measurements:
\star during assembly of the Tracker using Coordinate Measure Machine (CMM): precision of the sensor on carbon fiber $10 \mu \mathrm{~m}$
« Photogrammetry: precision of $100 \mu \mathrm{~m}$

« Track-based alignment:
\checkmark different kind of tracks (cosmic ray μ, μ from and W decay, etc..)
dinal expected precision on the module position of less than $10 \mu \mathrm{~m}$ along their sensitive coordinate
« Laser Alignment System (LAS):
« continuous position measurement of large scale structures using laser beams
\star TEC discs position with spatial precision of $100 \mu \mathrm{~m}$ and 100 mrad
« relative alignment of TIB/TOB vs TEC

How track-based alignment is achieved?

When a particle crosses the tracker volume, releases an amount of energy on the silicon layers \Rightarrow a charge deposit is detected
Clusterize the neighboring strips or pixels sharing the deposited charge
\diamond Reconstruct a hit by taking the barycenter of charge of the cluster

- Misalignment affects the track-to-hit
 residuals defined as:

$$
\underbrace{\boldsymbol{r}_{i j}\left(\boldsymbol{p}, \boldsymbol{q}_{j}\right)}_{\text {track residiual }}=\underbrace{\boldsymbol{m}_{i j}}_{\begin{array}{c}
\text { measuited } \\
\text { hit }
\end{array}}-\underbrace{\boldsymbol{f}_{i j}\left(\boldsymbol{p}, \boldsymbol{q}_{j}\right)}_{\text {trajectory extrapolation }}
$$

- Where \mathbf{p} are the geometric alignable parameters of the module and \mathbf{q} the track parameters

How track-based alignment is achieved?

© Define a Global Track χ^{2} (objective) function:

$$
x^{2}(\boldsymbol{p}, \boldsymbol{q})=\sum_{j=1}^{\text {tracks }} \sum_{i=1}^{\text {nits }} \boldsymbol{r}_{i j}^{T}\left(\boldsymbol{p}, \boldsymbol{q}_{j}\right) \boldsymbol{V}_{i j}^{-1} \boldsymbol{r}_{i j}\left(\boldsymbol{p}, \boldsymbol{q}_{j}\right)
$$

- $\mathrm{V}_{\mathrm{ij}}=$ covariance matrix from fit
- $r_{i j}\left(p, q_{j}\right)=$ track-to hit residual with $p=$ alignment parameters (module position/orientation)
- to achieve alignment and hence minimize the residuals, minimize the global χ^{2} function w.r.t the alignment parameters

$$
\frac{d x^{2}}{d p_{m}}=0
$$

- The optimization problem is solved assuming that the objective function can be linearized in terms of the alignment corrections $\delta p_{m}=p_{m}-p_{m 0}$

$$
\begin{gathered}
x^{2}\left(\boldsymbol{p}_{\boldsymbol{m}}\right)=\chi^{2}\left(\boldsymbol{p}_{\boldsymbol{m} 0}\right)-\frac{d x^{2}}{d \boldsymbol{p}_{\boldsymbol{m}}} \delta \boldsymbol{p}_{\boldsymbol{m}} \square \boldsymbol{\delta} \boldsymbol{p}_{\boldsymbol{m}}=\left.\frac{d^{2} x^{2}}{d \boldsymbol{p}_{\boldsymbol{m}}^{2}}\right|_{\boldsymbol{p}_{m 0}} ^{\text {linearization of } x^{2} \text { around starting }} \\
\begin{array}{l}
\text { alignment parameter } \boldsymbol{p}_{m 0}
\end{array} \\
\quad \text { Large 6N x 6N matrix to be inverted }
\end{gathered}
$$

Track Based Alignment with cosmic rays

«irst complete alignment of the CMS Traker performed at the Cosmic Run at Four Tesla (CRAFT)

- A "global run": all CMS subdetectors participating to the data taking
- Major milestone demonstrating CMS capability of running over long periods

〈 300 Million cosmic muon triggers collected @ 3.8 T

- Chance of performing alignment and calibration as an input to collision data taking

Alignment Algorithms used during cosmic data taking:

minimizing the χ^{2} with millions of tracks requires sophisticated algorithms, two complementary methods were used:
"Hits and Impact Points HIP" (local method):

- Estimates alignment parameters per module, iterates due to correlations.
- Stabilizes minimization by including survey.

Uses same track model as reconstruction.
Needs many iterations to include correlation
"MillePede II" (global method):

- Fits track and alignment parameters simultaneously in one step.
(-) All correlations considered, no need for iterations.
\bigodot Uses 5-parameter helix as track model.

CRAFT Muon Spectra

Systematic misalignment

Strategy

- Tuning of remaining misalignment (Tracker_Geometry_v3_offline as reference for DATA)
\triangleleft selecting tracks / hits where MS and extrapolation are small (p>20GeV)

Hit Map XY

- Track/Hits quality cuts applied
- Standard Validation cuts

$$
\begin{aligned}
& \text { - } \mathrm{N}_{\text {hits }}>10 \\
& \text { - } \mathrm{N}_{\text {hits }-2 \mathrm{D}}>2 \\
& \mathrm{~S} / \mathrm{N}_{\text {cluster }}>18
\end{aligned}
$$

- Fiducial (pixel-like) volume cuts
- $\left(\mathrm{X}_{\mathrm{DCA}}{ }^{+} \mathrm{y}^{2}{ }_{\mathrm{DCA}}\right)^{1 / 2}<11 \mathrm{~cm}$
- $\left|z_{\text {DCA }}\right|<60 \mathrm{~cm}$
- Hit pattern selection
- 14 split hits (10 SS + 4 DS)
- Test-Beam like topology:
- TOB L6
- TOB L5
- ...

Validation Methods

« Measure for remaining misalignment:

- Overlapping modules of same layer might have hits from same track.
- Difference of their residuals (overlap residuals): sensitive to relative misalignment within one layer. Offsets indicate shifts.
« Modules of TIB show significative improvement (RMS decreases)
« Same order of magnitude achieved in TPB and TOB

Module-wise informations: Distribution of Median of Residuals (DMR)
« Spread gives the lower limit for misalignment (given sufficient statistics)
\checkmark Sensitive to the incoherent displacements of the modules w.r.t each other in the sensitive coordinate
\triangleleft Used to estimate misalignment corrections to intrinsic hit errors

Implications for tracking

« Track parameter resolutions depend on alignment

- Idea: split the cosmic tracks along impact parameter and compare the five track parameters $X=\left(p_{T}, d_{x y}, d_{z z}, \varphi_{t k}, \theta_{t k}\right)$ of top and bottom halves independently reconstructed

$$
r=\frac{X_{\text {top }}-X_{\text {bottom }}}{\sqrt{2}}
$$

Alignment has a dramatic impact on the resolutions
refitted lower leg

- $\mathbf{1} / \boldsymbol{p}_{T}$ track curvature resolution as good. $\boldsymbol{d}_{x y}$ transverse impact parameter as in simulation
resolution already good ($\sigma \simeq 30 \mu \mathrm{~m}$)

Implications for early physics

B-tagging relies completely on tracking performance:

Needs clear separation between primary and secondary vertices
« all b-tag algorithm are sensitive to alignment
Several misalignment scenarios considered

- b-tag efficiency improves with accumulation of statistics for alignment

« Further MC studies check prospects of finding "new" physics, e. g. in dimuon resonances.
« Detectability and resonance width depend on both tracking systems.
\triangleleft Alignment affects heavily high p_{T} muon resolution

Results on misaligned MC

- Apply a sistematic misalignment in pixels: an elliptical deformation and look to residuals obtained running on simulated collision tracks

Apply a sistematic misalignment in pixels: an offset in y direction and look to residuals

