Recent results on charmonium from Belle and BaBar

Roberto Mussa INFN – Torino

Moriond QCD 2008

Outline

New "charmonium-like" in B decays: X(3872), Y(3940), Z(4430)

New "charmonium-like" recoiling on J/ ψ : X(3940), X(4160)

Formation of Z(3930) = $\chi_{c2}(2P)$ in $\gamma\gamma$ fusion

Precision measurements on low lying charmonia

Not in this review:

- New charmonium-like in ISR: Y(4260), Y(4360), Y(4660)
- $-e^+e^- \rightarrow D^{(*(*))}D^{(*)}$ at Ecm= (3.8-4.5) GeV
- Recent CLEO-c measurements on h_ mass and η_{c} lineshape

X(3872): established facts

Discovered (Belle, 2003) in B decays \rightarrow K J/ $\psi\pi\pi$ Prompt production also seen at Tevatron: (only 16% are from $B \rightarrow K J/\psi \pi \pi$) $M_{\pi\pi}$ consistent with J/ $\psi \rho$ (I=1) $X(3872) \rightarrow J/\psi \gamma$ seen (Belle, BaBar); confirms C=+1 C=+1 implies I_{$\pi\pi$}=1 \rightarrow isospin violation in J/ $\psi\pi\pi$ decay It is NOT observed in $\gamma\gamma$ (CLEO: Γ < 12 eV) Angular distributions favor $J^{PC} = 1^{++}$ or 2^{-+} Observation in B decay suggests $J^{PC} = 1^{++}$ Mass (PDG2007) = $3871.4 \pm 0.6 \text{ MeV/c}^2$

 $[M(D^0+D^{0*}) = 3871.81\pm0.36 \text{ MeV/c}^2]$ Width (PDG2007) < 2.3 MeV (90%CL)

9/3/2008

X(3872): a tetraquark doublet?

No evidence of mass splitting expected from tetraquark model

9/3/2008

X(3872) in B decays to $\pi^0 D^0 \underline{D}^0$

Br(B→KX)Br(X→ $\pi^{0}D^{0}D^{0}$) : (1.27 ±0.31^{+0.22}_{-0.39})x10⁻⁴ [10 xBr(J/ $\psi\pi\pi$)] Mass: 3875.4±0.7^{+0.7}_{-1.7}±0.8 MeV/c²

Br(B \rightarrow KX)Br(X $\rightarrow\pi^{0}D^{0}\underline{D}^{0}$): (1.67 ±0.36 ±0.58)x10⁻⁴ Mass: 3875.1±1.1±0.5 MeV/c² Width: 3.0 -2.3 ±0.9 MeV

347 fb⁻¹; Phys.Rev.D77, 011102(R)(2008)

Y(3940) in B decays to K ω J/ ψ

9/3/2008

Z[±](4430) in B \rightarrow K π [±] ψ'

For equal B⁺/B⁰ Bf's, expect:N(K_s)/N(K⁻)=0.19 in agreement with measurement: 0.20 +- 0.09

B decays to K + charmonium

PDG2007	$\mathcal{B} \times 10^4$	Κ±	K ⁰	K*±	K*0	+anything
	η_c	9.1 ± 1.3	9.1 ± 1.9		16 ± 7	< 90
	J/ψ	10.08 ± 0.35	$8.72 {\pm} 0.33$	$14.1 {\pm} 0.8$	$13.3 {\pm} 0.6$	78 ± 3
	χ_{c0}	1.6 ± 0.5	< 5	< 28.6	< 7.7	
	$\chi_{_{c1}}$	$5.3 {\pm} 0.7$	3.9 ± 0.4	3.6 ± 0.9	$3.2 {\pm} 0.6$	31.6 ± 2.5
	χ_{c2}	< 0.29	< 0.26	< 0.12	< 0.36	16.5 ± 3.1
	$\eta_{c}(2S)$	$3.4{\pm}1.8$				
	ψ'	$6.48 {\pm} 0.45$	$6.2 {\pm} 0.6$	$6.7{\pm}1.4$	7.2 ± 0.8	$30.7 {\pm} 2.1$
Babar	ψ(3770)	2.6±0.6				
Belle+Babar	X(3872)		1.41±0.40	$(BR(D^0D^0\pi^0))$		
Belle+Babar	X(3872)	0.114±0.020/E	$SR(\psi\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -})$			
Belle+Babar	Y(3940)	(0.15 -	÷ 0.71) /BR(ψα	ω)		
Belle	Z⁺(4430)	0.41±	<mark>0.18</mark> / BR (ψπ *	()		

X(3940) & X(4160)

Scanning C=+1 charmonia with J/y recoil

Belle: PR D 70, 071102(R) (2004) 3 peaks, from J=0 charmonia, with 2nd evidence of η_c (2S): Belle: PRL 98, 082001 (2007) Discovery of X(3940)

Charmed mesons recoiling on J/ψ+D^(*)

Belle: hep-ex/0708.3812

Further development:

D⁺ reconstructed in 3 decay modes (12%): $K^{-}\pi^{+}\pi^{-}$, $K^{+}K^{-}\pi^{+}$, $K_{s}^{-0}\pi^{+}$

D⁰ reconstructed in 5 decay modes (29%): $K^{-}\pi^{+}, K^{+}K^{-}, K^{-}\pi^{+}\pi^{-}\pi^{+},$ $K_{s}^{0}\pi^{+}\pi^{-}, K^{+}\pi^{-}\pi^{0}$

New charmonium-like states recoiling off J/w

9/3/2008

Cross sections for double ccbar: exp vs theory

$X_{_{CC}} =$	lower charmonia	η _c (1S)	$\chi_{_{c0}}$ (1P)	η _c (2S)
Belle	$\sigma(J/\psi+X_{cc}) \times \mathcal{B}(N_{ch}>2)$ [fb]	25.6 ± 2.8 ± 3.4	$6.4 \pm 1.7 \pm 1.0$	$16.5 \pm 3.0 \pm 2.4$
Babar	$\sigma (J/\psi + X_{CC}) \times \mathcal{B}(N_{ch} > 2)$ [fb]	17.6 ± 2.8 ^{+1.5} _{-2.1}	$10.3 \pm 2.5 {}^{+1.4}_{-1.8}$	$16.4 \pm 3.7 \begin{array}{c} +2.4 \\ -3.0 \end{array}$
NRQCD-LO	$\sigma(J/\psi+X_{cc})$ [fb]	3.78 ± 1.26	2.40 ± 1.02	1.57 ± 0.52
NRQCD-NLO	$\sigma(J/\psi+X_{cc})$ [fb]	16.7 ± 4.2		

Belle $\sigma(\psi(2S)+X_{cc}) \times \mathcal{B}(N_{cb}>2)$ [fb] 16.3 ± 4.6 ± 3.9 12.5 ± 3.8 ± 3.1 16.0 ± 3.1 ± 3.8

X	_{cc} = new states	X(3940)	X(4160)
	$\sigma(J/\psi+X_{cc}) \times \mathcal{B}(DD^*)[fb]$	13.9 ^{+6.4} -4.1 ± 2.2	
	$\sigma(J/\psi+X_{cc}) \times \mathcal{B}(D^*D^*)[fb]$		24.7 ^{+12.8} ± 5.0

Large NLO corrections needed to fit the data

Do not decrease in $\psi(2s)$ recoil Do not decrease if higher masses recoil on J/ ψ

9/3/2008

Cross sections for double ccbar: exp vs theory

X _{cc} =	ower charmonia	η_{c} (1S)	$\chi_{_{ m c0}}$ (1P)	η_{c} (2S)
Belle	$\sigma(J/\psi+X_{cc}) \times \mathcal{B}(N_{ch}>2)$ [fb]	$25.6 \pm 2.8 \pm 3.4$	$6.4 \pm 1.7 \pm 1.0$	$16.5 \pm 3.0 \pm 2.4$
Babar	$\sigma (J/\psi + X_{CC}) \times \mathcal{B}(N_{ch} > 2)$ [fb]	$17.6 \pm 2.8 \begin{array}{c} +1.5 \\ -2.1 \end{array}$	$10.3 \pm 2.5^{+1.4}_{-1.8}$	16.4 ± 3.7 $^{+2.4}_{-3.0}$
NRQCD-LO	$\sigma(J/\psi+X_{cc})$ [fb]	3.78 ± 1.26	2.40 ± 1.02	1.57 ± 0.52
NRQCD-NLC) $\sigma(J/\psi+X_{cc})$ [fb]	16.7 ± 4.2		

Belle $\sigma(\psi(2S)+X_{cc}) \times \mathcal{B}(N_{ch}>2)[fb]$ 16.3 ± 4.6 ± 3.912.5 ± 3.8 ± 3.116.0 ± 3.1 ± 3.8 $X_{cc} = new states$ X(3940)X(4160)Belle $\sigma(J/\psi+X_{cc}) \times \mathcal{B}(DD^*)[fb]$ $13.9^{+6.4}_{-4.1} \pm 2.2$ $24.7^{+12.8}_{-8.3} \pm 5.0$

Large NLO corrections needed to fit the data Do not decrease in $\psi(2s)$ recoil Do not decrease if higher masses recoil on J/ ψ

9/3/2008

Cross sections for double ccbar: exp vs theory

$X_{\rm CC} = 1$	ower charmonia	η _c (1S)	$\chi_{_{c0}}$ (1P)	η _c (2S)
Belle	$\sigma(J/\psi+X_{cc}) \times \mathcal{B}(N_{ch}>2)$ [fb]	$25.6 \pm 2.8 \pm 3.4$	$6.4 \pm 1.7 \pm 1.0$	$16.5 \pm 3.0 \pm 2.4$
Babar	$\sigma (J/\psi + X_{CC}) \times \mathcal{B}(N_{ch} > 2)$ [fb]	17.6 ± 2.8 ^{+1.5} -2.1	$10.3 \pm 2.5^{+1.4}_{-1.8}$	$16.4 \pm 3.7 \begin{array}{c} +2.4 \\ -3.0 \end{array}$
NRQCD-LO	$\sigma(J/\psi+X_{cc})$ [fb]	3.78 ± 1.26	2.40 ± 1.02	1.57 ± 0.52
NRQCD-NLC	$\sigma(J/\psi + X_{cc})$ [fb]	16.7 ± 4.2		

Belle $\sigma(\psi(2S)+X_{cc}) \times \mathcal{B}(N_{ch}>2)$ [fb] 16.3 ± 4.6 ± 3.9 12.5 ± 3.8 ± 3.1 16.0 ± 3.1 ± 3.8

X _{cc} =	= new states	X(3940)	X(4160)
Belle	$\sigma(J/\psi+X_{cc}) \times \mathcal{B}(DD^*)[fb]$	$13.9_{-4.1}^{+6.4} \pm 2.2$	
Belle	$\sigma(J/\psi+X_{_{CC}})\times\mathcal{B}(D^*D^*)[fb]$		24.7 ^{+12.8} ± 5.0

Large NLO corrections needed to fit the data Do not decrease in $\psi(2s)$ recoil Do not decrease if higher masses recoil on J/ ψ

9/3/2008

Z(3930) in yy fusion

NEED: CONFIRMATION BY BaBar , DD : D*D ratio

9/3/2008

Precision studies on partial widths

BELLE: thorough study of $\gamma \gamma \rightarrow \eta_c(1,2S), \chi_{c0,2}(1P)$

Results on πKK decay mode

$M, { m MeV}$	Group	η_c	$\eta_c(2S)$	
	Belle	$2981.4 \pm 0.5 \pm 0.4$	$3633.7 \pm 2.3 \pm 1.9$	
	PDG-07	2979.8 ± 1.2	3637.0 ± 4.0	
	CLEO	$2981.8 \pm 1.3 \pm 1.5$	$3642.9 \pm 3.1 \pm 1.5$	
	BaBar	$2982.5 \pm 1.1 \pm 0.9$	$3630.8 \pm 3.4 \pm 1.0$	
$\Gamma,\;\mathrm{MeV}$	Group	η_c	$\eta_c(2S)$	
	Belle	$36.6 \pm 1.5 \pm 2.0$	$19.1\pm6.9\pm6.0$	
	PDG-07	25.5 ± 3.4	14.0 ± 7.0	
	CLEO	$24.8 \pm 3.4 \pm 3.5$	$6.3 \pm 12.4 \pm 4.0 \; (< 31)$	
	BaBar	$34.3 \pm 2.3 \pm 0.9$	$17.0 \pm 8.3 \pm 2.5$	
$\Gamma_{\gamma\gamma}\mathcal{B}, \mathrm{eV}$	Group	η_c	$\eta_c(2S)$	
	Belle	$142 \pm 4 \pm 14$	$11.2 \pm 2.4 \pm 2.7$	

Only upper limits for $\eta_c(2S)$ decays to $4\pi, 2K, 2\pi, 4K$ even if hints of signals are visible.

9/3/2008

(arXiv:0706.3955)

Most new states do not fit predicted decay patterns.

Even Z(3930) is not where the χ_{c2} ' was expected

Large rates of dipion transitions even above DD threshold.

Many new vector states above open charm thresholds: hybrids, tetraquarks?

Two narrow D states still missing

9/3/2008

Most new states do not fit predicted decay patterns.

Even Z(3930) is not where the χ_{c2} ' was expected

Large rates of dipion transitions even above DD threshold.

Many new vector states above open charm thresholds: hybrids, tetraquarks?

Two narrow D states still missing: or not?

9/3/2008

Summary

Lots of new "charmonia" in the last 5 years : a new spectroscopy?

Only the narrow X(3872) has diversified production and decay mechanisms

All the other new states are seen in only one channel

Strong dynamics of B to charmonium K should help to define their nature

Spin dependence of double ccbar still unclear

A clear pattern has not yet emerged, and further studies are under way B-factories have not yet finished to rewrite charmonium spectroscopy

STAY TUNED : see you at 6th Q&G, Nara(Japan), Dec.2-5,2008

Earge TIES Softestions				
$J/\psi(c\overline{c})_{res}$		$\eta_c(1S)$	χ_{c0}	$\eta_c(2S)$
Belle	$\sigma imes \mathcal{B}_{>2}$ [fb]	$25.6\pm2.8\pm3.4$	$6.4\pm1.7\pm1.0$	$16.5\pm3.0\pm2.4$
BABAR	$\sigma imes \mathcal{B}_{>2}$ [fb]	$17.6 \pm 2.8^{+1.5}_{-2.1}$	$10.3 \pm 2.5^{+1.4}_{-1.8}$	$16.4\pm3.7^{+2.4}_{-3.0}$
NRQCD:	σ [fb]			
Braaten&Lee ¹		3.78 ± 1.26	$\textbf{2.40} \pm \textbf{1.02}$	1.57 ± 0.52
with relativistic corr ^{ns} :		$7.4^{+10.9}_{-4.1}$	_	$7.6^{+11.8}_{-4.1}$
Liu,He,&Chao ²		5.5	6.9	3.7
Zhang,Gao,&Chao ³		14.1	_	_

Large NLO corrections in the NRQCD calculation are needed

• The K-factor from the resummed relativistic corrections is greater than that from the QCD NLO corrections found by Zhang, Gao, and Chao.

Braaten & Lee (QWG2006)

 $\mathsf{K}\operatorname{-Factor} = (1 + \underbrace{0.8}_{\mathsf{QCD NLO}}) \times (1 + \underbrace{1.45 \pm 0.61}_{v^2 \text{ Resummation}})$

- Without (QCD NLO)×(v^2 Resum.) term: (3.78 fb)_{LO} × (3.25 ± 0.61) = 12.3 ± 2.3 fb
- With estimated (QCD NLO)×(v^2 Resum.) term: (3.78 fb)_{LO} × (4.41 ± 1.10) = 16.7 ± 4.2 fb

9/3/2008

X(3872) in B \rightarrow K ($\pi^0 \pi^+ \pi^- J/\psi$)

Below ω threshold: 12.4 ± 4.2 evts ω_{\parallel}

X(3872) in B \rightarrow K (γ J/ ψ)

 $\Gamma(X \to \gamma J/\psi)/\Gamma(X \to \pi^+ \pi^- J/\psi) = 0.14 \pm 0.05.$

28

Y(3940) : Dalitz plot $B \rightarrow K \otimes J/\psi$

9/3/2008

X(3940) in double charmonium : 0⁻⁺ vs 0⁺⁺

Angular distributions can cast some light on X(3940) quantum numbers :

X(3872): discovery in B \rightarrow K ($\pi^+ \pi^- J/\psi$)

LP2003, August '03 Discovery in B decays \rightarrow K J/ $\psi\pi\pi$

Belle : PRL91,262001(2003) [hep-ex/0309032]

 $M = 3872.0 \pm 0.6 \pm 0.5 MeV/c^{2}$ Γ < 2.3 MeV (90%CL) Br($B^+ \rightarrow K^+X$)*Br(X $\rightarrow J/\psi \pi\pi$) Br($B^+ \rightarrow K^+ \psi')^*$ Br($\psi' \rightarrow J/\psi \pi \pi$)

 $= 6.3 \pm 1.2 \pm 0.7 \%$

BaBar: PRD71,071103(2005) [hep-ex/0406022]

9/3/2008

X(3872): production in pp annihilations

CDF: PRL93,072001(2004) [hep-ex/0312021] Prompt X(3872) is dominant: only 16% from $B \rightarrow K J/\psi \pi \pi$

PRL93,162002(2004)

[hep-ex/0405004]

X(3872) production vs pseudo-rapidity

9/3/2008

9/3/2008

X(3872) vs DD* threshold

9/3/2008