

Candidato: Marco Musich Relatore: Ernesto Migliore

Outline

·La fisica dell'Higgs (MS) e potenzialità di scoperta a LHC

•Studi sulla cinematica del canale (a livello generatore)

·Validazione algoritmi High Level Trigger sul segnale

Produzione di Higgs a LHC

Higgs = Particella associata al campo che dà massa a fermioni e bosoni nel M.S.

Principali processi di produzione del bosone di Higgs al collider LHC (pp @ 14Tev):

Scelta del canale

- Non esiste una singola analisi che copra tutto il range "plausibile" 114 GeV – 1 TeV
 - Higgs "leggero" (100 GeV < M_H< 150 GeV):
 H→bb ; H→γγ
 - Higgs "medio" ($M_H \sim 2M_Z$): $H \rightarrow WW$; $H \rightarrow ZZ^*$
 - Higgs "pesante" (M_H>2M_Z): H→ZZ

•In generale: l'Higgs si accoppia preferenzialmente con il fermione più pesante cinematicamente permesso, fino all'apertura dei canali con bosoni vettori

•A massa intermedia ($M_H \sim 2M_Z$) la cinematica fa esplodere il B.R. in WW, tuttavia in $H \rightarrow WW(^*) \rightarrow lvlv$, a causa dei due neutrini non è possibile osservare un picco di massa ma solo un eccesso di eventi.

Il canale $H \rightarrow ZZ^{(*)} \rightarrow 4I$ è un buon candidato per ricerca dell'Higgs a massa intermedia

$H \rightarrow ZZ \rightarrow 4I$

CMS

CMS = COMPACT MUON SOLENOID

• Detector progettato per misurare con precisione il momento delle particelle cariche

•Magnete da 4T (compattezza e alto campo magnetico richiesti per migliorare la risoluzione del momento dei muoni)

•4 "stazioni" di misura per i muoni: DT nella regione del barrel, CSC e RPC negli endcap

All'interno del solenoide:

•Tracker: 10 layer di microstrip e 3 di pixel (silicio)

•La calorimetria E.M. (ECAL), utilizza cristalli di PbWO4 , nella regione $|\eta|<3$

•Calorimetro Adronico(HCAL) in ottone/scintillatori nella regione fino a $|\eta|<5$

Studio preliminare sulle variabili a livello generatore per stabilire una strategia di analisi basata su tagli.

>Generazione degli eventi per il segnale($H_{150} \Rightarrow ZZ^* \rightarrow 2\mu 2e$), ttbar, ZZ con Pythia (processo hard LO + QCD parton shower + adronizzazione), generazione del fondo Zb bbar con il generatore CompHep e successiva parton shower + adronizzazione con Pythia.

$$gg(VV) \to H \to ZZ \to 2\mu 2e \qquad N_{gen} = 2 \cdot 10^5 \qquad \sigma_{gen} = 2.917 fb(M_H = 150 GeV) \\ CMKIN(45) - CMKIN(48) = (12., -1, 12, -1) \\ ZZ^{(*)}(\gamma^*\gamma^*) \to 2\mu 2e \qquad N_{gen} = 4 \cdot 10^5 \qquad \sigma_{gen} = 3.53 fb \\ CMKIN(41) - CMKIN(44) = (5., 150., 5., 150.) \\ t\bar{t} \to bW^+\bar{b}W^- \to \mu^+\mu^-e^+e^-X \qquad N_{gen} = 7 \cdot 10^5 \qquad \sigma_{gen} = 2.29 \cdot 10^3 fb \\ Zb\bar{b} \to \mu^+\mu^-e^+e^-X \qquad N_{gen} = 4 \cdot 10^5 \qquad \sigma_{gen} = 2.67 \cdot 10^3 fb \end{cases}$$

Filtro in generazione

Gli eventi generati sono stati filtrati in modo da ottenere nello stato finale:

- µ+ µ- e+ e- + X

-muoni nell'intervallo |n|<2.5, p_T>3 GeV

-elettroni nell'intervallo |n|<2.7, p_T>10 GeV

I tagli in generazione sono stati scelti in maniera che i leptoni nello stato finale potessero essere rilevati dalle stazioni di misura dei muoni e da ECAL

ε (leptoni "visibili") ~ 55 % per il segnale

Samples	Segnale	ZZ	††	Zbb	
Frazione di eventi "visibili"	0.552	0.397	0.0090	0.0020	$\sigma_{\varepsilon} = \sqrt{\frac{\varepsilon(1-\varepsilon)}{N}}$
Incertezza sull'efficienza	0.001	0.001	0.0003	0.0002	

Dallo studio sui generati:

> Zbb e tt rigettati medianti tagli in massa invariante e p_T dei leptoni (+ isolamento)

>ZZ non è sensibile ai tagli in isolamento, e la cinematica di ZZ non è sufficientemente diversa dal segnale da poter utilizzare i tagli in p_T

 \Rightarrow ZZ^(*) è un fondo irriducibile

Tuttavia il processo ZZ evolve in canale t, mentre il segnale è in canale s, per cui ci aspettiamo che una variabile angolare aiuti a rigettare questo tipo di fondo.

Distribuzioni in massa invariante

2-pairs (ZZ) inv. Mass

Ottimizzazione della selezione

•La variabile che discrimina meglio è quella che ha i valori maggiori del prodotto efficienza * purezza in funzione del taglio.

•La miglior scelta per il taglio è determinata prendendo il punto corrispondente al massimo della curva .

•L'angolo $\Delta \theta(ZZ)$ tra le 2 Z nel sistema di riferimento del laboratorio massimizza il prodotto efficienza-purezza in funzione del taglio.

 La variabile Φ nel sistema di riferimento dell' "Higgs" è la seconda migliore scelta

Conclusioni sui tagli angolari

Fondo irriducibile

 $ightarrow \Delta \theta(ZZ)$ è la migliore scelta

Si penserebbe che la variabile "boostata" discriminasse meglio un processo in canale t da uno in canale s, per via degli eventi molto "in avanti" nella distribuzione relativa a ZZ.

Studi sull'High Level Trigger

24/09/07

L1- hardware (emulato in CMSSW), produce dei seed usati dall 'HLT

HLT (software) stesso codice che girerà sui dati reali.

Diversi trigger-paths considerati (elettroni-muoni):

>Muoni (muone singolo/doppio, isolato/non-isolato)

>Elettroni (elettrone singolo/doppio isolato/non-isolato, fotone singolo/doppio)

Variabili di selezione di HLT (p_T , n, tk isolamento, isolamento in ECAL, HCAL)

segnale: 10K evt prodotti da INFN T-2 BARI con il filtro 2µ2e in generazione

HLT e/y

Seed di L1 e tagli in energia trasversa per i vari trigger-paths degli elettroni/fotoni:

Scenario considerato: Bassa Luminosità $L = 2 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

	Low Lumi (Soglia E _⊤)
Singolo elettrone	26
Doppio elettrone	12
Doppio elettrone No Iso	19
Singolo fotone	80
Doppio fotone	30, 20
Doppio fotone No Iso	30, 20

Altri tagli implementati negli algoritmi di HLT: <

- Pseudorapidità
- Isolamento nel tracker
- Isolamento nei calorimetri

·E/p nel barrel e negli endcap

Efficienze HLT e/y

	Low Lumi (Soglia E _⊤)
Singolo elettrone	26
Doppio elettrone	12
Doppio elettrone No Iso	19
Singolo fotone	80
Doppio fotone	30, 20
Doppio fotone No Iso	30, 20

$$\varepsilon = \frac{\text{eventi} (\text{L1} + \text{HLT} + 2\mu 2e)}{\text{eventi} (2\mu 2e)}$$

$$\delta \varepsilon = \sqrt{\frac{\varepsilon \left(1 - \varepsilon\right)}{N_{gen}}}$$

ε (at least 1 path) = 83.9 ± 0.3 %

Gli eventi **ricostruiti** sono ulteriormente filtrati, richiedendo almer (nece è il più efficiente sul canale alle).

ε (single-e Iso)	= 67.0 ± 0.4 %
ε (double-e Iso)	= 59.8 ± 0.4 %
ε (double-e NoIso)	= 53.4 ± 0.4 %
ε (single-γ Iso)	= 0.05 ± 0.02 %
ε (double-γ Iso)	= 28.9 ± 0.5 %
ε (double-γ No Iso)	= 37.9 ± 0.04 %

<u>Single Muon</u>

		L2 Cuts	L3 Cuts
N	Max Eta	2.5	2.5
0	Min n. hits	0	0
	Max Dr (cm)	no cut	0.02
S	Max Dz (cm)	no cut	no cut
0	MinPt(GeV)	37	37
	NSigma Pt	3.9	2.2

<u>DiMuon</u>

	L2 Cuts	L3 Cuts
Max Eta	2.5	2.5
Min n. hits	0	0
Max Dr (cm)	no cut	0.02
MaxDz (cm)	no cut	no cut
MinPt(GeV)	10	10
NSigma Pt	3.9	2.2

		L2 Cuts	L3 Cuts
о С	Max Eta	2.5	2.5
I I	Min n. hits	0	0
A	Max Dr (cm)	no cut	0.02
Т	MaxDz (cm)	no cut	no cut
Е	MinPt(GeV)	19	19
D	NSigma Pt	3.9	2.2

	L2 Cuts	L3 Cuts
Max Eta	2.5	2.5
Min n. hits	0	0
Max Dr (cm)	no cut	0.02
MaxDz (cm)	no cut	no cut
MinPt(GeV)	7	7
NSigma Pt	3.9	2.2

HLT Combinato μ -e/y

Efficienze di trigger L1+HLT per path combinati e/γ-μ

M _н =	150	GeV
чн		

c —		eventi(L1+ \sum HLT _i +2µ2e)
C	_	eventi (2µ2e)

	Single-e	Double- e	Double-e Noiso	Double-y	Double-y
Single-µ Iso	0.956	0.943	I	0.891	1
Double-µ Iso	0.909	0.844	-	0.791	1
Double-µ NoIso	_	-	0.856	-	0.797

OR logico di tutti i path di leptone singolo o dop	pio
ε (<i>dMu</i> <i>sMu</i> <i>dE</i> <i>sE</i>) = 0.980 ± 0.	004

			_
Trigger	Cuts	1µ 1e	2µ 2e
e/y	L1seed	0.921	0.803
e/y	Ε _τ	0.785	0.704
e/y	HCAL Iso	0.779	0.701
e/y	Pixel match	0.761	0.638
e/y	E/p	0.695	0.623
e/y	Tk Iso	0.673	0.599
μ	L1Seed	0.963	0.960
μ	L2pre	0.924	0.778
μ	L2Iso	0.903	0.775
μ	L3Pre	0.861	0.685
μ	L3Iso	0.837	0.684

Risultati presentati al CERN per l'Higgs WG di CMS

Variabili ricostruite

Sommario

·Studi sulla cinematica del canale H \rightarrow ZZ \rightarrow 2µ 2e

tagli cinematici standard per individuare una particella "pesante":
p_T, massa di-leptone per i fondi riducibili sembrano funzionare
tagli angolari per discriminare il fondo irriducibile
confermati a livello ricostruito

Esercizio sull'efficienza di trigger per il canale H→ZZ→2µ2e
efficienze dei paths di elettroni e fotoni
efficienze dei paths combinati elettroni/fotoni + muoni
individuazione di un possibile trigger per la presa dati

Back-up Slides

EWSB nel Modello Standard

Lagrangiana di interazione:

$$L_{gauge} = -\frac{1}{4} W_{\mu\nu}^{\ i} W_{i}^{\mu\nu} - \frac{1}{4} B^{\mu\nu} B_{\mu\nu} + L_{fermions} = \overline{L} i\gamma^{\mu} (\partial_{\mu} + i\frac{g}{2} B_{\mu}Y + i\frac{g}{2} \tau_{i} W^{i}{}_{\mu})L + \overline{R} i\gamma^{\mu} (\partial_{\mu} + i\frac{g}{2} B_{\mu}Y)R$$

$$W_{\mu\nu}^{i} = \partial_{\nu} W_{\mu}^{i} - \partial_{\mu} W_{\nu}^{i} + g\epsilon^{ijk} W_{\mu}^{j} W_{\nu}^{k} \quad \text{SU(2)}_{\text{L}} \qquad \qquad \text{U(1)} \quad B_{\mu\nu} = \partial_{\nu} B_{\mu} - \partial_{\mu} B_{\nu}$$

$$mancano \ \text{termini} \ \text{di massa del tipo}$$

$$\frac{1}{2} m_{W}^{2} W_{\mu\nu}^{i} W_{i}^{\mu\nu} + \frac{1}{2} m^{2}{}_{B} B_{\mu\nu} B^{\mu\nu} \qquad \qquad - m_{l} (\overline{l}_{R} l_{L} + \overline{l}_{L} l_{R}) = -m_{l} \overline{l} l$$

che violerebbero l'invarianza di gauge locale della teoria

Potenziale scalare (λ >0, μ <0) $V(\Phi) = \mu^2 |\Phi^+\Phi| + \lambda (|\Phi^+\Phi|)^2$

doppietto scalare
complesso di SU(2)
$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$

Dopo la rottura spontanea di simmetria e la scelta del gauge unitario:

ettoriali assless

LHC e il bosone di Higgs

CMSSW

CMSSW = CMS SoftWare

CMSSW è basato sull'EDM: EVENT DATA MODEL

Evento = oggetto sw contenente tutte le informazioni ottenute durante un *evento fisico* triggerato

Gli eventi passano attraverso una sequenza di moduli

Un modulo può leggere o scrivere sull'evento a seconda della sua funzione:

I diversi moduli "parlano" tra di loro esclusivamente attraverso l'evento

Il framework sw di CMS contiene un unico eseguibile (cmsRun) configurabile dall'utente (mediante un file .cfg) Producers: (scrittura dati nell'evento.) trigger, simulazione, ricostruzione
Filtri: controllo del flusso dei dati processati, utilizzati nel trigger
Analyzer: analisi dell'utente (istogrammi e sommari dell'evento)
Input/Output: moduli utilizzati per leggere/scrivere l'evento su supporto permanente

Catena di Simulazione

Confronto gg fusion - VV fusion

Variabili generate

Massa invariante dei 4 leptoni M(H)=150 GeV a.u. Γ_{H} (M_H=150GeV)~ O(100MeV) 10² 10⊨ 1 10⁻¹ 10⁻² 10 10⁻³ 10 50 100 150 200 250 300 10³ SM Higgs Mass [GeV/c²] 0 10^{2} M_{zz} [GeV] **Processes** Zbb2mu2e tt2mu2e Plot normalizzato alla ZZ2mu2e stessa luminosità integrata H150ZZ2mu2e

Variabili angolari (Lab)

Variabili angolari considerate:

≻∆θ(µ⁺µ⁻) angolo tra muoni opposite sign

≻∆θ(ZZ) angolo tra le 2 candidate Z

≻Δθ_{max}(μ±μ±) angolo maggiore tra muoni opposite sign

≻∆θ_{min}(µ±µ±) angolo minore tra muoni like-sign

Le Z sono "ricostruite" a partire dai muoni e non sono stati richiesti ulteriori tagli cinematici rispetto a quelli in generazione

Variabili generate (Angoli)

Distribuzioni normalizzate alla stessa area

		Trigger	Threshold	Rate	Cumulative Rate
(HF energy) (HCAL energy) (EC energy)	$\begin{array}{c} AL \\ rgy \end{array} \qquad \begin{pmatrix} RPC \\ hits \end{pmatrix} \bigoplus \begin{pmatrix} CSC \\ hits \end{pmatrix} \begin{pmatrix} DT \\ hits \end{pmatrix}$		$({\rm GeV}~{\rm or}~{\rm GeV/c})$	(kHz)	(kHz)
\checkmark \checkmark \checkmark \checkmark		inclusive isolated electron/photon	29	3.3	3.3
		di-electron/di-photon	17	1.3	4.3
		inclusive isolated muon	14	2.7	7.0
	segment segment finder	di-muon	3	0.9	7.9
REGIONAL	Comparator	single τ -jet	86	2.2	10.1
		di- τ -jet	59	1.0	10.9
	track	1-jet, 3-jet, 4-jet	177, 86, 70	3.0	12.5
\checkmark	finder	jet * E_T^{miss}	88 * 46	2.3	14.3
·		electron * τ -jet	19 * 45	0.8	15.1
GLOBAL		minimum bias (calibration)		0.9	16.0
	GLOBAL MUON TRIGGER	TOTAL			16.0
X					
GLOBAL TRIGGER					