

Charmonium spectrum

★8 states below D^D threshold ★2 still need confirmation ★S-D mixing on 1⁻ states ★Narrow states above D^D:¹D₂, ³D₂

Roberto Mussa , 9th Heavy Havors , Caltech 2001

Charmonium sources

1) e⁺e⁻ annihilations (Mark–III, Crystal Ball, DM2, BES):

- directly only J^{PC}=1⁻⁻;
- access to hadronic and EM decay modes ;
- initial state radiation
- 2) pp annihilations (R704,E760,E835)
- direct on all J^{PC} ;
- only EM decay modes (huge hadronic background)

3) γ, γ^* scattering, from $e^+e^- \rightarrow e^+e^-\gamma\gamma$ (CLEO,LEP)

• only on states with positive C

4) Hadronic production, via gluon–gluon fusion (E705,E771,Hera–B)

• Good for discovery in EM final states

5) B decays, via b->ccs (B factories)

η_e mass and width

*Recent data from:

CLEO: Brandenburg et al. Phys.RevLett. 85 (2000) 3095 BES: Bai et al. Phys.Rev.D60(1999) 072001 DELPHI: Abreu et al., Phys.Lett. B441(1998) 479 * Preliminary data from E835 Studying syst errors from energy dependence of $p_{\mathbb{P}} \rightarrow \pi^{0}\pi^{0}\pi^{0} + \pi^{0}\gamma$ feeddown .

★Recent data from: E835,BES,CLEO, LEP

MASS:

Hyperfine splitting: $M(J/\psi)-M(\eta_c) = 117\pm 2 \text{ MeV/c}^2$

Bad overall χ^2 on PDG: M(pp)>M(e^+e^-)? • TOTAL WIDTH= $\Gamma(\eta_c \rightarrow gg)$ BES-I data from ψ and ψ' sample $\delta\Gamma/\Gamma \sim 25\%$?? Bad χ^2 casts doubts on PDG2000 ***** Waiting for results from the 50M ψ BESII sample.

CLEO-C

Masses of $\chi_{_{cJ}}$ states

*

*New averages:

$$M(\chi_{c0})_{new} = 3415.2\pm0.4 \text{ MeV/c}^2$$

*Mass splittings:

$$M(\chi_{c_1})_{E760}^{} - M(\chi_{c_0})_{new}^{} = 95.3 \pm 0.4 \text{ MeV/c}^2$$
$$M(\chi_{c_2})_{E760}^{} - M(\chi_{c_1})_{E760}^{} = 45.6 \pm 0.2 \text{ MeV/c}^2$$

 $\underset{cog}{\bigstar} M_{cog} = [M(\chi_{c0})_{new} + 3M(\chi_{c2})_{E760} + 5M(\chi_{c1})_{E760}]/9$ = 3525.3±0.1 MeV/c²

 $\underset{\sim og}{\star} M_{cog} - M(J/\psi) = 428.4\pm0.1 \text{ MeV/c}^{2}$ $\underset{\sim}{\star}$ Triplet P - S splitting known at 0.2 ‰ level.

Lattice predictions still not satisfactory
 (e.g.: CPPACS, hep-lat/0011005, see plot)
even after unquenching
 (Stewart-Koniuk, hep-lat/0010015)

$$M \begin{cases} X_{co} \\ X_{cl} \\ X_{cl} \\ X_{c2} \end{cases} = M_{cog} + h_{LS} \begin{cases} -2 \\ -1 \\ 1 \\ 1 \end{cases} + h_T \begin{cases} -2 \\ -1/5 \\ -1/5 \end{cases}$$

	0.9	1.1	0.2	0.4
bb(n=1)	19.9	32.8	4.1	12.4
	0.2	0.4	0.1	0.1
cc(n=1)	45.6	95.3	12.9	30.6
	M2-M1	M1-M0	HT	HLS

 $(\chi_{\mathfrak{s}} \to \gamma\gamma)$ (keV)

progress(> 6x more statistics).

Radiative Widths of $\chi_{\rm cJ}$ states

• All current values are obtained combining e^+e^- and $p_{\mathbb{P}}$ data as follows:

$$\Gamma_{rad}(\Psi_i \rightarrow \gamma \Psi_f) = \Gamma_{tot}(\Psi_i) * BR(\Psi_i \rightarrow \gamma \Psi_f)$$

• The fractional error is given by:

$$\frac{\delta \Gamma_{tot}}{\Gamma_{tot}} \oplus \frac{\delta BR}{BR} = \frac{\delta \Gamma_{rad}}{\Gamma_{rad}}$$

• Current values are summarized below:

ror	15%	14%	15%	12%	17%	32%	24%	31%	ror	5%	9%	4%	2%
En	11% ⊕ 10% =	11% ⊕ 9% =	11% ⊕ 10% =	9% ⊕ 8% =	16% ⊕ 6% =	17%	11% ⊕ 21% =	6% ⊕ 31% =	Err				
Rad. Width (keV)	23	24	26	270	240	86	0.78	1.13	Amplitude ratio	8%	13%	-9%	0%
Transition	PSIP to CHI2	PSIP to CHI1	PSIP to CHIO	CHI2 to JPSI	CHI1 to JPSI	CHIO to JPSI	PSIP to ETAC	JPSI to ETAC	_	PSIP to CHI2	PSIP to CHI1	CHI2 to JPSI	CHI1 to JPSI
	E1						MI		M2/E				

Roberto Nussa , 9th Heavy Havors , Caltech 2001

E835

Syst errors from inclusive photon spectra

- BR(J/ψ,ψ'→γ+...), measured by Crystal Ball. *Gaiser et al. Ph. Rev. D34*,711 (1986) All BR($\eta_{c}, \chi_{c} \rightarrow$ hadrons) measured from e+e- annihilations depend on
- Crystal Ball's charged tracking inefficiency: 20% syst error on BR($\psi' \rightarrow \gamma \chi_c$)?
- Low statistics of M1 transitions: 30% stat error on BR($J/\psi, \psi' \rightarrow \gamma \eta_{c}$)

photon selection criteria of the χ analysis. The spectra labeled (e) employ a modified cut on the lateral photon energy pattern photon energy. The preferred resolution value of $\sigma_0=2.7\%$ is used in the fit. The spectre labeled (b) and (c) correspond to the inclusive photom spectra. The data are plotted in 2% bins in the as described in the text.

Complementarity between e^+e^- and p_0 data

- A more rigorous approach to the calculation of radiative widths accounts experimental data can be found in C. Patrignani, Phys. Rev. D 64(2001) 034017 for the correlation between different measurements. A global fit of all
- From e+e-machines:

Nevents(
$$\longrightarrow$$
) $\propto \Gamma(\psi')BR(\psi' \rightarrow \gamma + \chi_c) * BR(\chi_c \rightarrow p_p)$
Nevents(\longrightarrow) $\propto \Gamma(\psi')BR(\psi' \rightarrow \gamma + \chi_c) * BR(\chi_c \rightarrow \gamma J/\psi$

• From pp machines:

Nevents(\longrightarrow) $\propto \Gamma(\chi_c)BR(\chi_c \rightarrow p_{\mathbb{D}})*BR(\chi_c \rightarrow \gamma J/\psi)$

Crystal Ball and E835 samples are numerically compatible. Access to $\gamma \chi_{c}, \psi \pi^{\circ}, \psi \eta$.

ECAL:Nal much better than PbG $\Rightarrow \chi_{c_2}$ and χ_{c_1} merge. Analysis under way: χ_{c0} , angular distributions

Roberto Mussa , 9th Heavy Havors , Caltech 2001

CLEO-C

$\psi' \rightarrow J/\psi \; \pi^+ \; \pi^-$

•BES results in Bai et al, Phys. Rev. D62(2000)032002

- •From a 3.8M ψ ' sample.
- • $M_{\pi\pi}$ peaked at high values.
- •S wave between ψ and $\pi\pi$
- •D wave content in the dipion: ~15%

 ψ' vs J/ ψ decays: the 15% rule

•BES-I results (preliminary) •From a 4M ψ^{\prime} ans 7.8MJ/ ψ sample. •Works for AP and BB modes, not for others.

 $Q_h=Br(\psi(2S)\rightarrow h)/Br(J/\psi\rightarrow h)$

¹ \mathbf{P}_{1} (*a.k.a. h*_c) search

 $\bigstar E760$ data: 16 pb⁻¹ in the $M_{_{cog}}$ region

 \blacktriangleright Observed a state at M=3526.2±0.15±0.20

in $p_{\mathbb{P}} \to h_{c} \to J/\psi \ \pi^{0}$

> Not seen in $p\mathbb{P} \to h_c \to J/\psi \pi\pi$, and

$$p_{\mathbb{D}} \to h_{\rm c} \to {\mathfrak{M}}_{\rm c} \to {\mathfrak{M}}_{\rm c}$$

- Large amount of cross–calibration data: $\chi_{c_{1,2}}$ scans, J/ψ,ψ' double scans.
- E835 data: $47pb^{-1}$ (in 96–97) and 50 pb^{-1} (in 2000) in the M_{cog} region
- Careful study on the stability of E beam measurements (at a level of few hundred keV) under way .

★A ¹S₀(n=2) candidate at 3594±5 MeV/c² wasobserved by Crystal Ball in $e^+e^- \rightarrow \gamma + X$ *Edwards et al.*, *Phys.Rev.Lett.*48(1982),70 ... but never confirmed

• DELPHI: did not find it in $\gamma \rightarrow \eta_c^{2} \rightarrow \text{hadrons}$ Abreu et al., Phys.Lett.B441(1998),479 • E760-E835: did not find it in $p_{\mathbb{D}} \rightarrow \eta_{c}^{2} \rightarrow \gamma \gamma (3576 < \text{Ecm} < 3660 \text{ MeV})$

Ambrogiani et al., Phys. Rev. D64(2001), 052003 Upper limits at 90% CL on BR(p_{D})*BR($\gamma\gamma$) with $\Gamma=5, 10, 15$ MeV are given.

★A ¹S₀(n=2) candidate at 3594±5 MeV/c² wasobserved by Crystal Ball in $e^+e^- \rightarrow \gamma + X$ *Edwards et al.*, *Phys.Rev.Lett.*48(1982),70 ... but never confirmed

• DELPHI: did not find it in $\gamma \rightarrow \eta_c^{2} \rightarrow \text{hadrons}$ Abreu et al., Phys.Lett.B441(1998),479 • E760–E835: did not find it in $p_{D} \rightarrow \eta_{c}^{2} \rightarrow \gamma (3576 < \text{Ecm} < 3660 \text{ MeV})$ Ambrogiani et al., Phys. Rev. D64(2001), 052003

Ambrogiani et al., Phys. Rev. D64(2001), 052003 Upper limits at 90% CL on BR(p_{D})*BR($\gamma\gamma$) with Γ =5,10,15 MeV are given.

★A ¹S₀(n=2) candidate at 3594±5 MeV/c² wasobserved by Crystal Ball in

 $e^+e^- \rightarrow \gamma + X$ Edwards et al., Phys.Rev.Lett.48(1982),70 ... but never confirmed

• DELPHI: did not find it in $\gamma\gamma \rightarrow \eta_c^2 \rightarrow hadrons$ Abreu et al., Phys.Lett.B441(1998),479

• E760–E835: did not find it in $p_{D} \rightarrow \eta_{c}^{2} \rightarrow \gamma \gamma (3576 < \text{Ecm} < 3660 \text{ MeV})$ Ambrogiani et al., Phys. Rev. D64(2001), 052003

Ambrogiani et al., Phys. Rev. D64(2001), 052003 Upper limits at 90% CL on BR(pp)*BR(γ) with Γ =5,10,15 MeV are given.

★A ¹S₀(n=2) candidate at 3594±5 MeV/c² wasobserved by Crystal Ball in $e^+e^- \rightarrow \gamma + X$ Edwards et al., Phys.Rev.Lett.48(1982),70 ... but never confirmed

• DELPHI: did not find it in $\gamma\gamma \rightarrow \eta_{c}^{2} \rightarrow \text{hadrons}$

... Abreu et al., Phys.Lett.B441(1998),479 • E760-E835: did not find it in $p_{\mathbb{D}} \rightarrow \eta_{c}^{2} \rightarrow \gamma \gamma (3576 < \text{Ecm} < 3660 \text{ MeV})$

Ambrogiani et al., Phys. Rev. D64(2001), 052003 Upper limits at 90% CL on $BR(p_{D})*BR(\gamma\gamma)$ with $\Gamma=5,10,15$ MeV are given.

${}^{1}D_{2}, {}^{3}D_{2}$ searches

One singlet $({}^{1}D_{2})$ and 3 Triplet $({}^{3}D_{1,2,3})$ D-wave state are expected in the region between DD and DD* threshold $(3729-3871 \text{ MeV/c}^{2})$.

S–D wave relativistic mixing in vector states: $\psi(3770) = |{}^{3}D_{1} > - \varepsilon |{}^{3}S_{1} > (\Gamma=23.6\pm2.7 \text{ MeV})$ $\psi'(3686) = |{}^{3}S_{1} > + \varepsilon |{}^{3}D_{1} > (\Gamma=277\pm31 \text{ keV})$ The ${}^{3}D_{2}$ and ${}^{1}D_{2}$ can't decay to DD, and are narrow. $\Rightarrow High BR(\psi+X)$ is possible.

E771 observed a signal at M=3836±13 MeV/c² in $\pi \text{Li} \rightarrow \psi \pi^+ \pi^- + X$

Antoniazzi et al., Phys. Rev. D50(1994), 4258

BES search from e⁺e⁻ @E_{em}=4.03 GeV, exploiting ISR (but what quantum numbers are accessible?) Bai et al., Phys. Rev. D57(1998), 3854

One singlet ($^{1}D_{2}$) and 3 Triplet ($^{3}D_{1,2,3}$) D–wave states are expected in the region between DD and DD* threshold $(3729-3871 \text{ MeV/c}^2)$.

S–D wave relativistic mixing in vector states: $\psi(3770) = |{}^{3}D_{1} > - \varepsilon |{}^{3}S_{1} > (\Gamma=23.6\pm2.7 \text{ MeV})$ $\psi'(3686) = |{}^{3}S_{1} > + \varepsilon |{}^{3}D_{1} > (\Gamma=277\pm31 \text{ keV})$ The ${}^{3}D_{2}$ and ${}^{1}D_{2}$ can't decay to DD, and are narrow. $\Rightarrow High BR(\psi+X)$ is possible.

E771 observed a signal at M=3836±13 MeV/c² in $\pi \text{Li} \rightarrow \psi \pi^+ \pi^- + X$

Antoniazzi et al., Phys. Rev. D50(1994), 4258

BES search from e⁺e⁻ @E_m=4.03 GeV, exploiting ISR (but what quantum numbers are accessible?) Bai et al., Phys. Rev. D57(1998), 3854

D⁰,D[±],D_s[±] meson spectrum

•P arity cons. forbids $D^{**}(1^+) \rightarrow D\pi$, and $D^{**}(0^+) \rightarrow D^*\pi$

D*[±]-meson width

CLEO : first measurement of the narrow width of the $D^{*\pm}$ meson, from the exact determination of the Q of the reaction:

 $\mathrm{D}^{st \pm}
ightarrow \pi^{\pm} \mathrm{D}^{0}$

hep-ex/0108043, to be published on Phys.Rev.D

Key factor:10µm transverse size of interaction region.

$\Gamma(D^{*\pm}) = 96\pm4(\text{stat})\pm22(\text{syst}) \text{ keV}$

PDG(2000): > 132 keV(90% CL)

Mass splitting, from the Q value: $M(D^{*\pm})-M(D^0) = 145.412\pm0.002\pm0.012(syst) MeV/c^2$

to be compared with the ZEUS result(1999): M(D*[±])–M(D⁰) = 145.45±0.02 MeV/c² *Breitweg et al., Eur.Phys.J.C6(1999),67–83*

Roberto Mussa , 9th Heavy Havors , Caltech 2001

P-wave D-mesons

Preliminary Results from E831: 330k D, 70 k D* from γ +BeO \rightarrow D+X

Spectra of P–wave 2^+ states detected in reactions: $D^{0**} \rightarrow D^{\mp}\pi^{\pm}$ (see slide) and $D^{\pm**} \rightarrow D^{0}\pi^{\pm}$ (P arity cons. forbids $D^{**}(1^+) \to D\pi$, and $D^{**}(0^+) \to D^*\pi$) Need to include broad S-wave states in the fits in order to obtain decent χ^2 values: evidence of D^{**}(0⁺) ?

P-wave D-mesons

•Preliminary Results from E831(upgraded E687): 330k D, 70 k D* from γ +BeO \rightarrow D+X

•Spectra of P-wave 2^+ states detected in reactions: $D^{0**} \rightarrow D^{\mp}\pi^{\pm}$ (see slide) and $D^{\pm**} \rightarrow D^{0}\pi^{\pm}$ (P arity cons. forbids $D^{**}(1^+) \to D\pi$, and $D^{**}(0^+) \to D^*\pi$) •Need to include broad S-wave states in the fits in order to obtain decent χ^2 values: evidence of D** (0^+) ? •Study of systematic effects is in progress.

P-wave D -mesons

Preliminary Results from E831(upgraded E687)

Samples: 330k D, 70 k D* from γ +BeO \rightarrow D+X

First observation of $D_s^{**} \rightarrow DK_s^0$

P-wave D -mesons

Preliminary Results from E831(upgraded E687)

Samples: 330k D, 70 k D* from γ +BeO \rightarrow D+X

First observation of $D_s^{**} \rightarrow DK_s^0$

Width of $D_s(1+)$?

D*'-mesons

* First evidence of an orbital excitation at DELPHI, in the channel:

 $D^{*,+} \rightarrow D^{*+} \pi^{+} \pi^{-}$

at M = 2637± 2± 6 MeV/c² Abreu at al., Phys.Lett.B426(98),231

⇒Vector D^{*+} -meson mass splitting: M(D*')-M(D*) = 627± 6 MeV/c²

CLEO did not see it hep-ex/9901008 •OPAL did not see it G. Abbiendi et al.Eur.Phys.J.C20(2001):445

Waiting for E831 analysis

Roberto Iviussa , 9th Heavy Flavors , Caltech 2001

Charmed Baryons: spectrum

$\Sigma_{\rm c}$ masses

Most recent data from E831: J.M. Link et al., Phys.Lett.B488(2000), 224 Errors on mass splittings at Ammar et al., PRL 86 (2001), 1167 about 1-2% level. and CLEO:

M(cuu) > M(cdd)??

$M(\Sigma_{c})-M(\Lambda_{c})$:

1	PDG2000	E831(00)	CLEO(0
Σ0	167.30 ± 0.20	$167.38\pm0.21\pm0.13$	$167.2\pm0.1\pm0$
Σ^+	168.7 ± 0.6		$166.4\pm0.2\pm0$
$\Sigma_{\pm}^{\pm\pm}$	167.87 ± 0.19	$167.35\pm0.19\pm0.12$	$167.4\pm0.1\pm0$
$\Sigma0*$	232.6±1.3		$232.6\pm 1.0\pm 0$
Σ^{+*}			$231.0\pm 1.1\pm 2$
Σ^{++*}	234.5 ± 1.4		$234.5\pm 1.1\pm 0$

CLEO(01)	
$167.2\pm0.1\pm0.2$	16
$166.4\pm 0.2\pm 0.3$	
$167.4\pm0.1\pm0.2$	16
$232.6\pm 1.0\pm 0.8$	
$231.0\pm 1.1\pm 2.0$	
$234.5\pm 1.1\pm 0.8$	

7.67±0.15 232.6±1.3

234.5±1.4 31.0 ± 2.3

7.32±0.15

166.4±0.4

DG2001"

$\Sigma_{\rm c}$ masses

Most recent data from E831: J.M. Link et al., Phys. Lett. B488(2000), 224 Errors on mass splittings at Ammar et al., PRL 86 (2001), 1167 about 1-2% level. and CLEO:

M(cuu) > M(cdd)??

 $M(\Sigma_{c})-M(\Lambda_{c})$:

	PDG2000 167.30±0.20 168.7±0.6 167.87±0.19 167.35 232.6±1.3 234.5+1.4	E831(00) 8±0.21±0.13 5±0.19±0.12	CLEO(01) 167.2±0.1±0.2 166.4±0.2±0.3 167.4±0.1±0.2 232.6±1.0±0.8 231.0±1.1±2.0 234.5+1.1+0.8
--	--	--	--

 167.32 ± 0.15

"PDG2001"

167.67±0.15 232.6±1.3 231.0±2.3 **234.5±1.4**

 166.4 ± 0.4

 $\Sigma_{\rm c}$ widths

Roberto Mussa , 9th Heavy Havors , Caltech 2001

Conclusions

Oops ... I didn't think to make it in time..

Radiative Widths of $\chi_{\rm cJ}$ states

- The refitted values (*C.Patrignani*, *hep-ex/0104003*) are compared with these theory predictions:
- ref.A: Fayyazuddin and Mobarek, Phys.Rev.D48, 1220(1983)
- ref.B:Gupta et al., Phys.Rev.D39, 974 (1989)
- ref.C:Resag and Munz, Nucl.Phys. A590,735 (1995)
- ref.D:McClary and Byers, Phys.Rev. D28,1692 (1985)
- The errors on $P \rightarrow S$ widths include the syst errors on $BR(S \rightarrow P)$

Transition	Rad. Width (keV) E	rror ref.	A F	ef.B r	ef.C	ref.C2	ref.D	ref.D2	
PSIP to CHI2	19	16%	14	25	60	š		7 2	2
PSIP to CHI1	23	15%	20	29	36	4	~	1	3
PSIP to CHI0	20	20%	21	20	31	3		9	6
CHI2 to JPSI	374	17%	347	326	270	347	7 34	17 30	D
CHI1 to JPSI	281	19%	273	250	250	23(2	0 24	0
CHIO to JPSI	119	23%	141	117	140	119	1.	.11	N
PSIP to ETAC	0.78	24%	4.39	8.77	206.83	906	9 12.0	3.7	4
JPSI to ETAC	1.13	31%							

Lattice predictions

Anisotropic lattice (from hep-lat/

J/\U Width (E760)

improved scanning technique (double scan): by measuring the excitation curve on 2 orbits during the same run, syst The accuracy of the J/v Width was obtained by an errors were kept down to 6 keV

single scan as diamonds, and from the 1990 double scan as 1990 single scan are shown as crosses, from the second 1990 squares

Intro: QED vs QCD bound states

- Positronium \int_{QED} (Charmonium, Bottomonium \int_{QCD} D, B-mesons• Systems: [Hydrogen Atom]
- Similarities: $\gamma^{\mu}\gamma_{\mu}$ coupling, V(r)~1/r
- Differences:
- QCD non perturbative when $Q^2 \rightarrow 0$
- Free quarks not directly observable
- Large Relativistic effects: $\beta \sim \alpha_s$

Two approaches to QCD

- Weak approach: "knowledge of hadron dynamics at few % level is fundamental for precise measurements of CKM parameters"
- available systems to achieve the deepest possible Strong approach: "heavy hadrons are the best understanding of strong interactions".

Theoretical Progress in the 90's

- Potential models
- Lattice
- HQET
- NRQCD
- pNRQCD
- Heavy meson chiral lagrangians

Widths of $\chi_{\rm cJ}$ states

*Recent Results at χ_{c_0} : BES Bai et al., Phys.Rev.Lett.81(1998),3091 *From $e^+e^- \rightarrow \psi' \rightarrow \gamma \pi^+\pi^-, \gamma K^+K^-$ =1.5 k reconstructed events total = $\Gamma_{BES}(\chi_{c0}) = 14.3\pm 2.0\pm 3.0 \text{ MeV}$

FIG. 1. The $\pi^+\pi^-$ mass distribution for selected $\psi(2S) \rightarrow \gamma \pi^+\pi^-$ events.