The CMS Tracker Alignment

Presenter: Marco Musich, Università degli Studi di Torino / INFN (marco.musich@cern.ch)

CMS Tracker Layout

Volume $24 \mathrm{~m}^{3} /$ covered area $200 \mathrm{~m}^{2}$

- Running temperature: $-10^{\circ} \mathrm{C}$ STRIP:
- 15148 modules (pitch $80-205 \mu \mathrm{~m}$) single point resolution of $20-60 \mu \mathrm{~m}$
D measurements from DS modules, mounted back to back (tilt 100 mrad) - PIXEL:

1440 modules (pitch $100(r) \times 150(z) \mu \mathrm{m}^{2}$) resolutions: 9 (r) $20(z) \mu \mathrm{m}$

- Optimization of the particle momenta resolution is critical for CMS Tracker. It depends on two factors

$\boldsymbol{B}=$ magnetic field intensity
 $L=$ track length
$\sigma_{p o s}=\sqrt{\sigma_{\text {intr }}^{2}+\sigma_{\text {wist }}^{2}}$ MISALIGNMENT
- The challenge is to determine at $\mathbf{O}(10 \mu \mathrm{~m})$ corrections for the 6 d.o.f (3 rotations +3 translations) of each of the $>19 \mathrm{k}$ modules in CMS Silicon Tracker
16.5 k modules $\times 6$ ned. of. $\simeq 100 \mathrm{k}$ unknowns

Alignment Formalism

- In the CMS Tracker alignment formalism the hit position in local coordinates of the module is $\mathbf{q}=(\mathbf{u}, \mathbf{v}, \mathbf{w})$ and $\mathbf{r}=(\mathbf{x}, \mathbf{y}, \mathbf{z})$ w.r.t the global reference frame of CMS.
- The two sets of coordinates are related via a roto-translation:

$$
\begin{aligned}
& \left(\begin{array}{l}
\boldsymbol{r}=(x, y, z) \Rightarrow \text { global coordinates } \\
\boldsymbol{q}=(u, v, w) \Rightarrow \text { local coordinates }
\end{array}\right.
\end{aligned} \quad \boldsymbol{r}=R^{\top} \boldsymbol{q}+\boldsymbol{r}_{\mathbf{0}}
$$

The alignment procedure determines corrections to the original transformation via an additional rototranslation

$$
\boldsymbol{r}=R^{\top} \Delta R(\boldsymbol{q}+\Delta \boldsymbol{q})+\boldsymbol{r}_{\mathbf{0}}
$$

The alignment parameters are $\Delta \mathbf{q}=(\Delta \mathbf{u}, \Delta \mathbf{v}, \Delta \mathbf{w})$ which parametrize translations, while the angles $\mathbf{\alpha}, \boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ appear in ΔR parametrize the rotation

Local Iterative Method: "Hits an Impact Points"
Global Method: "Millepede II"

Alignment at CRAFT*

- A "global run": all CMS subdetectors participating to the data taking
- Data taking $24 / 7$ for 3 weeks (Oct 2008)
- Major milestone demonstrating CMS capability of running over long periods
- 300 Million cosmic muon triggers collected @ 3.8 T
- Chance of performing alignment and calibration as an input to collision data taking
*Cosmic Run At Four Tesla

Alignment strategy

- Require good hit and track quality
$p>4 \mathrm{GeV}$ (limit the Multiple Scattering)
clean hits, oultier rejection, X^{2} cut, minimum number of hits, 2D hits.
After that $\sim 4 \mathrm{M}$ tracks useful for alignment $(3 \%+1.5 \%$ passing in pixel volume) remain
- Adopt a multi-step approach for both algorithms:
large structure movements (coherent v alignment of SS
 modules)
Alignment of the two sides of 2D strip modules (units) u, w, γ
module-level alignment of strip and pixel modules
- Algorithms:

Local:

- Cons: many iterations needed to get the full correlations

Global:

- Cons: simple track model / large matrix involved may limit the number of alignable parameters
Final Approach: get the best from both algorithm, combining the two:

1) run the global method \Rightarrow solves global correlations efficiently
2) run the local method \Rightarrow solves locally to match track model in all degrees of freedom
All the three results are compatible but the Combined shows the best performance

Validation Methods

DIR:

Track residuals are expected to get narrower when good alignment is reached:
but several effects (multiple scattering, track extrapolation, hit resolution) are folded in the distributions, broadening the residuals

- At zeroth order alignment should recover the average position of modules along the sensitive coordinate
check the Distribution of Median of Residuals (DIR)
Median: a robust estimator of the peak position of residuals when dealing with many ($\sim 16 \mathrm{k}$) histograms.
- Sensitive to the remaining shift of the modules along the measurement coordinate (i.e. modules with incoherent displacements w.r.t. to the others)

Table of achieved precision:

DMR	not aligned r.m.s. $\mu \mathrm{m}$	combined meth. r.m.s. $\mu \mathrm{m}$	modules >30 hits
PXB $\left(x^{\prime}\right)$	328.7	3.1	$757 / 768$
PXB $\left(y^{\prime}\right)$	274.1	4.3	$757 / 768$
PYE $\left(x^{\prime}\right)$	389.0	13.8	$391 / 672$
PYE $\left(y^{\prime}\right)$	385.8	14.7	$391 / 672$
TIB $\left(x^{\prime}\right)$	712.2	3.2	$2623 / 2724$
TOB $\left(x^{\prime}\right)$	168.6	3.2	$5129 / 5208$
ID $\left(x^{\prime}\right)$	295.0	3.8	$807 / 816$
TED $\left(x^{\prime}\right)$	216.9	7.9	$6318 / 6400$

Cosmic Track Splitting:

Take a tracker track

- split it along its PCA (Point of Closest Approach)
- refit separately the two hits collections coming from the two track legs
compare the track parameters of the the two legs updated at the PCA:
$X=\left(d_{x y}, d_{z}, p_{T}, \theta_{t k}, \phi_{t k}\right)$
if alignment is good the two parameter sets should coincide
united and small residuals are expected

